Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
1.
FASEB J ; 37(7): e23009, 2023 07.
Article in English | MEDLINE | ID: mdl-37273180

ABSTRACT

Human and animal studies support that consuming a high level of linoleic acid (LA, 18:2ω-6), an essential fatty acid and key component of the human diet, increases the risk of colon cancer. However, results from human studies have been inconsistent, making it challenging to establish dietary recommendations for optimal LA intake. Given the importance of LA in the human diet, it is crucial to better understand the molecular mechanisms underlying its potential colon cancer-promoting effects. Using LC-MS/MS-based targeted lipidomics, we find that the cytochrome P450 (CYP) monooxygenase pathway is a major pathway for LA metabolism in vivo. Furthermore, CYP monooxygenase is required for the colon cancer-promoting effects of LA, since the LA-rich diet fails to exacerbate colon cancer in CYP monooxygenase-deficient mice. Finally, CYP monooxygenase mediates the pro-cancer effects of LA by converting LA to epoxy octadecenoic acids (EpOMEs), which have potent effects on promoting colon tumorigenesis via gut microbiota-dependent mechanisms. Overall, these results support that CYP monooxygenase-mediated conversion of LA to EpOMEs plays a crucial role in the health effects of LA, establishing a unique mechanistic link between dietary fatty acid intake and cancer risk. These results could help in developing more effective dietary guidelines for optimal LA intake and identifying subpopulations that may be especially vulnerable to LA's negative effects.


Subject(s)
Colonic Neoplasms , Linoleic Acid , Humans , Mice , Animals , Linoleic Acid/pharmacology , Linoleic Acid/metabolism , Chromatography, Liquid , Tandem Mass Spectrometry , Eicosanoids , Cytochrome P-450 Enzyme System/metabolism , Diet , Colonic Neoplasms/etiology
2.
J Am Chem Soc ; 145(46): 25318-25331, 2023 11 22.
Article in English | MEDLINE | ID: mdl-37943667

ABSTRACT

For many drug targets, it has been shown that the kinetics of drug binding (e.g., on rate and off rate) is more predictive of drug efficacy than thermodynamic quantities alone. This motivates the development of predictive computational models that can be used to optimize compounds on the basis of their kinetics. The structural details underpinning these computational models are found not only in the bound state but also in the short-lived ligand binding transition states. Although transition states cannot be directly observed experimentally due to their extremely short lifetimes, recent successes have demonstrated that modeling the ligand binding transition state is possible with the help of enhanced sampling molecular dynamics methods. Previously, we generated unbinding paths for an inhibitor of soluble epoxide hydrolase (sEH) with a residence time of 11 min. Here, we computationally modeled unbinding events with the weighted ensemble method REVO (resampling of ensembles by variation optimization) for five additional inhibitors of sEH with residence times ranging from 14.25 to 31.75 min, with average prediction accuracy within an order of magnitude. The unbinding ensembles are analyzed in detail, focusing on features of the ligand binding transition state ensembles (TSEs). We find that ligands with similar bound poses can show significant differences in their ligand binding TSEs, in terms of their spatial distribution and protein-ligand interactions. However, we also find similarities across the TSEs when examining more general features such as ligand degrees of freedom. Together these findings show significant challenges for rational, kinetics-based drug design.


Subject(s)
Drug Design , Molecular Dynamics Simulation , Protein Binding , Ligands , Thermodynamics , Kinetics
3.
Proc Natl Acad Sci U S A ; 117(15): 8431-8436, 2020 04 14.
Article in English | MEDLINE | ID: mdl-32220957

ABSTRACT

Intestinal barrier dysfunction, which leads to translocation of bacteria or toxic bacterial products from the gut into bloodstream and results in systemic inflammation, is a key pathogenic factor in many human diseases. However, the molecular mechanisms leading to intestinal barrier defects are not well understood, and there are currently no available therapeutic approaches to target intestinal barrier function. Here we show that soluble epoxide hydrolase (sEH) is an endogenous regulator of obesity-induced intestinal barrier dysfunction. We find that sEH is overexpressed in the colons of obese mice. In addition, pharmacologic inhibition or genetic ablation of sEH abolishes obesity-induced gut leakage, translocation of endotoxin lipopolysaccharide or bacteria, and bacterial invasion-induced adipose inflammation. Furthermore, systematic treatment with sEH-produced lipid metabolites, dihydroxyeicosatrienoic acids, induces bacterial translocation and colonic inflammation in mice. The actions of sEH are mediated by gut bacteria-dependent mechanisms, since inhibition or genetic ablation of sEH fails to attenuate obesity-induced gut leakage and adipose inflammation in mice lacking gut bacteria. Overall, these results support that sEH is a potential therapeutic target for obesity-induced intestinal barrier dysfunction, and that sEH inhibitors, which have been evaluated in human clinical trials targeting other human disorders, could be promising agents for prevention and/or treatment.


Subject(s)
Bacterial Translocation , Epoxide Hydrolases/immunology , Intestinal Diseases/enzymology , Intestines/enzymology , Obesity/complications , Adipose Tissue/immunology , Animals , Bacteria/genetics , Bacteria/isolation & purification , Bacterial Physiological Phenomena , Epoxide Hydrolases/genetics , Gastrointestinal Microbiome , Humans , Intestinal Diseases/etiology , Intestinal Diseases/immunology , Intestinal Diseases/microbiology , Intestines/immunology , Intestines/microbiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Obesity/enzymology , Obesity/genetics
4.
Int J Mol Sci ; 22(9)2021 May 08.
Article in English | MEDLINE | ID: mdl-34066758

ABSTRACT

Epoxy-fatty acids (EpFAs) are endogenous lipid mediators that have a large breadth of biological activities, including the regulation of blood pressure, inflammation, angiogenesis, and pain perception. For the past 20 years, soluble epoxide hydrolase (sEH) has been recognized as the primary enzyme for degrading EpFAs in vivo. The sEH converts EpFAs to the generally less biologically active 1,2-diols, which are quickly eliminated from the body. Thus, inhibitors of sEH are being developed as potential drug therapeutics for various diseases including neuropathic pain. Recent findings suggest that other epoxide hydrolases (EHs) such as microsomal epoxide hydrolase (mEH) and epoxide hydrolase-3 (EH3) can contribute significantly to the in vivo metabolism of EpFAs. In this study, we used two complementary approaches to probe the relative importance of sEH, mEH, and EH3 in 15 human tissue extracts: hydrolysis of 14,15-EET and 13,14-EDP using selective inhibitors and protein quantification. The sEH hydrolyzed the majority of EpFAs in all of the tissues investigated, mEH hydrolyzed a significant portion of EpFAs in several tissues, whereas no significant role in EpFAs metabolism was observed for EH3. Our findings indicate that residual mEH activity could limit the therapeutic efficacy of sEH inhibition in certain organs.


Subject(s)
Epoxide Hydrolases/metabolism , Fatty Acids/metabolism , Microsomes/enzymology , Organ Specificity , Epoxide Hydrolases/antagonists & inhibitors , Humans , Hydrolysis , Kinetics , Recombinant Proteins/metabolism , Solubility , Substrate Specificity , Tissue Extracts
5.
J Pharmacol Exp Ther ; 374(1): 223-232, 2020 07.
Article in English | MEDLINE | ID: mdl-32238455

ABSTRACT

1-(1-propanoylpiperidin-4-yl)-3-[4-(trifluoromethoxy)phenyl]urea (TPPU) and 1-(4-trifluoro-methoxy-phenyl)-3-(1-cyclopropanecarbonyl-piperidin-4-yl)-urea (TCPU) are potent inhibitors of soluble epoxide hydrolase (sEH) that have much better efficacy in relieving nociceptive response than the Food and Drug Administration-approved drug gabapentin in a rodent model of diabetic neuropathy. Experiments conducted in sEH knockout mice or with coadministration of a potent sEH displacer demonstrated that the pharmacokinetics of TPPU and TCPU were influenced by the specific binding to their pharmacologic target sEH, a phenomenon known as target-mediated drug disposition (TMDD). To quantitatively characterize the complex pharmacokinetics of TPPU and TCPU and gain better understanding on their target occupancy, population pharmacokinetics analysis using a nonlinear mixed-effect modeling approach was performed in the current study. The final model was a novel simultaneous TMDD interaction model, in which TPPU and TCPU compete for sEH, with TCPU binding to an additional unknown target pool with larger capacity that we refer to as a refractory pool. The total amount of sEH enzyme in mice was predicted to be 16.2 nmol, which is consistent with the experimental value of 10 nmol. The dissociate rate constants of TPPU and TCPU were predicted to be 2.24 and 2.67 hours-1, respectively, which is close to the values obtained from in vitro experiments. Our simulation result predicted that 90% of the sEH will be occupied shortly after a low dose of 0.3 mg/kg TPPU administration, with ≥40% of sEH remaining to be bound with TPPU for at least 7 days. Further efficacy experiments are warranted to confirm the predicted target occupancy. SIGNIFICANCE STATEMENT: Although target-mediated drug disposition (TMDD) models have been well documented, most of them were established in a single compound scenario. Our novel model represents the first TMDD interaction model for two small-molecule compounds competing for the same pharmacological target.


Subject(s)
Enzyme Inhibitors/pharmacology , Epoxide Hydrolases/antagonists & inhibitors , Models, Biological , Molecular Targeted Therapy , Phenylurea Compounds/pharmacology , Piperidines/pharmacology , Enzyme Inhibitors/pharmacokinetics , Epoxide Hydrolases/chemistry , Phenylurea Compounds/pharmacokinetics , Piperidines/pharmacokinetics , Solubility
6.
Bioorg Med Chem ; 28(22): 115735, 2020 11 15.
Article in English | MEDLINE | ID: mdl-33007552

ABSTRACT

Soluble epoxide hydrolase (sEH), a novel therapeutic target for neuropathic pain, is a largely cytosolic enzyme that degrades epoxy-fatty acids (EpFAs), an important class of lipid signaling molecules. Many inhibitors of sEH have been reported, and to date, the 1,3-disubstituted urea has the highest affinity reported for the sEH among the central pharmacophores evaluated. An earlier somewhat water soluble sEH inhibitor taken to the clinic for blood pressure control had mediocre potency (both affinity and kinetics) and a short in vivo half-life. We undertook a study to overcome these difficulties, but the sEH inhibitors carrying a 1,3-disubstituted urea often suffer poor physical properties that hinder their formulation. In this report, we described new strategies to improve the physical properties of sEH inhibitors with a 1,3-disubstituted urea while maintaining their potency and drug-target residence time (a complementary in vitro parameter) against sEH. To our surprise, we identified two structural modifications that substantially improve the potency and physical properties of sEH inhibitors carrying a 1,3-disubstituted urea pharmacophore. Such improvements will greatly facilitate the movement of sEH inhibitors to the clinic.


Subject(s)
Diabetic Neuropathies/drug therapy , Enzyme Inhibitors/pharmacology , Epoxide Hydrolases/antagonists & inhibitors , Hypoglycemic Agents/pharmacology , Neuralgia/drug therapy , Animals , Diabetic Neuropathies/metabolism , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Epoxide Hydrolases/metabolism , Humans , Hypoglycemic Agents/chemical synthesis , Hypoglycemic Agents/chemistry , Mice , Molecular Docking Simulation , Molecular Structure , Neuralgia/metabolism , Solubility , Structure-Activity Relationship
7.
Proc Natl Acad Sci U S A ; 114(17): 4370-4375, 2017 04 25.
Article in English | MEDLINE | ID: mdl-28396419

ABSTRACT

Arachidonic acid (ARA) is metabolized by cyclooxygenase (COX) and cytochrome P450 to produce proangiogenic metabolites. Specifically, epoxyeicosatrienoic acids (EETs) produced from the P450 pathway are angiogenic, inducing cancer tumor growth. A previous study showed that inhibiting soluble epoxide hydrolase (sEH) increased EET concentration and mildly promoted tumor growth. However, inhibiting both sEH and COX led to a dramatic decrease in tumor growth, suggesting that the contribution of EETs to angiogenesis and subsequent tumor growth may be attributed to downstream metabolites formed by COX. This study explores the fate of EETs with COX, the angiogenic activity of the primary metabolites formed, and their subsequent hydrolysis by sEH and microsomal EH. Three EET regioisomers were found to be substrates for COX, based on oxygen consumption and product formation. EET substrate preference for both COX-1 and COX-2 were estimated as 8,9-EET > 5,6-EET > 11,12-EET, whereas 14,15-EET was inactive. The structure of two major products formed from 8,9-EET in this COX pathway were confirmed by chemical synthesis: ct-8,9-epoxy-11-hydroxy-eicosatrienoic acid (ct-8,9-E-11-HET) and ct-8,9-epoxy-15-hydroxy-eicosatrienoic acid (ct-8,9-E-15-HET). ct-8,9-E-11-HET and ct-8,9-E-15-HET are further metabolized by sEH, with ct-8,9-E-11-HET being hydrolyzed much more slowly. Using an s.c. Matrigel assay, we showed that ct-8,9-E-11-HET is proangiogenic, whereas ct-8,9-E-15-HET is not active. This study identifies a functional link between EETs and COX and identifies ct-8,9-E-11-HET as an angiogenic lipid, suggesting a physiological role for COX metabolites of EETs.


Subject(s)
8,11,14-Eicosatrienoic Acid/analogs & derivatives , Angiogenesis Inducing Agents/metabolism , Cyclooxygenase 1/metabolism , Cyclooxygenase 2/metabolism , 8,11,14-Eicosatrienoic Acid/metabolism , Arachidonic Acid/metabolism , Humans
8.
Proc Natl Acad Sci U S A ; 114(47): 12608-12613, 2017 11 21.
Article in English | MEDLINE | ID: mdl-29109264

ABSTRACT

Acute kidney injury (AKI) causes severe morbidity and mortality for which new therapeutic strategies are needed. Docosahexaenoic acid (DHA), arachidonic acid (ARA), and their metabolites have various effects in kidney injury, but their molecular mechanisms are largely unknown. Here, we report that 14 (15)-epoxyeicosatrienoic acid [14 (15)-EET] and 19 (20)-epoxydocosapentaenoic acid [19 (20)-EDP], the major epoxide metabolites of ARA and DHA, respectively, have contradictory effects on kidney injury in a murine model of ischemia/reperfusion (I/R)-caused AKI. Specifically, 14 (15)-EET mitigated while 19 (20)-EDP exacerbated I/R kidney injury. Manipulation of the endogenous 19 (20)-EDP or 14 (15)-EET by alteration of their degradation or biosynthesis with selective inhibitors resulted in anticipated effects. These observations are supported by renal histological analysis, plasma levels of creatinine and urea nitrogen, and renal NGAL. The 14 (15)-EET significantly reversed the I/R-caused reduction in glycogen synthase kinase 3ß (GSK3ß) phosphorylation in murine kidney, dose-dependently inhibited the hypoxia/reoxygenation (H/R)-caused apoptosis of murine renal tubular epithelial cells (mRTECs), and reversed the H/R-caused reduction in GSK3ß phosphorylation in mRTECs. In contrast, 19 (20)-EDP dose-dependently promoted H/R-caused apoptosis and worsened the reduction in GSK3ß phosphorylation in mRTECs. In addition, 19 (20)-EDP was more metabolically stable than 14 (15)-EET in vivo and in vitro. Overall, these epoxide metabolites of ARA and DHA function conversely in I/R-AKI, possibly through their largely different metabolic stability and their opposite effects in modulation of H/R-caused RTEC apoptosis and GSK3ß phosphorylation. This study provides AKI patients with promising therapeutic strategies and clinical cautions.


Subject(s)
8,11,14-Eicosatrienoic Acid/analogs & derivatives , Acute Kidney Injury/metabolism , Docosahexaenoic Acids/pharmacology , Glycogen Synthase Kinase 3 beta/metabolism , Kidney Tubules/drug effects , Reperfusion Injury/metabolism , 8,11,14-Eicosatrienoic Acid/metabolism , 8,11,14-Eicosatrienoic Acid/pharmacology , Acute Kidney Injury/mortality , Acute Kidney Injury/pathology , Acute Kidney Injury/prevention & control , Animals , Blood Urea Nitrogen , Creatinine/blood , Docosahexaenoic Acids/metabolism , Gene Expression Regulation , Glycogen Synthase Kinase 3 beta/genetics , Humans , Kidney Tubules/metabolism , Kidney Tubules/pathology , Lipocalin-2/genetics , Lipocalin-2/metabolism , Male , Mice , Mice, Inbred C57BL , Phosphorylation , Reperfusion Injury/mortality , Reperfusion Injury/pathology , Reperfusion Injury/prevention & control , Signal Transduction , Survival Analysis
9.
Proc Natl Acad Sci U S A ; 114(36): E7545-E7553, 2017 09 05.
Article in English | MEDLINE | ID: mdl-28827330

ABSTRACT

Age-related macular degeneration (AMD) is the most common cause of blindness for individuals age 50 and above in the developed world. Abnormal growth of choroidal blood vessels, or choroidal neovascularization (CNV), is a hallmark of the neovascular (wet) form of advanced AMD and leads to significant vision loss. A growing body of evidence supports a strong link between neovascular disease and inflammation. Metabolites of long-chain polyunsaturated fatty acids derived from the cytochrome P450 (CYP) monooxygenase pathway serve as vital second messengers that regulate a number of hormones and growth factors involved in inflammation and vascular function. Using transgenic mice with altered CYP lipid biosynthetic pathways in a mouse model of laser-induced CNV, we characterized the role of these lipid metabolites in regulating neovascular disease. We discovered that the CYP-derived lipid metabolites epoxydocosapentaenoic acids (EDPs) and epoxyeicosatetraenoic acids (EEQs) are vital in dampening CNV severity. Specifically, overexpression of the monooxygenase CYP2C8 or genetic ablation or inhibition of the soluble epoxide hydrolase (sEH) enzyme led to increased levels of EDP and EEQ with attenuated CNV development. In contrast, when we promoted the degradation of these CYP-derived metabolites by transgenic overexpression of sEH, the protective effect against CNV was lost. We found that these molecules work in part through their ability to regulate the expression of key leukocyte adhesion molecules, on both leukocytes and endothelial cells, thereby mediating leukocyte recruitment. These results suggest that CYP lipid signaling molecules and their regulators are potential therapeutic targets in neovascular diseases.


Subject(s)
Choroidal Neovascularization/metabolism , Cytochrome P-450 Enzyme System/metabolism , Lipid Metabolism/physiology , Second Messenger Systems/physiology , Animals , Cytochrome P-450 CYP2C8/metabolism , Disease Models, Animal , Endothelial Cells/metabolism , Epoxide Hydrolases/metabolism , Fatty Acids, Unsaturated/metabolism , Leukocytes/metabolism , Macular Degeneration/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic
10.
J Lipid Res ; 60(3): 671-682, 2019 03.
Article in English | MEDLINE | ID: mdl-30463986

ABSTRACT

PUFAs are precursors to bioactive oxylipin metabolites that increase in the brain following CO2-induced hypercapnia/ischemia. It is not known whether the brain-dissection process and its duration also alter these metabolites. We applied CO2 with or without head-focused microwave fixation for 2 min to evaluate the effects of CO2-induced asphyxiation, dissection, and dissection time on brain oxylipin concentrations. Compared with head-focused microwave fixation (control), CO2 followed by microwave fixation prior to dissection increased oxylipins derived from lipoxygenase (LOX), 15-hydroxyprostaglandin dehydrogenase (PGDH), cytochrome P450 (CYP), and soluble epoxide hydrolase (sEH) enzymatic pathways. This effect was enhanced when the duration of postmortem ischemia was prolonged by 6.4 min prior to microwave fixation. Brains dissected from rats subjected to CO2 without microwave fixation showed greater increases in LOX, PGDH, CYP and sEH metabolites compared with all other groups, as well as increased cyclooxygenase metabolites. In nonmicrowave-irradiated brains, sEH metabolites and one CYP metabolite correlated positively and negatively with dissection time, respectively. This study presents new evidence that the dissection process and its duration increase brain oxylipin concentrations, and that this is preventable by microwave fixation. When microwave fixation is not available, lipidomic studies should account for dissection time to reduce these artifacts.


Subject(s)
Brain Ischemia/complications , Brain Ischemia/metabolism , Brain/metabolism , Hypercapnia/complications , Oxylipins/metabolism , Animals , Cluster Analysis , Male , Oxylipins/isolation & purification , Rats
11.
J Org Chem ; 84(23): 15362-15372, 2019 12 06.
Article in English | MEDLINE | ID: mdl-31701741

ABSTRACT

In this study, we report the first asymmetric total synthesis of 19,20-epoxydocosapentaenoic acid (19,20-EDP), a naturally occurring bioactive cytochrome P450 metabolite of docosahexaenoic acid, a major constituent of fish oil. Our strategy involves direct asymmetric epoxidation to produce an enantiopure ß-epoxyaldehyde that can be appended to the rest of the skipped polyene core by Wittig condensation. Our route is step-economical and late divergent and could be an appealing method by which to synthesize EDP analogues for biological studies.


Subject(s)
Docosahexaenoic Acids/chemistry , Cytochrome P-450 Enzyme System/chemistry , Cytochrome P-450 Enzyme System/metabolism , Docosahexaenoic Acids/metabolism , Molecular Structure
12.
J Lipid Res ; 59(11): 2237-2252, 2018 11.
Article in English | MEDLINE | ID: mdl-30209076

ABSTRACT

Epoxy PUFAs are endogenous cytochrome P450 (P450) metabolites of dietary PUFAs. Although these metabolites exert numerous biological effects, attempts to study their complex biology have been hampered by difficulty in obtaining the epoxides as pure regioisomers and enantiomers. To remedy this, we synthesized 19,20- and 16,17-epoxydocosapentaenoic acids (EDPs) (the two most abundant EDPs in vivo) by epoxidation of DHA with WT and the mutant (F87V) P450 enzyme BM3 from Bacillus megaterium WT epoxidation yielded a 4:1 mixture of 19,20:16,17-EDP exclusively as (S,R) enantiomers. Epoxidation with the mutant (F87V) yielded a 1.6:1 mixture of 19,20:16,17-EDP; the 19,20-EDP fraction was ∼9:1 (S,R):(R,S), but the 16,17-EDP was exclusively the (S,R) enantiomer. To access the (R,S) enantiomers of these EDPs, we used a short (four-step) chemical inversion sequence, which utilizes 2-(phenylthio)ethanol as the epoxide-opening nucleophile, followed by mesylation of the resulting alcohol, oxidation of the thioether moiety, and base-catalyzed elimination. This short synthesis cleanly converts the (S,R)-epoxide to the (R,S)-epoxide without loss of enantiopurity. This method, also applicable to eicosapentaenoic acid and arachidonic acid, provides a simple, cost-effective procedure for accessing larger amounts of these metabolites.


Subject(s)
Docosahexaenoic Acids/metabolism , Eicosapentaenoic Acid/analogs & derivatives , Cytochrome P-450 Enzyme System/metabolism , Eicosapentaenoic Acid/chemistry , Eicosapentaenoic Acid/metabolism , Fatty Acids, Unsaturated/metabolism , Oxidation-Reduction , Stereoisomerism
13.
Proc Natl Acad Sci U S A ; 112(29): 9082-7, 2015 Jul 21.
Article in English | MEDLINE | ID: mdl-26150506

ABSTRACT

Despite intensive effort and resulting gains in understanding the mechanisms underlying neuropathic pain, limited success in therapeutic approaches have been attained. A recently identified, nonchannel, nonneurotransmitter therapeutic target for pain is the enzyme soluble epoxide hydrolase (sEH). The sEH degrades natural analgesic lipid mediators, epoxy fatty acids (EpFAs), therefore its inhibition stabilizes these bioactive mediators. Here we demonstrate the effects of EpFAs on diabetes induced neuropathic pain and define a previously unknown mechanism of pain, regulated by endoplasmic reticulum (ER) stress. The activation of ER stress is first quantified in the peripheral nervous system of type I diabetic rats. We demonstrate that both pain and markers of ER stress are reversed by a chemical chaperone. Next, we identify the EpFAs as upstream modulators of ER stress pathways. Chemical inducers of ER stress invariably lead to pain behavior that is reversed by a chemical chaperone and an inhibitor of sEH. The rapid occurrence of pain behavior with inducers, equally rapid reversal by blockers and natural incidence of ER stress in diabetic peripheral nervous system (PNS) argue for a major role of the ER stress pathways in regulating the excitability of the nociceptive system. Understanding the role of ER stress in generation and maintenance of pain opens routes to exploit this system for therapeutic purposes.


Subject(s)
Diabetic Neuropathies/pathology , Endoplasmic Reticulum Stress , Neuralgia/pathology , Peripheral Nervous System/pathology , Animals , Apoptosis/drug effects , Apoptosis/genetics , Autophagy/drug effects , Autophagy/genetics , Blood Glucose/metabolism , Blotting, Western , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/cerebrospinal fluid , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/pathology , Diabetic Neuropathies/blood , Diabetic Neuropathies/cerebrospinal fluid , Diabetic Neuropathies/drug therapy , Endoplasmic Reticulum Stress/drug effects , Endoplasmic Reticulum Stress/genetics , Enzyme Inhibitors/pharmacology , Epoxide Hydrolases/antagonists & inhibitors , Epoxide Hydrolases/metabolism , Male , Neuralgia/blood , Neuralgia/cerebrospinal fluid , Neuralgia/drug therapy , Peripheral Nervous System/drug effects , Phenylbutyrates/pharmacology , Phenylurea Compounds/pharmacology , Piperidines/pharmacology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats, Sprague-Dawley , Skin/pathology , Streptozocin , Tunicamycin/pharmacology
14.
J Lipid Res ; 58(4): 798-808, 2017 04.
Article in English | MEDLINE | ID: mdl-28148721

ABSTRACT

There is an increased demand for comprehensive analysis of vitamin D metabolites. This is a major challenge, especially for 1α,25-dihydroxyvitamin D [1α,25(OH)2VitD], because it is biologically active at picomolar concentrations. 4-Phenyl-1,2,4-triazoline-3,5-dione (PTAD) was a revolutionary reagent in dramatically increasing sensitivity of all diene metabolites and allowing the routine analysis of the bioactive, but minor, vitamin D metabolites. A second generation of reagents used large fixed charge groups that increased sensitivity at the cost of a deterioration in chromatographic separation of the vitamin D derivatives. This precludes a survey of numerous vitamin D metabolites without redesigning the chromatographic system used. 2-Nitrosopyridine (PyrNO) demonstrates that one can improve ionization and gain higher sensitivity over PTAD. The resulting vitamin D derivatives facilitate high-resolution chromatographic separation of the major metabolites. Additionally, a liquid-liquid extraction followed by solid-phase extraction (LLE-SPE) was developed to selectively extract 1α,25(OH)2VitD, while reducing 2- to 4-fold ion suppression compared with SPE alone. LLE-SPE followed by PyrNO derivatization and LC/MS/MS analysis is a promising new method for quantifying vitamin D metabolites in a smaller sample volume (100 µL of serum) than previously reported methods. The PyrNO derivatization method is based on the Diels-Alder reaction and thus is generally applicable to a variety diene analytes.


Subject(s)
Pyridines/chemistry , Vitamin D/chemistry , Vitamin D/isolation & purification , Chromatography, Liquid , Click Chemistry , Humans , Solid Phase Extraction , Tandem Mass Spectrometry , Triazoles/chemistry , Vitamin D/metabolism
15.
J Neurochem ; 140(5): 814-825, 2017 03.
Article in English | MEDLINE | ID: mdl-28002622

ABSTRACT

Epoxyeicosatrienoic acids (EETs) are synthesized in astrocytes, and inhibitors of soluble epoxide hydrolase (sEH), which hydrolyzes EETs, reduce infarct volume in ischemic stroke. Astrocytes can release protective neurotrophic factors, such as vascular endothelial growth factor (VEGF). We found that addition of sEH inhibitors to rat cultured astrocytes immediately after oxygen-glucose deprivation (OGD) markedly increased VEGF concentration in the medium 48 h later and the effect was blocked by an EET antagonist. The sEH inhibitors increased EET concentrations to levels capable of increasing VEGF. When the sEH inhibitors were removed from the medium at 48 h, the increase in VEGF persisted for an additional 48 h. Neurons exposed to OGD and subsequently to astrocyte medium previously conditioned with OGD plus sEH inhibitors showed increased phosphorylation of their VEGF receptor-2, less TUNEL staining, and increased phosphorylation of Akt, which was blocked by a VEGF receptor-2 antagonist. Our findings indicate that sEH inhibitors, applied to cultured astrocytes after an ischemia-like insult, can increase VEGF secretion. The released VEGF then enhances Akt-enabled cell survival signaling in neurons through activation of VEGF receptor-2 leading to less neuronal cell death. These results suggest a new strategy by which astrocytes can be leveraged to support neuroprotection.


Subject(s)
Astrocytes/metabolism , Cell Hypoxia/drug effects , Enzyme Inhibitors/pharmacology , Epoxide Hydrolases/antagonists & inhibitors , Glucose/deficiency , Vascular Endothelial Growth Factor A/metabolism , Animals , Astrocytes/drug effects , Cell Survival/drug effects , Cells, Cultured , Culture Media, Conditioned , Female , Neurons/drug effects , Neurons/metabolism , Oncogene Protein v-akt/metabolism , Phosphorylation , Pregnancy , Rats , Rats, Sprague-Dawley , Receptors, Vascular Endothelial Growth Factor/antagonists & inhibitors , Receptors, Vascular Endothelial Growth Factor/metabolism , Signal Transduction/drug effects
16.
Biochim Biophys Acta Mol Basis Dis ; 1863(6): 1382-1391, 2017 06.
Article in English | MEDLINE | ID: mdl-28185955

ABSTRACT

Nox4-based NADPH oxidase is a major reactive oxygen species-generating enzyme in the vasculature, but its role in atherosclerosis remains controversial. OBJECTIVE: Our goal was to investigate the mechanisms of endothelial Nox4 in regulating atherosclerosis. APPROACH AND RESULTS: Atherosclerosis-prone conditions (disturbed blood flow, type I diabetes, and Western diet) downregulated endothelial Nox4 mRNA in arteries. To address whether the downregulated endothelial Nox4 was directly involved in the development of atherosclerosis, we generated mice carrying a human Nox4 P437H dominant negative mutation (Nox4DN), driven by the endothelial specific promoter Tie-2, on atherosclerosis-prone genetic background (ApoE deficient mice) to mimic the effect of decreased endothelial Nox4. Nox4DN significantly increased type I diabetes-induced aortic stiffness and atherosclerotic lesions. Gene analysis indicated that soluble epoxide hydrolase 2 (sEH) was significantly upregulated in Nox4DN endothelial cells (EC). Inhibition of sEH activity in Nox4DN EC suppressed inflammation and macrophage adhesion to EC. On the contrary, overexpression of endothelial wild type Nox4 suppressed sEH, ameliorated Western diet-induced atherosclerosis and decreased aortic stiffness. CONCLUSIONS: Atherosclerosis-prone conditions downregulated endothelial Nox4 to accelerate the progress of atherosclerosis, at least in part, by upregulating sEH to enhance inflammation.


Subject(s)
Atherosclerosis/enzymology , Endothelium, Vascular/enzymology , Epoxide Hydrolases/metabolism , Macrophages/enzymology , NADPH Oxidase 4/metabolism , Amino Acid Substitution , Animals , Atherosclerosis/genetics , Atherosclerosis/pathology , Cell Adhesion/genetics , Endothelium, Vascular/pathology , Epoxide Hydrolases/genetics , Inflammation/enzymology , Inflammation/genetics , Inflammation/pathology , Macrophages/pathology , Mice , Mice, Knockout , Mutation, Missense , NADPH Oxidase 4/genetics
17.
J Pharmacol Exp Ther ; 361(3): 408-416, 2017 06.
Article in English | MEDLINE | ID: mdl-28356494

ABSTRACT

Epoxyeicosatrienoic acids (EETs), metabolites of arachidonic acid derived from the cytochrome P450 enzymes, are mainly metabolized by soluble epoxide hydrolase (sEH) to their corresponding diols. EETs but not their diols, have anti-inflammatory properties, and inhibition of sEH might provide protective effects against inflammatory bone loss. Thus, in the present study, we tested the selective sEH inhibitor, 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU), in a mouse model of periodontitis induced by infection with Aggregatibacter actinomycetemcomitans Oral treatment of wild-type mice with TPPU and sEH knockout (KO) animals showed reduced bone loss induced by A. actinomycetemcomitans This was associated with decreased expression of key osteoclastogenic molecules, receptor activator of nuclear factor-κB/RANK ligand/osteoprotegerin, and the chemokine monocyte chemotactic protein 1 in the gingival tissue without affecting bacterial counts. In addition, downstream kinases p38 and c-Jun N-terminal kinase known to be activated in response to inflammatory signals were abrogated after TPPU treatment or in sEH KO mice. Moreover, endoplasmic reticulum stress was elevated in periodontal disease but was abrogated after TPPU treatment and in sEH knockout mice. Together, these results demonstrated that sEH pharmacological inhibition may be of therapeutic value in periodontitis.


Subject(s)
Alveolar Bone Loss/metabolism , Apoptosis/physiology , Endoplasmic Reticulum Stress/physiology , Epoxide Hydrolases/antagonists & inhibitors , Epoxide Hydrolases/metabolism , Receptor Activator of Nuclear Factor-kappa B/metabolism , Alveolar Bone Loss/diagnostic imaging , Alveolar Bone Loss/drug therapy , Animals , Apoptosis/drug effects , Endoplasmic Reticulum Stress/drug effects , Inflammation/diagnostic imaging , Inflammation/drug therapy , Inflammation/metabolism , Inflammation Mediators/antagonists & inhibitors , Inflammation Mediators/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Periodontitis/diagnostic imaging , Periodontitis/drug therapy , Periodontitis/metabolism , Phenylurea Compounds/pharmacology , Phenylurea Compounds/therapeutic use , Piperidines/pharmacology , Piperidines/therapeutic use , Signal Transduction/drug effects , Signal Transduction/physiology
18.
Arch Biochem Biophys ; 613: 1-11, 2017 Jan 01.
Article in English | MEDLINE | ID: mdl-27983948

ABSTRACT

Soluble epoxide hydrolase (sEH) is an important therapeutic target of many diseases, such as chronic obstructive pulmonary disease (COPD) and diabetic neuropathic pain. It acts by hydrolyzing and thus regulating specific bioactive long chain polyunsaturated fatty acid epoxides (lcPUFA), like epoxyeicosatrienoic acids (EETs). To better predict which epoxides could be hydrolyzed by sEH, one needs to dissect the important factors and structural requirements that govern the binding of the substrates to sEH. This knowledge allows further exploration of the physiological role played by sEH. Unfortunately, a crystal structure of sEH with a substrate bound has not yet been reported. In this report, new photoaffinity mimics of a sEH inhibitor and EET regioisomers were prepared and used in combination with peptide sequencing and computational modeling, to identify the binding orientation of different regioisomers and enantiomers of EETs into the catalytic cavity of sEH. Results indicate that the stereochemistry of the epoxide plays a crucial role in dictating the binding orientation of the substrate.


Subject(s)
Arachidonic Acids/chemistry , Epoxide Hydrolases/chemistry , Carboxylic Acids/chemistry , Catalysis , Catalytic Domain , Computer Simulation , Crystallization , Cytochrome P-450 Enzyme System/chemistry , Epoxy Compounds/chemistry , Escherichia coli/metabolism , Humans , Hydrolysis , Inhibitory Concentration 50 , Light , Mass Spectrometry , Molecular Dynamics Simulation , Peptides/chemistry , Recombinant Proteins/chemistry , Solvents/chemistry , Stereoisomerism , Substrate Specificity , Trypsin/chemistry
19.
Biochim Biophys Acta Gen Subj ; 1861(11 Pt A): 2758-2765, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28757338

ABSTRACT

BACKGROUND: Diabetic nephropathy (DN) is the leading cause of renal failure, and podocyte dysfunction contributes to the pathogenesis of DN. Soluble epoxide hydrolase (sEH, encoded by Ephx2) is a conserved cytosolic enzyme whose inhibition has beneficial effects on renal function. The aim of this study is to investigate the contribution of sEH in podocytes to hyperglycemia-induced renal injury. MATERIALS AND METHODS: Mice with podocyte-specific sEH disruption (pod-sEHKO) were generated, and alterations in kidney function were determined under normoglycemia, and high-fat diet (HFD)- and streptozotocin (STZ)-induced hyperglycemia. RESULTS: sEH protein expression increased in murine kidneys under HFD- and STZ-induced hyperglycemia. sEH deficiency in podocytes preserved renal function and glucose control and mitigated hyperglycemia-induced renal injury. Also, podocyte sEH deficiency was associated with attenuated hyperglycemia-induced renal endoplasmic reticulum (ER) stress, inflammation and fibrosis, and enhanced autophagy. Moreover, these effects were recapitulated in immortalized murine podocytes treated with a selective sEH pharmacological inhibitor. Furthermore, pharmacological-induced elevation of ER stress or attenuation of autophagy in immortalized podocytes mitigated the protective effects of sEH inhibition. CONCLUSIONS: These findings establish sEH in podocytes as a significant contributor to renal function under hyperglycemia. GENERAL SIGNIFICANCE: These data suggest that sEH is a potential therapeutic target for podocytopathies.


Subject(s)
Diabetes Mellitus, Experimental/genetics , Diabetic Nephropathies/genetics , Epoxide Hydrolases/genetics , Hyperglycemia/genetics , Animals , Apoptosis/genetics , Autophagy/genetics , Diabetes Mellitus, Experimental/enzymology , Diabetes Mellitus, Experimental/pathology , Diabetic Nephropathies/enzymology , Diabetic Nephropathies/pathology , Endoplasmic Reticulum Stress/genetics , Enzyme Inhibitors/administration & dosage , Epoxide Hydrolases/antagonists & inhibitors , Humans , Hyperglycemia/enzymology , Hyperglycemia/pathology , Kidney/enzymology , Kidney/pathology , Mice , Podocytes/enzymology
20.
Arterioscler Thromb Vasc Biol ; 36(9): 1919-27, 2016 09.
Article in English | MEDLINE | ID: mdl-27417579

ABSTRACT

OBJECTIVE: Pathological ocular neovascularization is a major cause of blindness. Increased dietary intake of ω-3 long-chain polyunsaturated fatty acids (LCPUFA) reduces retinal neovascularization and choroidal neovascularization (CNV), but ω-3 LCPUFA metabolites of a major metabolizing pathway, cytochrome P450 oxidase (CYP) 2C, promote ocular pathological angiogenesis. We hypothesized that inhibition of CYP2C activity will add to the protective effects of ω-3 LCPUFA on neovascular eye diseases. APPROACH AND RESULTS: The mouse models of oxygen-induced retinopathy and laser-induced CNV were used to investigate pathological angiogenesis in the retina and choroid, respectively. The plasma levels of ω-3 LCPUFA metabolites of CYP2C were determined by mass spectroscopy. Aortic ring and choroidal explant sprouting assays were used to investigate the effects of CYP2C inhibition and ω-3 LCPUFA-derived CYP2C metabolic products on angiogenesis ex vivo. We found that inhibition of CYP2C activity by montelukast added to the protective effects of ω-3 LCPUFA on retinal neovascularization and CNV by 30% and 20%, respectively. In CYP2C8-overexpressing mice fed a ω-3 LCPUFA diet, montelukast suppressed retinal neovascularization and CNV by 36% and 39% and reduced the plasma levels of CYP2C8 products. Soluble epoxide hydrolase inhibition, which blocks breakdown and inactivation of CYP2C ω-3 LCPUFA-derived active metabolites, increased oxygen-induced retinopathy and CNV in vivo. Exposure to selected ω-3 LCPUFA metabolites of CYP2C significantly reversed the suppression of both angiogenesis ex vivo and endothelial cell functions in vitro by the CYP2C inhibitor montelukast. CONCLUSIONS: Inhibition of CYP2C activity adds to the protective effects of ω-3 LCPUFA on pathological retinal neovascularization and CNV.


Subject(s)
Acetates/pharmacology , Angiogenesis Inhibitors/pharmacology , Choroidal Neovascularization/prevention & control , Cytochrome P-450 CYP2C8 Inhibitors/pharmacology , Cytochrome P-450 CYP2C8/metabolism , Fatty Acids, Omega-3/pharmacology , Quinolines/pharmacology , Retinal Neovascularization/prevention & control , Retinopathy of Prematurity/prevention & control , Animals , Aorta/drug effects , Aorta/enzymology , Cells, Cultured , Choroidal Neovascularization/enzymology , Choroidal Neovascularization/genetics , Choroidal Neovascularization/physiopathology , Cyclopropanes , Cytochrome P-450 CYP2C8/genetics , Disease Models, Animal , Endothelial Cells/drug effects , Endothelial Cells/enzymology , Fatty Acids, Omega-3/metabolism , Genotype , Humans , Hyperoxia/complications , Lasers , Mice, Inbred C57BL , Mice, Transgenic , Neovascularization, Physiologic/drug effects , Phenotype , Retinal Neovascularization/enzymology , Retinal Neovascularization/genetics , Retinal Neovascularization/physiopathology , Retinopathy of Prematurity/enzymology , Retinopathy of Prematurity/genetics , Retinopathy of Prematurity/physiopathology , Sulfides , Tissue Culture Techniques
SELECTION OF CITATIONS
SEARCH DETAIL