Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Asian-Australas J Anim Sci ; 32(12): 1942-1949, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31480179

ABSTRACT

OBJECTIVE: Leukocyte cell-derived chemotaxin 2 (LECT2) is associated with several physiological processes including inflammation, tumorigenesis, and natural killer T cell generation. Chicken LECT2 (chLECT2) gene was originally identified as one of the differentially expressed genes in chicken kidney tissue, where the chickens were fed with different calcium doses. In this study, the molecular characteristics and gene expression of chLECT2 were analyzed under the stimulation of toll-like receptor 3 (TLR3) ligand to understand the involvement of chLECT2 expression in chicken metabolic disorders. METHODS: Amino acid sequence of LECT2 proteins from various species including fowl, fish, and mammal were retrieved from the Ensembl database and subjected to Insilco analyses. In addition, the time- and dose-dependent expression of chLECT2 was examined in DF-1 cells which were stimulated with polyinosinic:polycytidylic acid (poly [I:C]), a TLR3 ligand. Further, to explore the transcription factors required for the transcription of chLECT2, DF-1 cells were treated with poly (I:C) in the presence or absence of the nuclear factor κB (NFκB) and activated protein 1 (AP-1) inhibitors. RESULTS: The amino acid sequence prediction of chLECT2 protein revealed that along with duck LECT2 (duLECT2), it has unique signal peptide different from other vertebrate orthologs, and only chLECT2 and duLECT2 have an additional 157 and 161 amino acids on their carboxyl terminus, respectively. Phylogenetic analysis suggested that chLECT2 is evolved from a common ancestor along with the actinopterygii hence, more closely related than to the mammals. Our quantitative polymerase chain reaction results showed that, the expression of chLECT2 was up-regulated significantly in DF-1 cells under the stimulation of poly (I:C) (p<0.05). However, in the presence of NFκB or AP-1 inhibitors, the expression of chLECT2 is suppressed suggesting that both NFκB and AP-1 transcription factors are required for the induction of chLECT2 expression. CONCLUSION: The present results suggest that chLECT2 gene might be a target gene of TLR3 signaling. For the future, the expression pattern or molecular mechanism of chLECT2 under stimulation of other innate immune receptors shall be studied. The protein function of chLECT2 will be more clearly understood if further investigation about the mechanism of LECT2 in TLR pathways is conducted.

2.
Asian-Australas J Anim Sci ; 31(8): 1366-1372, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29879819

ABSTRACT

OBJECTIVE: A disintegrin and metallopeptidase with thrombospondin motifs type 8 (ADAMTS8) is crucial for diverse physiological processes, such as inflammation, tissue morphogenesis, and tumorigenesis. The chicken ADAMTS8 (chADAMTS8) gene was differentially expressed in the kidney following exposure to different calcium concentrations, suggesting a pathological role of this protein in metabolic diseases. We aimed to examine the molecular characteristics of chADAMTS8 and analyze the gene-expression differences in response to toll-like receptor 3 (TLR3) stimulation. METHODS: The ADAMTS8 mRNA and amino acid sequences of various species (chicken, duck, cow, mouse, rat, human, chimpanzee, pig, and horse) were retrieved from the Ensembl database and subjected to bioinformatics analyses. Reverse-transcription polymerase chain reaction (RT-PCR) and quantitative PCR (qPCR) experiments were performed with various chicken tissues and the chicken fibroblast DF-1 cell line, which was stimulated with polyinosinic-polycytidylic acid (poly[I:C]; a TLR3 ligand). RESULTS: The chADAMTS8 gene was predicted to contain three thrombospondin type 1 (TSP1) domains, whose amino acid sequences shared homology among the different species, whereas sequences outside the TSP1 domains (especially the amino-terminal region) were very difffferent. Phylogenetic analysis revealed that chADAMTS8 is evolutionarily clustered in the same clade with that of the duck. chADAMTS8 mRNA was broadly expressed in chicken tissues, and the expression was significantly up-regulated in the DF-1 cells in response to poly(I:C) stimulation (p<0.05). These results showed that chADAMTS8 may be a target gene for TLR3 signaling. CONCLUSION: In this report, the genetic information of chADAMTS8 gene, its expression in chicken tissues, and chicken DF-1 cells under the stimulation of TLR3 were shown. The result suggests that chADAMTS8 expression may be induced by viral infection and correlated with TLR3-mediated signaling pathway. Further study of the function of chADAMTS8 during TLR3-dependent inflammation (which represents RNA viral infection) is needed and it will also be important to examine the molecular mechanisms during different regulation, depending on innate immune receptor activation.

3.
Blood ; 124(19): 2948-52, 2014 Nov 06.
Article in English | MEDLINE | ID: mdl-25267199

ABSTRACT

In this study, we report that OVOL2, a C2H2 zinc finger protein, is a novel binding protein of ER71, which is a critical transcription factor for blood and vessel development. OVOL2 directly interacted with ER71, but not with ETS1 or ETS2, in the nucleus. ER71-mediated activation of the Flk1 promoter was further enhanced by OVOL2, although OVOL2 alone failed to activate it. Consistently, coexpression of ER71 and OVOL2 in differentiating embryonic stem cells led to a significant augmentation of FLK1(+), endothelial, and hematopoietic cells. Such cooperative effects were impaired by the short hairpin RNA-mediated inhibition of Ovol2. Collectively, we show that ER71 directly interacts with OVOL2 and that such interaction is critical for FLK1(+) cell generation and their differentiation into downstream cell lineages.


Subject(s)
Embryonic Stem Cells/metabolism , Endothelial Cells/metabolism , Hematopoietic Stem Cells/metabolism , Transcription Factors/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism , Animals , Cell Lineage/physiology , Cells, Cultured , Embryonic Stem Cells/cytology , Endothelial Cells/cytology , Gene Knockdown Techniques , Hematopoietic Stem Cells/cytology , Mice , Proteomics , RNA, Small Interfering/genetics , Signal Transduction/physiology , Transcription Factors/genetics , Vascular Endothelial Growth Factor Receptor-2/genetics
4.
Asian-Australas J Anim Sci ; 29(8): 1197-206, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27165017

ABSTRACT

Adipose tissue in the loin muscle area of beef cattle as a marbling factor is directly associated with beef quality. To elucidate whether properties of proteins involved in depot specific adipose tissue were sex-dependent, we analyzed protein expression of intramuscular adipose tissue (IMAT) and omental adipose tissue (OMAT) from Hanwoo cows, steers, and bulls of Korean native beef cattle by liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based proteomic analysis, quantitative polymerase chain reaction (PCR) and western blot analysis. Two different adipose depots (i.e. intramuscular and omental) were collected from cows (n = 7), steers (n = 7), or bulls (n = 7). LC-MS/MS revealed a total of 55 and 35 proteins in IMAT and OMAT, respectively. Of the 55 proteins identified, 44, 40, and 42 proteins were confirmed to be differentially expressed in IMAT of cows, steers, and bulls, respectively. In OMAT of cows, steers, and bulls, 33, 33, and 22 were confirmed to be differentially expressed, respectively. Tropomyosin (TPM) 1, TPM 2, and TPM3 were subjected to verification by quantitative PCR and western blot analysis in IMAT and OMAT of Hanwoo cows, steers, and bulls as key factors closely associated with muscle development. Both mRNA levels and protein levels of TPM1, TPM2, and TPM3 in IMAT were lower in bulls compared to in cows or steers suggesting that they were positively correlated with marbling score and quality grade. Our results may aid the regulation of marbling development and improvement of meat quality grades in beef cattle.

5.
Asian-Australas J Anim Sci ; 29(11): 1653-1663, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27165031

ABSTRACT

Meat quality is a complex trait influenced by many factors, including genetics, nutrition, feeding environment, animal handling, and their interactions. To elucidate relevant factors affecting pork quality associated with oxidative stress and muscle development, we analyzed protein expression in high quality longissimus dorsi muscles (HQLD) and low quality longissimus dorsi muscles (LQLD) from Duroc pigs by liquid chromatographytandem mass spectrometry (LC-MS/MS)-based proteomic analysis. Between HQLD (n = 20) and LQLD (n = 20) Duroc pigs, 24 differentially expressed proteins were identified by LC-MS/MS. A total of 10 and 14 proteins were highly expressed in HQLD and LQLD, respectively. The 24 proteins have putative functions in the following seven categories: catalytic activity (31%), ATPase activity (19%), oxidoreductase activity (13%), cytoskeletal protein binding (13%), actin binding (12%), calcium ion binding (6%), and structural constituent of muscle (6%). Silver-stained image analysis revealed significant differential expression of lactate dehydrogenase A (LDHA) between HQLD and LQLD Duroc pigs. LDHA was subjected to in vitro study of myogenesis under oxidative stress conditions and LDH activity assay to verification its role in oxidative stress. No significant difference of mRNA expression level of LDHA was found between normal and oxidative stress condition. However, LDH activity was significantly higher under oxidative stress condition than at normal condition using in vitro model of myogenesis. The highly expressed LDHA was positively correlated with LQLD. Moreover, LDHA activity increased by oxidative stress was reduced by antioxidant resveratrol. This paper emphasizes the importance of differential expression patterns of proteins and their interaction for the development of meat quality traits. Our proteome data provides valuable information on important factors which might aid in the regulation of muscle development and the improvement of meat quality in longissimus dorsi muscles of Duroc pigs under oxidative stress conditions.

6.
Drug Dev Res ; 76(1): 9-16, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25619802

ABSTRACT

Preclinical Research Quercetin, found in red onions and red apple skin can induce apoptosis insome malignant cells. However, the apoptotic effect of quercetin in hepatocellular carcinoma HepG2 cells via regulation of specificity protein 1 (Sp1) has not been studied. Here, we demonstrated that quercetin decreased cell growth and induce apoptosis in HepG2 cells via suppression of Sp1 using 3-(4,5-dimethyl-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS) assay, 4',6-diamidino-2-phenylindole (DAPI) staining, Annexin V, and Western blot analysis, an effect that was dose- and time-dependent manner. Treatment of HepG2 cells with quercetin reduced cell growth and induced apoptosis, followed by regulation of Sp1 and Sp1 regulatory protein. Taken together, the results suggest that quercetin can induce apoptotic cell death by regulating cell cycle and suppressing antiapoptotic proteins. Therefore, quercetin may be useful for cancer prevention. Drug Dev Res 76 : 9-16, 2015.

7.
Stem Cell Res Ther ; 14(1): 41, 2023 03 16.
Article in English | MEDLINE | ID: mdl-36927793

ABSTRACT

Extensive efforts have been made to achieve vascular regeneration accompanying tissue repair for treating vascular dysfunction-associated diseases. Recent advancements in stem cell biology and cell reprogramming have opened unforeseen opportunities to promote angiogenesis in vivo and generate autologous endothelial cells (ECs) for clinical use. We have, for the first time, identified a unique endothelial-specific transcription factor, ETV2/ER71, and revealed its essential role in regulating endothelial cell generation and function, along with vascular regeneration and tissue repair. Furthermore, we and other groups have demonstrated its ability to directly reprogram terminally differentiated non-ECs into functional ECs, proposing ETV2/ER71 as an effective therapeutic target for vascular diseases. In this review, we discuss the up-to-date status of studies on ETV2/ER71, spanning from its molecular mechanism to vasculo-angiogenic role and direct cell reprogramming toward ECs. Furthermore, we discuss future directions to deploy the clinical potential of ETV2/ER71 as a novel and potent target for vascular disorders such as cardiovascular disease, neurovascular impairment and cancer.


Subject(s)
Cardiovascular Diseases , Endothelial Cells , Humans , Endothelial Cells/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Regulation , Cell Differentiation
8.
Anim Cells Syst (Seoul) ; 26(6): 338-347, 2022.
Article in English | MEDLINE | ID: mdl-36605594

ABSTRACT

Although conserving native pig breeds is important in Korea, research on the genomic aspects to identify breed-specific variations in native pig breeds is uncommon. Single nucleotide polymorphisms (SNPs) can be a powerful source for identifying breed-specific variants. We used whole genome sequencing data, including Jeju Native Pig (JNP), Korean Native Pig (KNP), Korean Wild Boar (KWB), and other western commercial pig breeds to determine native pig breed-specific SNPs. Furthermore, the goal was not only to determine the genomic specificity of native pig breeds but also to identify SNPs that carry breed-specific information (breed-informative SNPs) that can be related to breed characteristics. The representative characteristics of native pigs are their unique meat quality and disease resistance. We surveyed the gene ontology (GO) of native pigs with breed-specific SNPs. Examining the genes associated with GO may contribute to revealing the reasons for the unique characteristics of native pig breeds. The enriched GOs terms were neuron projection development, cell surface receptor signaling pathway, ion homeostasis in JNP, cell adhesion and wound healing in KNP, and DNA repair and reproduction in KWB. We expect that this study of breed-specific SNPs will enable us to gain a deeper understanding of native pigs in Korea.

9.
Sci Rep ; 11(1): 18445, 2021 09 16.
Article in English | MEDLINE | ID: mdl-34531430

ABSTRACT

Malignant melanoma is highly resistant to conventional treatments and is one of the most aggressive types of skin cancers. Conventional cancer treatments are limited due to drug resistance, tumor selectivity, and solubility. Therefore, new treatments with fewer side effects and excellent effects should be developed. In previous studies, we have analyzed antimicrobial peptides (AMPs), which showed antibacterial and anti-inflammatory effects in insects, and some AMPs also exhibited anticancer efficacy. Anticancer peptides (ACPs) are known to have fewer side effects and high anticancer efficacy. In this study, the insect-derived peptide poecilocorisin-1 (PCC-1) did not induce toxicity in the human epithelial cell line HaCaT, but its potential as an anticancer agent was confirmed through specific effects of antiproliferation, apoptosis, and cell cycle arrest in two melanoma cell lines, SK-MEL-28 and G361. Additionally, we discovered a novel anticancer mechanism of insect-derived peptides in melanoma through the regulation of transcription factor Sp1 protein, which is overexpressed in cancer, apoptosis, and cell cycle-related proteins. Taken together, this study aims to clarify the anticancer efficacy and safety of insect-derived peptides and to present their potential as future therapeutic agents.


Subject(s)
Antineoplastic Agents/toxicity , Insect Proteins/chemistry , Melanoma/metabolism , Peptide Fragments/toxicity , Skin Neoplasms/metabolism , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , HaCaT Cells , Humans , Peptide Fragments/chemistry , Sp1 Transcription Factor/metabolism
10.
Gene ; 767: 145188, 2021 Jan 30.
Article in English | MEDLINE | ID: mdl-33002574

ABSTRACT

Insect antimicrobial peptides (AMPs) have a wide range of functions and potential applications, and have recently attracted attention as alternative foods and medicines for humans. Our study performed transcriptome analysis to explore the potential of the red-striped golden stink bug (Poecilocoris lewisi), and as a result, we have discovered new features of P. lewisi that have not been identified. Specifically, defensin found in P. lewisi is a well-known AMP and is expressed by various plants, animals and fungi for host defense. Moreover, the discovery of defensin in P. lewisi provides new research and important information. In this study, we identified AMP and related DEG in P. lewisi that are closely related to human disease and immune response. These findings will provide the basis and important information for future research on P. lewisi that has not yet been studied.


Subject(s)
Heteroptera/genetics , Animals , Gene Expression Profiling/methods , Hemiptera/genetics , High-Throughput Nucleotide Sequencing/methods , Transcriptome/genetics
11.
Sci Rep ; 7: 43081, 2017 02 22.
Article in English | MEDLINE | ID: mdl-28225083

ABSTRACT

Human colorectal cancer cell lines (HT29 and HCT116) were exposed to dielectric barrier discharge (DBD) plasma at atmospheric pressure to investigate the anticancer capacity of the plasma. The dose- and time-dependent effects of DBDP on cell viability, regulation of transcription factor Sp1, cell-cycle analysis, and colony formation were investigated by means of MTS assay, DAPI staining, propidium iodide staining, annexin V-FITC staining, Western blot analysis, RT-PCR analysis, fluorescence microscopy, and anchorage-independent cell transformation assay. By increasing the duration of plasma dose times, significant reductions in the levels of both Sp1 protein and Sp1 mRNA were observed in both cell lines. Also, expression of negative regulators related to the cell cycle (such as p53, p21, and p27) was increased and of the positive regulator cyclin D1 was decreased, indicating that the plasma treatment led to apoptosis and cell-cycle arrest. In addition, the sizes and quantities of colony formation were significantly suppressed even though two cancer promoters, such as TPA and epidermal growth factor, accompanied the plasma treatment. Thus, plasma treatment inhibited cell viability and colony formation by suppressing Sp1, which induced apoptosis and cell-cycle arrest in these two human colorectal cancer cell lines.


Subject(s)
Antineoplastic Agents/pharmacology , Atmospheric Pressure , Cell Proliferation , Gene Expression Regulation/drug effects , Plasma Gases/pharmacology , Sp1 Transcription Factor/metabolism , Apoptosis , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Humans
12.
Oncol Rep ; 36(1): 117-24, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27176604

ABSTRACT

Manumycin A (Manu A) is a natural product isolated from Streptomyces parvulus and has been reported to have anti-carcinogenic and anti-biotic properties. However, neither its molecular mechanism nor its molecular targets are well understood. Thus, the aim of the present study was to explore the possibility that Manu A has cancer preventive and chemotherapeutic effects on malignant pleural mesothelioma (MPM) through regulation of Sp1 and induction of mitochondrial cell death pathway. Manu A inhibited the cell viability of MSTO-211H and H28 cells in a concentration­dependent manner as determined by MTS assay. IC50 values were calculated as 8.3 and 4.3 µM in the MSTO-311H and H28 cells following 48 h incubation, respectively. Manu A induced a significant increase in apoptotic indices as shown by DAPI staining, Annexin V assay, multi-caspase activity and mitochondrial membrane potential assay. The downregulation of Sp1 mRNA and protein expression by Manu A led to apoptosis by suppressing Sp1-regulated proteins (cyclin D1, Mcl-1 and survivin). Manu A decreased the protein levels of BID, Bcl-xL and PARP while it increased Bax levels. Manu A caused depolarization of the mitochondrial membrane with induction of CHOP, DR4 and DR5. Our results demonstrated that Manu A exerted anticancer effects by inducing apoptosis via inhibition of the Sp1-related signaling pathway in human MPM.


Subject(s)
Apoptosis/drug effects , Lung Neoplasms/drug therapy , Membrane Potential, Mitochondrial/drug effects , Mesothelioma/drug therapy , Pleural Neoplasms/drug therapy , Polyenes/pharmacology , Polyunsaturated Alkamides/pharmacology , Sp1 Transcription Factor/metabolism , Annexin A5/metabolism , BH3 Interacting Domain Death Agonist Protein/metabolism , Cell Line, Tumor , Cell Membrane Permeability/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Cyclin D1/antagonists & inhibitors , Humans , Inhibitor of Apoptosis Proteins/antagonists & inhibitors , Mesothelioma, Malignant , Mitochondria/metabolism , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors , Poly(ADP-ribose) Polymerases/metabolism , Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism , Survivin , Transcription Factor CHOP/metabolism , bcl-2-Associated X Protein/metabolism , bcl-X Protein/metabolism
13.
Oncol Rep ; 35(2): 1109-16, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26718788

ABSTRACT

ß-lapachone (ß-lap), a novel natural quinone derived from the bark of the Pink trumpet tree (Tabebuia avellanedae) has been demonstrated to have anticancer activity. In this study, we investigated whether ß-lap exhibits anti-proliferative effects on two human malignant melanoma (HMM) cell lines, G361 and SK-MEL-28. The effects of ß-lap on the HMM cell lines were investigated using 3-(4,5-dimethylthiazol-2-yl)­5-(3-carboxymethoxyphenyl)­2-(4-sulfophenyl-2H-tetrazolium (MTS) assay, 4',6-diamidino-2-phenylindole (DAPI) staining, Annexin V and Dead cell assay, mitochondrial membrane potential (MMP) assay and western blot analysis. We demonstrated that ß-lap significantly induced apoptosis and suppressed cell viability in the HMM cells. Intriguingly, the transcription factor specificity protein 1 (Sp1) was significantly downregulated by ß-lap in a dose- and time-dependent manner. Furthermore, ß-lap modulated the protein expression level of the Sp1 regulatory genes including cell cycle regulatory proteins and apoptosis-associated proteins. Taken together, our findings indicated that ß-lap modulates Sp1 transactivation and induces apoptotic cell death through the regulation of cell cycle- and apoptosis-associated proteins. Thus, ß-lap may be used as a promising anticancer drug for cancer prevention and may improve the clinical outcome of patients with cancer.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Melanoma/pathology , Naphthoquinones/pharmacology , Neoplasm Proteins/biosynthesis , Skin Neoplasms/pathology , Sp1 Transcription Factor/biosynthesis , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Cycle Proteins/biosynthesis , Cell Cycle Proteins/genetics , Cell Line, Tumor , Down-Regulation/drug effects , Drug Screening Assays, Antitumor , Humans , Intracellular Signaling Peptides and Proteins/biosynthesis , Intracellular Signaling Peptides and Proteins/genetics , Membrane Potential, Mitochondrial/drug effects , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/genetics , Sp1 Transcription Factor/antagonists & inhibitors , Sp1 Transcription Factor/genetics , Transcriptional Activation/drug effects
14.
Int J Oncol ; 49(6): 2294-2302, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27748804

ABSTRACT

Kahweol, a diterpene molecule, has antiproliferative effects on several types of human cancer cells, but whether it has apoptotic effect in non-small cell lung cancer (NSCLC) is not known. To explore this possibility, we incubated cells from two NSCLC cell lines, NCI-H358 and NCI­H1299, with different concentrations of kahweol and used the MTS assay, DAPI staining, propidium iodide staining, Annexin V staining, immunocytochemical test, and western blot analysis to characterize this molecule and the signaling pathway underlying its effects. The kahweol-treated cells showed significantly decreased cell viability, increased nuclear condensation, and an increased number of Annexin V-positive NSCLC cells. Suppression of basic transcription factor 3 (BTF3) was followed by apoptosis induced by kahweol via the ERK-mediated signaling pathway in a dose- and time-dependent manner. In addition, kahweol modulated the protein expression of BTF3 genes involved in cell-cycle regulation and apoptosis-related proteins, resulting in apoptotic cell death. Our results collectively indicated that kahweol inhibited the proliferation of NSCLC cells through ERK-mediated signaling pathways and the downregulation of BTF3.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Proliferation/drug effects , Diterpenes/pharmacology , Lung Neoplasms/metabolism , Nuclear Proteins/biosynthesis , Transcription Factors/biosynthesis , Apoptosis Regulatory Proteins/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy , Cell Line, Tumor , Cell Survival/drug effects , Chemoprevention , Down-Regulation/drug effects , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , Lung Neoplasms/drug therapy , MAP Kinase Signaling System/drug effects
15.
Oncol Rep ; 33(2): 631-8, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25434704

ABSTRACT

7,8-Dihydroxyflavone (7,8-DHF) is a member of the flavonoid family and has recently been identified as a brain-derived neurotrophic factor mimetic that selectively activates tropomyosin-receptor kinase B with high affinity. The antioxidant and anticancer effects of 7,8-DHF have been reported. However, the pharmacological mechanisms of 7,8-DHF in oral cancer are unclear. Thus, we investigated the mechanisms of the antiproliferative action of 7,8-DHF on HN22 and HSC4 oral squamous cell carcinoma cell lines. We demonstrated that 7,8-DHF decreased cell growth and induced apoptosis in the HN22 and HSC4 cells through regulation of specificity protein 1 (Sp1) using the MTS assay, DAPI staining, Annexin V, propidium iodide staining, reverse transcription-polymerase chain reaction, immunocytochemistry, pull-down assay and western blot analysis. The results showed that the Sp1 protein bound with 7,8-DHF in the HN22 and HSC4 cells. Taken together, the results suggest that 7,8-DHF could modulate Sp1 transactivation and induce apoptotic cell death by regulating the cell cycle and suppressing antiapoptotic proteins. Furthermore, 7,8-DHF may be valuable for cancer prevention and better clinical outcomes.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Squamous Cell/metabolism , Flavones/pharmacology , Mouth Neoplasms/metabolism , Sp1 Transcription Factor/metabolism , Apoptosis , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Humans
16.
Int J Biochem Cell Biol ; 64: 287-97, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25982202

ABSTRACT

Recently, biphenolic components derived from the Magnolia family have been studied for anti-cancer, anti-stress, and anti-inflammatory pharmacological effects. However, the pharmacological mechanism of action of 4-O-methylhonokiol (MH) is not clear in oral cancer. The aim of this study was to investigate the role of MH in apoptosis and its molecular mechanism in oral squamous cell carcinoma (OSCC) cell lines, HN22 and HSC4, as well as tumor xenografts. Here, we demonstrated that MH decreased cell growth and induced apoptosis in HN22 and HSC4 cells through the regulation of specificity protein 1 (Sp1). We employed several experimental techniques such as MTS assay, DAPI staining, PI staining, Annexin-V/7-ADD staining, RT-PCR, western blot analysis, immunocytochemistry, immunohistochemistry, TUNEL assay and in vivo xenograft model analysis. MH inhibited Sp1 protein expression and reduced Sp1 protein levels via both proteasome-dependent protein degradation and inhibition of protein synthesis in HN22 and HSC4 cells; MH did not alter Sp1 mRNA levels. We found that MH directly binds Sp1 by Sepharose 4B pull-down assay and molecular modeling. In addition, treatment with MH or knocking down Sp1 expression suppressed oral cancer cell colony formation. Moreover, MH treatment effectively inhibited tumor growth and Sp1 levels in BALB/c nude mice bearing HN22 cell xenografts. These results indicated that MH inhibited cell growth, colony formation and also induced apoptosis via Sp1 suppression in OSCC cells and xenograft tumors. Thus, MH is a potent anti-cancer drug candidate for oral cancer.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis , Biphenyl Compounds/pharmacology , Carcinoma, Squamous Cell/metabolism , Lignans/pharmacology , Mouth Neoplasms/metabolism , Sp1 Transcription Factor/physiology , Aged , Aged, 80 and over , Animals , Carcinoma, Squamous Cell/pathology , Cell Survival , Female , Gene Expression/drug effects , Humans , Inhibitory Concentration 50 , Male , Mice, Nude , Middle Aged , Mouth Neoplasms/pathology , Neoplasm Transplantation
SELECTION OF CITATIONS
SEARCH DETAIL