Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 87
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Medicina (Kaunas) ; 57(11)2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34833365

ABSTRACT

Background and Objectives: This study aimed at investigating the laxative effects of a standardized aqueous extract of Dendropanax morbiferus H. Lév. on two different constipation rat models. Materials and Methods: Animal studies were conducted with low-fiber diet-induced and loperamide-induced constipation animal models, and isolated colons were used in ex vivo analysis to determine the changes in colonic motility caused by D. morbiferus H. Lév. leaf extract (DPL). Results: The results showed that DPL administration significantly improved certain reduced fecal parameters (number, weight, and water content of the stools) in a both low-fiber diet and loperamide-induced constipation models without adverse effects of diarrhea. The laxative effect of DPL was confirmed to improve the charcoal excretion time upon DPL treatment in a low-fiber diet or loperamide-induced constipation model through gastrointestinal (GI) motility evaluation using the charcoal meal test. In addition, when DPL was administered to RAW264.7 cells and loperamide-induced constipation model rats, the production of prostaglandin E2 (PGE2) increased significantly in cells and tissue. Furthermore, DPL dose-dependently stimulated the spontaneous contractile amplitude and frequency of the isolated rat colon. Conclusion: Although our study did not provide information on the acute or chronic toxicity of DPL, our results demonstrated that DPL can effectively promote defecation frequency and rat colon contraction, providing scientific evidence to support the use of DPL as a therapeutic application. However, further toxicity studies of DPL are needed prior to the initiation of clinical trials and clinical applications.


Subject(s)
Laxatives , Plant Extracts , Animals , Constipation/chemically induced , Constipation/drug therapy , Gastrointestinal Motility , Laxatives/pharmacology , Laxatives/therapeutic use , Loperamide/pharmacology , Loperamide/therapeutic use , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Rats
2.
Phys Rev Lett ; 124(11): 117205, 2020 Mar 20.
Article in English | MEDLINE | ID: mdl-32242722

ABSTRACT

Unambiguous identification of fractionalized excitations in quantum spin liquids has been a long-standing issue in correlated topological phases. Conventional spectroscopic probes, such as the dynamical spin structure factor, can only detect composites of fractionalized excitations, leading to a broad continuum in energy. Lacking a clear signature in conventional probes has been the biggest obstacle in the field. In this work, we theoretically investigate what kinds of distinctive signatures of fractionalized excitations can be probed in two-dimensional nonlinear spectroscopy by considering the exactly solvable Kitaev spin liquids. We demonstrate the existence of a number of salient features of the Majorana fermions and fluxes in two-dimensional nonlinear spectroscopy, which provide crucial information about such excitations.

3.
Phys Rev Lett ; 125(2): 027202, 2020 Jul 10.
Article in English | MEDLINE | ID: mdl-32701352

ABSTRACT

Noncollinear magnetic order arises for various reasons in several magnetic systems and exhibits interesting spin dynamics. Despite its ubiquitous presence, little is known of how magnons, otherwise stable quasiparticles, decay in these systems, particularly in metallic magnets. Using inelastic neutron scattering, we examine the magnetic excitation spectra in a metallic noncollinear antiferromagnet CrB_{2}, in which Cr atoms form a triangular lattice and display incommensurate magnetic order. Our data show intrinsic magnon damping and continuumlike excitations that cannot be explained by linear spin wave theory. The intrinsic magnon linewidth Γ(q,E_{q}) shows very unusual momentum dependence, which our analysis shows to originate from the combination of two-magnon decay and the Stoner continuum. By comparing the theoretical predictions with the experiments, we identify where in the momentum and energy space one of the two factors becomes more dominant. Our work constitutes a rare comprehensive study of the spin dynamics in metallic noncollinear antiferromagnets. It reveals, for the first time, definite experimental evidence of the higher-order effects in metallic antiferromagnets.

4.
Int J Mol Sci ; 21(14)2020 Jul 14.
Article in English | MEDLINE | ID: mdl-32674521

ABSTRACT

We investigated the time-dependent deleterious ocular changes induced by urban particulate matter (UPM) in vitro and in vivo. UPM treatment decreased human corneal epithelial cell migration and survival. Fluorescein scores were consistently increased by UPM application for 16 weeks. One week of rest at 2 or 4 weeks led to a recovery trend, whereas two weeks of rest at 8 weeks induced no change. UPM treatment decreased the tear film break-up time at 2 weeks, which was thereafter maintained until 16 weeks. No changes were found after periods of rest. UPM-treated eyes exhibited greater corneal epithelium thickness than normal eyes at 2 weeks, which recovered to normal at 4 and 8 weeks and was significantly decreased at 16 weeks. Apoptotic cell number in the epithelium was increased at 2 weeks, which remained constant except at 8 weeks. IL-6 expression in the cornea of the right eye continually increased for 16 weeks, and significant recovery was only observed at 8 weeks after 2 weeks of rest. Ocular pressure was significantly increased in the right eye at 12 and 16 weeks. Topical UPM application to the eye induced deleterious changes to various closely related parts of the eye.


Subject(s)
Conjunctiva/drug effects , Cornea/drug effects , Epithelium, Corneal/drug effects , Particulate Matter/adverse effects , Retina/drug effects , Animals , Cell Line , Conjunctiva/metabolism , Cornea/metabolism , Disease Models, Animal , Dry Eye Syndromes/chemically induced , Epithelium, Corneal/metabolism , Fluorescein/pharmacology , Humans , Incidence , Interleukin-6/metabolism , Male , Rats , Rats, Sprague-Dawley , Retina/metabolism , Tears/drug effects , Tears/metabolism
5.
Molecules ; 25(24)2020 Dec 16.
Article in English | MEDLINE | ID: mdl-33339214

ABSTRACT

Previously, we demonstrated that a 5% ethanol extract of unripe Rubus coreanus (5-uRCK) and ellagic acid has hypocholesterolemic and antiobesity activity, at least partially mediated by the downregulation of adipogenic and lipogenic gene expression in high-fat diet (HFD)-fed animals. The present study investigated the thermogenic and lipolytic antiobesity effects of 5-uRCK and ellagic acid in HFD-induced obese C57BL/6 mice and explored its mechanism of action. Mice fed an HFD received 5-uRCK or ellagic acid as a post-treatment or pretreatment. Both post-treated and pretreated mice showed significant reductions in body weight and adipose tissue mass compared to the HFD-fed mice. The protein levels of lipolysis-associated proteins, such as adipose triglyceride lipase (ATGL), phosphorylated hormone-sensitive lipase (p-HSL), and perilipin1 (PLIN1), were significantly increased in both the 5-uRCK- and ellagic acid-treated mouse epididymal white adipose tissue (eWAT). Additionally, thermogenesis-associated proteins, such as peroxisome proliferator-activated receptor α (PPARα), carnitine palmitoyl transferase-1 (CPT1), uncoupling protein 1 (UCP1), and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α), in inguinal white adipose tissue (ingWAT) were clearly increased in both the 5-uRCK- and ellagic acid-treated mice compared to HFD-fed mice. These results suggest that 5-uRCK and ellagic acid are effective for suppressing body weight gain and enhancing the lipid profile.


Subject(s)
Ellagic Acid/chemistry , Lipolysis/drug effects , Plant Extracts/pharmacology , Rubus/chemistry , Thermogenesis/drug effects , Adipogenesis/genetics , Adipose Tissue, White/drug effects , Adipose Tissue, White/metabolism , Adipose Tissue, White/pathology , Animals , Biomarkers/metabolism , Body Weight/drug effects , Diet, High-Fat , Down-Regulation/drug effects , Ellagic Acid/administration & dosage , Ellagic Acid/isolation & purification , Ellagic Acid/pharmacology , Lipogenesis/genetics , Male , Mice , Mice, Inbred C57BL , Obesity/drug therapy , Obesity/veterinary , PPAR alpha/genetics , PPAR alpha/metabolism , Plant Extracts/administration & dosage , Plant Extracts/chemistry , Rubus/metabolism , Uncoupling Protein 1/genetics , Uncoupling Protein 1/metabolism
6.
Nat Mater ; 17(12): 1087-1094, 2018 12.
Article in English | MEDLINE | ID: mdl-30397313

ABSTRACT

Magnetic skyrmions are topologically protected whirling spin texture. Their nanoscale dimensions, topologically protected stability and solitonic nature, together are promising for future spintronics applications. To translate these compelling features into practical spintronic devices, a key challenge lies in achieving effective control of skyrmion properties, such as size, density and thermodynamic stability. Here, we report the discovery of ferroelectrically tunable skyrmions in ultrathin BaTiO3/SrRuO3 bilayer heterostructures. The ferroelectric proximity effect at the BaTiO3/SrRuO3 heterointerface triggers a sizeable Dzyaloshinskii-Moriya interaction, thus stabilizing robust skyrmions with diameters less than a hundred nanometres. Moreover, by manipulating the ferroelectric polarization of the BaTiO3 layer, we achieve local, switchable and nonvolatile control of both skyrmion density and thermodynamic stability. This ferroelectrically tunable skyrmion system can simultaneously enhance the integratability and addressability of skyrmion-based functional devices.

7.
Phys Rev Lett ; 120(15): 157601, 2018 Apr 13.
Article in English | MEDLINE | ID: mdl-29756851

ABSTRACT

For the quantum well in an optical microcavity, the interplay of the Coulomb interaction and the electron-photon (e-ph) coupling can lead to the hybridizations of the exciton and the cavity photon known as polaritons, which can form the Bose-Einstein condensate above a threshold density. Additional physics due to the nontrivial Berry phase comes into play when the quantum well consists of the gapped two-dimensional Dirac material such as the transition metal dichalcogenide MoS_{2} or WSe_{2}. Specifically, in forming the polariton, the e-ph coupling from the optical selection rule due to the Berry phase can compete against the Coulomb electron-electron (e-e) interaction. We find that this competition gives rise to a rich phase diagram for the polariton condensate involving both topological and symmetry breaking phase transitions, with the former giving rise to the quantum anomalous Hall and the quantum spin Hall phases.

8.
Phys Rev Lett ; 121(16): 167001, 2018 Oct 19.
Article in English | MEDLINE | ID: mdl-30387633

ABSTRACT

It has been recognized that the condensation of spin-triplet Cooper pairs requires not only broken gauge symmetry but also spin ordering as well. One consequence of this is the possibility of a Cooper-pair spin current analogous to the magnon spin current in magnetic insulators, the analogy also extending to the existence of the Gilbert damping of the collective spin-triplet dynamics. The recently fabricated heterostructure of the thin film of the itinerant ferromagnet SrRuO_{3} on bulk Sr_{2}RuO_{4}, the best-known candidate material for a spin-triplet superconductor, offers a promising platform for generating such spin current. We show how such heterostructure allows us to not only realize the long-range spin valve but also electrically drive the collective spin mode of the spin-triplet order parameter. Our proposal represents both a novel experimental realization of superfluid spin transport and a transport signature of the spin-triplet superconductivity therein.

9.
Biochim Biophys Acta ; 1863(11): 2820-2834, 2016 11.
Article in English | MEDLINE | ID: mdl-27599716

ABSTRACT

Mitochondrial dysfunction is known as one of causative factors in Alzheimer's disease (AD), inducing neuronal cell death. Mitochondria regulate their functions through changing their morphology. The present work was undertaken to investigate whether Amyloid ß (Aß) affects mitochondrial morphology in neuronal cells to induce apoptosis. Aß treatment induced not only the fragmentation of mitochondria but also neuronal apoptosis in association with an increase in caspase-9 and -3 activity. Calcium influx induced by Aß up-regulated the activation of Akt through CaMKII resulting in changes to the phosphorylation level of Drp1 in a time-dependent manner. Translocation of Drp1 from the cytosol to mitochondria was blocked by CB-124005 (an Akt inhibitor). Recruitment of Drp1 to mitochondria led to ROS generation and mitochondrial fission, accompanied by dysfunction of mitochondria such as loss of membrane potential and ATP production. ROS generation and mitochondrial dysfunction by Aß were attenuated when treated with Mdivi-1, a selective Drp1 inhibitor. Furthermore, the sustained Akt activation induced not only the fragmentation of mitochondria but also the activation of mTOR, eventually suppressing autophagy. Inhibition of autophagic clearance of Aß led to increased ROS levels and aggravating mitochondrial defects, which were blocked by Rapamycin (an mTOR inhibitor). In conclusion, sustained phosphorylation of Akt by Aß directly activates Drp1 and inhibits autophagy through the mTOR pathway. Together, these changes elicit abundant mitochondrial fragmentation resulting in ROS-mediated neuronal apoptosis.


Subject(s)
Amyloid beta-Peptides/toxicity , Apoptosis/drug effects , Dynamins/metabolism , GTP Phosphohydrolases/metabolism , Hippocampus/drug effects , Microtubule-Associated Proteins/metabolism , Mitochondria/drug effects , Mitochondrial Dynamics/drug effects , Mitochondrial Proteins/metabolism , Neurons/drug effects , Peptide Fragments/toxicity , Proto-Oncogene Proteins c-akt/metabolism , Animals , Autophagy/drug effects , Cell Line, Tumor , Dynamins/genetics , GTP Phosphohydrolases/genetics , Hippocampus/enzymology , Hippocampus/pathology , Humans , Membrane Potential, Mitochondrial/drug effects , Mice , Microtubule-Associated Proteins/genetics , Mitochondria/enzymology , Mitochondria/pathology , Mitochondrial Proteins/genetics , Neurons/enzymology , Neurons/pathology , Oxidative Stress/drug effects , Phosphorylation , RNA Interference , Reactive Oxygen Species/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Time Factors , Transfection
10.
Cell Mol Neurobiol ; 37(6): 955-968, 2017 Aug.
Article in English | MEDLINE | ID: mdl-27766447

ABSTRACT

Mitochondria as dynamic organelles undergo morphological changes through the processes of fission and fusion which are major factors regulating their functions. A disruption in the balance of mitochondrial dynamics induces functional disorders in mitochondria such as failed energy production and the generation of reactive oxygen species, which are closely related to pathophysiological changes associated with Alzheimer's disease (AD). Recent studies have demonstrated a relationship between abnormalities in mitochondrial dynamics and impaired mitochondrial function, clarifying the effects of morphofunctional aberrations which promote neuronal cell death in AD. Several possible signaling pathways have been suggested for a better understanding of the mechanism behind the key molecules regulating mitochondrial morphologies. However, the exact machinery involved in mitochondrial dynamics still has yet to be elucidated. This paper reviews the current knowledge on signaling mechanisms involved in mitochondrial dynamics and the significance of mitochondrial dynamics in controlling associated functions in neurodegenerative diseases, particularly in AD.


Subject(s)
Amyloid beta-Peptides/metabolism , Mitochondrial Dynamics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Animals , Cell Death , Humans , Mitochondria/metabolism , Models, Biological
11.
Biomacromolecules ; 18(8): 2343-2349, 2017 Aug 14.
Article in English | MEDLINE | ID: mdl-28603980

ABSTRACT

Natural silk spinning offers several advantages over the synthetic fiber spinning, although the underlying mechanisms of this process are yet to be fully elucidated. Silkworm silks, specifically B. mori, comprise two main proteins: fibroin, which forms the fiber, and sericin, a coextruded coating that acts as a matrix in the resulting nonwoven composite cocoon. To date, most studies have focused on fibroin's self-assembly and gelation, with the influence of sericin during spinning receiving little to no attention. This study investigates sericin's effects on the self-assembly of fibroin via their natural phase-separation. Through changes in sample opacity, FTIR, and XRD, we report that increasing sericin concentration retards the time to gelation and ß-sheet formation of fibroin, causing it to adopt a Silk I conformation. Such findings have important implications for both the natural silk spinning process and any future industrial applications, suggesting that sericin may be able to induce long-range conformational and stability control in silk fibroin, while being in a separate phase, a factor that would facilitate long-term storage or silk feedstocks.


Subject(s)
Fibroins/chemistry , Sericins/chemistry , Protein Stability , Protein Structure, Secondary
12.
Biofouling ; 32(4): 497-509, 2016.
Article in English | MEDLINE | ID: mdl-26980068

ABSTRACT

Vibrio parahaemolyticus is one of the leading foodborne pathogens causing seafood contamination. Here, 22 V. parahaemolyticus strains were analyzed for biofilm formation to determine whether there is a correlation between biofilm formation and quorum sensing (QS), swimming motility, or hydrophobicity. The results indicate that the biofilm formation ability of V. parahaemolyticus is positively correlated with cell surface hydrophobicity, autoinducer (AI-2) production, and protease activity. Field emission scanning electron microscopy (FESEM) showed that strong-biofilm-forming strains established thick 3-D structures, whereas poor-biofilm-forming strains produced thin inconsistent biofilms. In addition, the distribution of the genes encoding pandemic clone factors, type VI secretion systems (T6SS), biofilm functions, and the type I pilus in the V. parahaemolyticus seafood isolates were examined. Biofilm-associated genes were present in almost all the strains, irrespective of other phenotypes. These results indicate that biofilm formation on/in seafood may constitute a major factor in the dissemination of V. parahaemolyticus and the ensuing diseases.


Subject(s)
Biofilms/growth & development , Hydrophobic and Hydrophilic Interactions , Quorum Sensing , Vibrio parahaemolyticus , Fimbriae, Bacterial , Food Contamination/prevention & control , Foodborne Diseases/microbiology , Foodborne Diseases/prevention & control , Humans , Seafood/microbiology , Vibrio parahaemolyticus/pathogenicity , Vibrio parahaemolyticus/physiology
13.
Int J Mol Sci ; 17(9)2016 Sep 02.
Article in English | MEDLINE | ID: mdl-27598142

ABSTRACT

In the present study, novel adsorbents having high adsorption capability and reusability were prepared using agricultural by-products: silk sericin and lignin. Silk sericin and lignin blend beads were successfully prepared using simple coagulation methods for the removal of hexavalent chromium (Cr(VI)) from aqueous solution. A 1 M lithium chloride (LiCl)/dimethyl sulfoxide (DMSO) solvent system successfully dissolved both sericin and lignin and had sufficient viscosity for bead preparation. Compared to the conventional sericin bead adsorbent, sericin/lignin blend beads showed higher Cr(VI) adsorption capacity. The amount of lignin added to the adsorbent greatly affected the adsorption capacity of the beads, and a 50:50 sericin/lignin blend ratio was optimal. Adsorption behavior followed the Freundlich isotherm, which means the adsorption of Cr(VI) occurred on the heterogeneous surface. Cr(VI) adsorption capability increased with temperature because of thermodynamic-kinetic effects. In addition, over 90% of Cr(VI) ions were recovered from the Cr(VI) adsorbed sericin/lignin beads in a 1 M NaOH solution. The adsorption-desorption recycling process was stable for more than seven cycles, and the recycling efficiency was 82%. It is expected that the sericin/lignin beads could be successfully applied in wastewater remediation especially for hazardous Cr(VI) ions in industrial wastewater.


Subject(s)
Chromium/chemistry , Lignin/chemistry , Microspheres , Sericins/chemistry , Adsorption
14.
Biopolymers ; 101(4): 307-18, 2014 Apr.
Article in English | MEDLINE | ID: mdl-23868372

ABSTRACT

Silk fibroin (SF) nanofiber scaffold containing microalgae Spirulina extract were prepared by electrospinning and the performance and functionality of the scaffold were evaluated. The viscosity and conductivity of the dope solution of Spirulina containing SF were examined for electrospinability and we found that the morphological structure of SF nanofiber is affected by the concentration of Spirulina extract added. The platelet adhesion and coagulation time test confirmed that the Spirulina containing SF nanofiber scaffold had excellent ability to prevent blood clotting or antithrombogenicity that is comparable to heparin. Low cytotoxicity and excellent cell adhesion and proliferation were also observed for Sprulina containing SF nanofiber scaffold by methylthiazolyldiphenyl-tetrazolium bromide assay and confocal fluorescence microscope using fibroblast and human umbilical vein endothelial cells. Based on these results, we believe SF nanofiber scaffold containing Spirulina extract has the potential to be used as tissue engineering scaffold that requires high hemocompatibility.


Subject(s)
Fibroins/chemistry , Fibroins/pharmacology , Microalgae/chemistry , Nanofibers/chemistry , Spirulina/chemistry , Animals , Blood Coagulation/drug effects , Bombyx , Cell Survival/drug effects , Electric Conductivity , Materials Testing , Microscopy, Fluorescence , Nanofibers/ultrastructure , Platelet Adhesiveness/drug effects , Rabbits , Solutions , Viscosity
15.
Biomacromolecules ; 15(4): 1390-8, 2014 Apr 14.
Article in English | MEDLINE | ID: mdl-24601579

ABSTRACT

Silk has recently been exploited in various fields due to its superior mechanical properties. However, this material's lack of biological functions and relatively poor biodegradation have hindered its wide use in applications related to cells and tissues. Here, we improved the overall characteristics of silkworm silk fibroin (SF) by introduction of RGD peptide-fused recombinant mussel adhesive protein (MAP-RGD). Simple blending of MAP-RGD provided not only bulk-scale adhesive ability but also microscale adhesiveness to cells and various biomolecules. MAP-RGD-blended SF fibers supported enhanced adhesion, proliferation, and spreading of mammalian cells as well as the efficient attachment of biomolecules, including carbohydrate and protein. In addition, the hydrophilicity, swelling, and biodegradability of the MAP-RGD-blended SF material were improved without notable hampering of the original mechanical properties of SF. Therefore, the adhesive silk fibrous scaffold could be successfully used in diverse biomedical engineering applications.


Subject(s)
Biocompatible Materials , Fibroins/chemistry , Oligopeptides/chemistry , Proteins/chemistry , Recombinant Fusion Proteins/chemistry , Adhesives/chemistry , Cell Adhesion , Cell Line , Cell Proliferation , Humans , Keratinocytes/cytology , Osteoblasts/cytology , Tissue Scaffolds
16.
Nanomaterials (Basel) ; 14(12)2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38921876

ABSTRACT

Many studies on flexible strain and pressure sensors have been reported due to growing interest in wearable devices for healthcare purposes. Here, we present flexible pressure and strain (motion) sensors prepared with only graphene oxide (GO) and commercial silk fabrics and yarns. The pressure sensors were fabricated by simply dipping the silk fabric into GO solution followed by applying a thermal treatment at 400 °C to obtain reduced GO (rGO). The pressure sensors were made from rGO-coated fabrics, which were stacked in three, five, and seven layers. A super-sensitivity of 2.58 × 103 kPa-1 at low pressure was observed in the seven-layer pressure sensor. The strain sensors were obtained from rGO-coated twisted silk yarns whose gauge factor was 0.307. Although this value is small or comparable to the values for other sensors, it is appropriate for motion sensing. The results of this study show a cost-effective and simple method for the fabrication of pressure and motion sensors with commercial silk and GO.

17.
J Nanosci Nanotechnol ; 13(4): 2708-13, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23763148

ABSTRACT

In this study, the Poly(vinylidene fluoride-trifluoethylene) (PVDF) electrospun fibers were successfully prepared by electrospinning. Processing parameters, such as solvents and solution temperature were varied to study their influence on fiber dimensions. Electrospun PVDF fibers were characterized by scanning electron microscope (SEM), Fourier transform infrared spectrophotometer (FT-IR), wide angle X-ray diffraction (WAXD) and differential scanning calorimetry (DSC). The result indicated that the solvent component and temperature have great influence on fiber dimensions. 19% PVDF dissolved in DMF/MEK mixed solvents with the ratio of 8:2 was considered to be most suitable in this study. Furthermore, the increasing of solution temperature can probably induce the formation of beta-phases in electrospun PVDF Fibers.

18.
J Mater Sci Mater Med ; 24(8): 2029-36, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23661256

ABSTRACT

In this work, novel poly(ε-caprolactone) (PCL) fibrous membranes incorporating amphiphilic polyhedral oligosilsesquioxane (POSS) telechelic (PEG-POSS telechelic) were prepared via electrospinning. The unique microstructure, morphology, thermal stability of the resulting PCL/PEG-POSS telechelic electrospun nanowebs were investigated by X-ray diffraction, scanning electron microscopy, and thermogravimetric analysis, respectively. The addition of amphiphilic PEG-POSS telechelic strongly influenced the fiber diameters, microstructures of the resultant PCL/PEG-POSS telechelic nanofibers, compared to pure PCL nanofibers. The potential biomedical applications of such PEG-POSS telechelic nanowebs as a scaffolding material were also evaluated in vitro using mouse osteoblast-like MC3T3-E1 cells. The cell adhesion, spreading, and interaction behavior of pure PCL and PCL/PEG-POSS telechelic fibrous membranes were explored. It was found that electrospun PCL fibrous membranes incorporating amphiphilic PEG-POSS telechelic showed higher initial cell attachment than pure PCL due to the higher surface free energy of POSS siloxanes. Moreover, the obtained PCL/PEG-POSS telechelic fibrous scaffolds were found to be nontoxic and to maintain the good adhesion ratio between cells and surface (about ~93 %) after cell culturing for 24 h.


Subject(s)
Organosilicon Compounds/chemistry , Osteoblasts/cytology , Polyesters/chemistry , Polyethylene Glycols/chemistry , Tissue Scaffolds , Animals , Cell Adhesion/drug effects , Cell Culture Techniques/instrumentation , Cell Proliferation/drug effects , Cells, Cultured , Electroplating/methods , Mice , Organosilicon Compounds/pharmacology , Osteoblasts/drug effects , Osteoblasts/physiology , Polyesters/chemical synthesis , Polyethylene Glycols/pharmacology , Surface-Active Agents/chemistry , Surface-Active Agents/pharmacology , Tissue Scaffolds/chemistry , X-Ray Diffraction
19.
Antioxidants (Basel) ; 12(6)2023 May 29.
Article in English | MEDLINE | ID: mdl-37371901

ABSTRACT

Blue light is reported to be harmful to eyes by inducing reactive oxygen species (ROS). Herein, the roles of Peucedanum japonicum Thunb. leaf extract (PJE) in corneal wound healing under blue light irradiation are investigated. Blue-light-irradiated human corneal epithelial cells (HCECs) show increased intracellular ROS levels and delayed wound healing without a change in survival, and these effects are reversed by PJE treatment. In acute toxicity tests, a single oral administration of PJE (5000 mg/kg) does not induce any signs of clinical toxicity or body weight changes for 15 days post-administration. Rats with OD (oculus dexter, right eye) corneal wounds are divided into seven treatment groups: NL (nonwounded OS (oculus sinister, left eye)), NR (wounded OD), BL (wounded OD + blue light (BL)), and PJE (BL + 25, 50, 100, 200 mg/kg). Blue-light-induced delayed wound healing is dose-dependently recovered by orally administering PJE once daily starting 5 days before wound generation. The reduced tear volume in both eyes in the BL group is also restored by PJE. Forty-eight hours after wound generation, the numbers of inflammatory and apoptotic cells and the expression levels of interleukin-6 (IL-6) largely increase in the BL group, but these values return to almost normal after PJE treatment. The key components of PJE, identified by high-performance liquid chromatography (HPLC) fractionation, are CA, neochlorogenic acid (NCA), and cryptochlorogenic acid (CCA). Each CA isomer effectively reverses the delayed wound healing and excessive ROS production, and their mixture synergistically enhances these effects. The expression of messenger RNAs (mRNAs) related to ROS, such as SOD1, CAT, GPX1, GSTM1, GSTP1, HO-1, and TRXR1, is significantly upregulated by PJE, its components, and the component mixture. Therefore, PJE protects against blue-light-induced delayed corneal wound healing via its antioxidative, anti-inflammatory, and antiapoptotic effects mechanistically related to ROS production.

20.
Nat Commun ; 14(1): 8346, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38102124

ABSTRACT

The triangular lattice antiferromagnet (TLAF) has been the standard paradigm of frustrated magnetism for several decades. The most common magnetic ordering in insulating TLAFs is the 120° structure. However, a new triple-Q chiral ordering can emerge in metallic TLAFs, representing the short wavelength limit of magnetic skyrmion crystals. We report the metallic TLAF Co1/3TaS2 as the first example of tetrahedral triple-Q magnetic ordering with the associated topological Hall effect (non-zero σxy(H = 0)). We also present a theoretical framework that describes the emergence of this magnetic ground state, which is further supported by the electronic structure measured by angle-resolved photoemission spectroscopy. Additionally, our measurements of the inelastic neutron scattering cross section are consistent with the calculated dynamical structure factor of the tetrahedral triple-Q state.

SELECTION OF CITATIONS
SEARCH DETAIL