ABSTRACT
Plants monitor day length and memorize changes in temperature signals throughout the day, creating circadian rhythms that support the timely control of physiological and metabolic processes. The DEHYDRATION-RESPONSE ELEMENT-BINDING PROTEIN 1/C-REPEAT BINDING FACTOR (DREB1/CBF) transcription factors are known as master regulators for the acquisition of cold stress tolerance, whereas PHYTOCHROME INTERACTING FACTOR 4 (PIF4) is involved in plant adaptation to heat stress through thermomorphogenesis. Recent studies have shown that circadian clock genes control plant responses to temperature. Temperature-responsive transcriptomes show a diurnal cycle and peak expression levels at specific times of throughout the day. Circadian clock genes play essential roles in allowing plants to maintain homeostasis by accommodating temperature changes within the normal temperature range or by altering protein properties and morphogenesis at the cellular level for plant survival and growth under temperature stress conditions. Recent studies revealed that the central oscillator genes CIRCADIAN CLOCK ASSOCIATED 1/LATE ELONGATED HYPOCOTYL (CCA1/LHY) and PSEUDO-RESPONSE REGULATOR5/7/9 (PRR5/7/9), as well as the EVENING COMPLEX (EC) genes REVEILLE4/REVEILLE8 (REV4/REV8), were involved in the DREB1 pathway of the cold signaling transcription factor and regulated the thermomorphogenesis gene PIF4. Further studies showed that another central oscillator, TIMING OF CAB EXPRESSION 1 (TOC1), and the regulatory protein ZEITLUPE (ZTL) are also involved. These studies led to attempts to utilize circadian clock genes for the acquisition of temperature-stress resistance in crops. In this review, we highlight circadian rhythm regulation and the clock genes involved in plant responses to temperature changes, as well as strategies for plant survival in a rapidly changing global climate.
Subject(s)
Circadian Clocks , Temperature , Circadian Clocks/genetics , Cold Temperature , Circadian Rhythm/genetics , ClimateABSTRACT
BACKGROUND: The pharmaceutical industry is heavily regulated. Partly for this reason, new drugs generally take over 10 years from the product development stage to market entry. Although regulations affect the pharmaceutical industry over a long period, previous studies investigating the impact of new regulatory policies have usually focused on the short period before and after implementing that policy. Therefore, the purpose of this study is to examine whether and how significantly regulatory policies affect long-term innovation in the pharmaceutical industry in Korea. METHODS: This study focused on three significant regulatory policies: the introduction of the product patent system, changes in the Good Manufacturing Practice (GMP) system, and the Drug Expenditure Rationalization Plan (DERP). The study used interrupted time series (ITS) analysis to investigate the long-term impacts of the policies before and after implementation. RESULTS: Our results show that introducing the product patent system in 1987 significantly increased the number of Korean patent applications. The effect of the revised GMP policies was also statistically significant, both before and after implementation and between pre-emptive companies and non-pre-emptive ones. However, due to the companies' negotiations with the regulatory authorities or the regulatory system that links drug approval and price evaluation, the DERP did not significantly delay new drug registration in Korea. CONCLUSION: This study showed that the policies of the product patent system, GMP policies, and DERP regulations have significantly encouraged pharmaceutical companies to strive to meet regulatory requirements and promote innovation in Korea. The study suggests that it is necessary for companies to pre-emptively respond to systemic changes in development and production strategies to deal with regulatory changes and achieve sustainable growth. Also, our study results indicate that since government policies motivate the innovative system of the pharmaceutical industry, governmental authorities, when formulating pharmaceutical policies, need to consider the impact on the long-term innovation of the industry.
Subject(s)
Drug Approval , Drug Industry , Commerce , Longitudinal Studies , Republic of KoreaABSTRACT
Erythroid differentiation regulator 1 (Erdr1) has previously been reported to control thymocyte selection via TCR signal regulation, but the effect of Erdr1 as a TCR signaling modulator was not studied in peripheral T cells. In this report, it was determined whether Erdr1 affected TCR signaling strength in CD4 T cells. Results revealed that Erdr1 significantly enhanced the anti-TCR antibody-mediated activation and proliferation of T cells while failing to activate T cells in the absence of TCR stimulation. In addition, Erdr1 amplified Ca2+ influx and the phosphorylation of PLCγ1 in CD4 T cells with the TCR stimuli. Furthermore, NFAT1 translocation into nuclei in CD4 T cells was also significantly promoted by Erdr1 in the presence of TCR stimulation. Taken together, our results indicate that Erdr1 positively modulates TCR signaling strength via enhancing the PLCγ1/Ca2+/NFAT1 signal transduction pathway.
Subject(s)
Membrane Proteins/genetics , Membrane Proteins/metabolism , Signal Transduction , T-Lymphocytes/metabolism , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Animals , Biomarkers , Calcium/metabolism , Calcium Signaling , Cell Differentiation/genetics , Cell Differentiation/immunology , Immunophenotyping , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Mice , Phospholipase C gamma/metabolism , Phosphorylation , Receptors, Antigen, T-Cell/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , T-Lymphocytes/immunologyABSTRACT
The importance of Müller glia for retinal homeostasis suggests that they may have vulnerabilities that lead to retinal disease. Here, we studied the effect of selectively knocking down key metabolic genes in Müller glia on photoreceptor health. Immunostaining indicated that murine Müller glia expressed insulin receptor (IR), hexokinase 2 (HK2) and phosphoglycerate dehydrogenase (PHGDH) but very little pyruvate dehydrogenase E1 alpha 1 (PDH-E1α) and lactate dehydrogenase A (LDH-A). We crossed Müller glial cell-CreER (MC-CreER) mice with transgenic mice carrying a floxed IR, HK2, PDH-E1α, LDH-A, or PHGDH gene to study the effect of selectively knocking down key metabolic genes in Müller glia cells on retinal health. Selectively knocking down IR, HK2, or PHGDH led to photoreceptor degeneration and reduced electroretinographic responses. Supplementing exogenous l-serine prevented photoreceptor degeneration and improved retinal function in MC-PHGDH knockdown mice. We unexpectedly found that the levels of retinal serine and glycine were not reduced but, on the contrary, highly increased in MC-PHGDH knockdown mice. Moreover, dietary serine supplementation, while rescuing the retinal phenotypes caused by genetic deletion of PHGDH in Müller glial cells, restored retinal serine and glycine homeostasis probably through regulation of serine transport. No retinal abnormalities were observed in MC-CreER mice crossed with PDH-E1α- or LDH-A-floxed mice despite Cre expression. Our findings suggest that Müller glia do not complete glycolysis but use glucose to produce serine to support photoreceptors. Supplementation with exogenous serine is effective in preventing photoreceptor degeneration caused by PHGDH deficiency in Müller glia.
Subject(s)
Photoreceptor Cells , Retinal Degeneration , Animals , Ependymoglial Cells/metabolism , Mice , Neuroglia/metabolism , Photoreceptor Cells/metabolism , Retina/metabolism , Retinal Degeneration/metabolismABSTRACT
In tumor necrosis factor (TNF) signaling, phosphorylation and activation of receptor interacting protein kinase 1 (RIPK1) by upstream kinases is an essential checkpoint in the suppression of TNF-induced cell death. Thus, discovery of pharmacological agents targeting RIPK1 may provide new strategies for improving the therapeutic efficacy of TNF. In this study, we found that 3-O-acetylrubianol C (3AR-C), an arborinane triterpenoid isolated from Rubia philippinesis, promoted TNF-induced apoptotic and necroptotic cell death. To identify the molecular mechanism, we found that in mouse embryonic fibroblasts, 3AR-C drastically upregulated RIPK1 kinase activity by selectively inhibiting IKKß. Notably, 3AR-C did not interfere with IKKα or affect the formation of the TNF receptor1 (TNFR1) complex-I. Moreover, in human cancer cells, 3AR-C was only sufficient to sensitize TNF-induced cell death when c-FLIPL expression was downregulated to facilitate the formation of TNFR1 complex-II and necrosome. Taken together, our study identified a novel arborinane triterpenoid 3AR-C as a potent activator of TNF-induced cell death via inhibition of IKKß phosphorylation and promotion of the cytotoxic potential of RIPK1, thus providing a rationale for further development of 3AR-C as a selective IKKß inhibitor to overcome TNF resistance in cancer therpay.
Subject(s)
Apoptosis/physiology , I-kappa B Kinase/metabolism , Programmed Cell Death 1 Receptor/metabolism , Animals , Apoptosis/genetics , Cell Line, Tumor , Cell Survival/genetics , Cell Survival/physiology , Humans , I-kappa B Kinase/genetics , Magnetic Resonance Spectroscopy , Mice , Programmed Cell Death 1 Receptor/genetics , Receptors, Tumor Necrosis Factor, Type I/genetics , Receptors, Tumor Necrosis Factor, Type I/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolismABSTRACT
Systemic juvenile idiopathic arthritis (sJIA) is a rare subtype of juvenile idiopathic arthritis, whose clinical features are systemic fever and rash accompanied by painful joints and inflammation. Even though sJIA has been reported to be an autoinflammatory disorder, its exact pathogenesis remains unclear. In this study, we integrated a meta-analysis with a weighted gene co-expression network analysis (WGCNA) using 5 microarray datasets and an RNA sequencing dataset to understand the interconnection of susceptibility genes for sJIA. Using the integrative analysis, we identified a robust sJIA signature that consisted of 2 co-expressed gene sets comprising 103 up-regulated genes and 25 down-regulated genes in sJIA patients compared with healthy controls. Among the 128 sJIA signature genes, we identified an up-regulated cluster of 11 genes and a down-regulated cluster of 4 genes, which may play key roles in the pathogenesis of sJIA. We then detected 10 bioactive molecules targeting the significant gene clusters as potential novel drug candidates for sJIA using an in silico drug repositioning analysis. These findings suggest that the gene clusters may be potential genetic markers of sJIA and 10 drug candidates can contribute to the development of new therapeutic options for sJIA.
Subject(s)
Arthritis, Juvenile/drug therapy , Arthritis, Juvenile/genetics , Genetic Markers/genetics , Transcriptome/genetics , Down-Regulation/genetics , Drug Discovery/methods , Gene Expression Profiling/methods , Gene Expression Regulation/genetics , Gene Regulatory Networks/genetics , Humans , Microarray Analysis/methods , Up-Regulation/geneticsABSTRACT
AIMS/HYPOTHESIS: Diabetic macular oedema (DME) is the leading cause of visual impairment in people with diabetes. Intravitreal injections of vascular endothelial growth factor inhibitors or corticosteroids prevent loss of vision by reducing DME, but the injections must be given frequently and usually for years. Here we report laboratory and clinical studies on the safety and efficacy of 670 nm photobiomodulation (PBM) for treatment of centre-involving DME. METHODS: The therapeutic effect of PBM delivered via a light-emitting diode (LED) device was tested in transgenic mice in which induced Müller cell disruption led to photoreceptor degeneration and retinal vascular leakage. We also developed a purpose-built 670 nm retinal laser for PBM to treat DME in humans. The effect of laser-delivered PBM on improving mitochondrial function and protecting against oxidative stress was studied in cultured rat Müller cells and its safety was studied in pigmented and non-pigmented rat eyes. We then used the retinal laser to perform PBM in an open-label, dose-escalation Phase IIa clinical trial involving 21 patients with centre-involving DME. Patients received 12 sessions of PBM over 5 weeks for 90 s per treatment at a setting of 25, 100 or 200 mW/cm2 for the three sequential cohorts of 6-8 patients each. Patients were recruited from the Sydney Eye Hospital, over the age of 18 and had centre-involving DME with central macular thickness (CMT) of >300 µm with visual acuity of 75-35 Log minimum angle of resolution (logMAR) letters (Snellen visual acuity equivalent of 20/30-20/200). The objective of this trial was to assess the safety and efficacy of laser-delivered PBM at 2 and 6 months. The primary efficacy outcome was change in CMT at 2 and 6 months. RESULTS: LED-delivered PBM enhanced photoreceptor mitochondrial membrane potential, protected Müller cells and photoreceptors from damage and reduced retinal vascular leakage resulting from induced Müller cell disruption in transgenic mice. PBM delivered via the retinal laser enhanced mitochondrial function and protected against oxidative stress in cultured Müller cells. Laser-delivered PBM did not damage the retina in pigmented rat eyes at 100 mW/cm2. The completed clinical trial found a significant reduction in CMT at 2 months by 59 ± 46 µm (p = 0.03 at 200 mW/cm2) and significant reduction at all three settings at 6 months (25 mW/cm2: 53 ± 24 µm, p = 0.04; 100 mW/cm2: 129 ± 51 µm, p < 0.01; 200 mW/cm2: 114 ± 60 µm, p < 0.01). Laser-delivered PBM was well tolerated in humans at settings up to 200 mW/cm2 with no significant side effects. CONCLUSIONS/INTERPRETATION: PBM results in anatomical improvement of DME over 6 months and may represent a safe and non-invasive treatment. Further testing is warranted in randomised clinical trials. TRIAL REGISTRATION: ClinicalTrials.gov NCT02181400 Graphical abstract.
Subject(s)
Diabetic Retinopathy/radiotherapy , Ependymoglial Cells/radiation effects , Low-Level Light Therapy/methods , Macular Edema/radiotherapy , Aged , Animals , Female , Humans , Male , Mice , Mice, Transgenic , Middle Aged , Mitochondria/radiation effects , Oxidative Stress/radiation effects , Rats , Tomography, Optical CoherenceABSTRACT
Erythroid differentiation regulator 1 (Erdr1) has been identified as an anti-inflammatory factor in several disease models, including collagen-induced arthritis (CIA), but its exact mechanisms are still not fully understood. Here, the involvement of regulatory T (Treg) cells in Erdr1-improved CIA was investigated. In the CIA model, Erdr1 was confirmed to reduce collagen-specific IgM in plasma and plasma cells in draining lymph nodes. Importantly, the downregulated Treg cell ratio in draining lymph nodes from CIA mice was recovered by Erdr1 treatment. In addition, administration of Erdr1 improved the CIA score and joint tissue damage, while it revealed no effect in Treg cell-depleted CIA mice, indicating that Treg cells mediate the therapeutic effects of Erdr1 in the CIA model. Results from in vitro experiments also demonstrated that Erdr1 significantly induced Treg cell differentiation and the expression of Treg activation markers, including CD25, CD69, and CTLA4 in CD4+Foxp3+ cells. Furthermore, Erdr1-activated Treg cells dramatically suppressed the proliferation of responder T cells, suggesting that they are functionally active. Taken together, these results show that Erdr1 induces activation of Treg cells and ameliorates rheumatoid arthritis via Treg cells.
Subject(s)
Arthritis, Experimental/etiology , Arthritis, Experimental/metabolism , Lymphocyte Activation/genetics , Membrane Proteins/genetics , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Tumor Suppressor Proteins/genetics , Animals , Arthritis, Experimental/pathology , Arthritis, Rheumatoid/etiology , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/pathology , Biomarkers , Disease Models, Animal , Disease Susceptibility , Immunohistochemistry , Immunophenotyping , Membrane Proteins/metabolism , Mice , Tumor Suppressor Proteins/metabolismABSTRACT
Voltage-gated, sodium ion-selective channels (NaV) generate electrical signals contributing to the upstroke of the action potential in animals. NaVs are also found in bacteria and are members of a larger family of tetrameric voltage-gated channels that includes CaVs, KVs, and NaVs. Prokaryotic NaVs likely emerged from a homotetrameric Ca2+-selective voltage-gated progenerator, and later developed Na+ selectivity independently. The NaV signaling complex in eukaryotes contains auxiliary proteins, termed beta (ß) subunits, which are potent modulators of the expression profiles and voltage-gated properties of the NaV pore, but it is unknown whether they can functionally interact with prokaryotic NaV channels. Herein, we report that the eukaryotic NaVß1-subunit isoform interacts with and enhances the surface expression as well as the voltage-dependent gating properties of the bacterial NaV, NaChBac in Xenopus oocytes. A phylogenetic analysis of the ß-subunit gene family proteins confirms that these proteins appeared roughly 420 million years ago and that they have no clear homologues in bacterial phyla. However, a comparison between eukaryotic and bacterial NaV structures highlighted the presence of a conserved fold, which could support interactions with the ß-subunit. Our electrophysiological, biochemical, structural, and bioinformatics results suggests that the prerequisites for ß-subunit regulation are an evolutionarily stable and intrinsic property of some voltage-gated channels.
Subject(s)
Voltage-Gated Sodium Channels/metabolism , Amino Acid Sequence , Animals , Bacteria/chemistry , Bacteria/genetics , Bacteria/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Evolution, Molecular , HEK293 Cells , Humans , Models, Molecular , Phylogeny , Protein Conformation , Protein Subunits/chemistry , Protein Subunits/genetics , Protein Subunits/metabolism , Rats , Voltage-Gated Sodium Channels/chemistry , Voltage-Gated Sodium Channels/genetics , XenopusABSTRACT
Ion channel proteins are required for both the establishment of resting membrane potentials and the generation of action potentials. Hundreds of mutations in genes encoding voltage-gated ion channels responsible for action potential generation have been found to cause severe neurological diseases. In contrast, the roles of voltage-independent "leak" channels, important for the establishment and maintenance of resting membrane potentials upon which action potentials are generated, are not well established in human disease. UNC80 is a large component of the NALCN sodium-leak channel complex that regulates the basal excitability of the nervous system. Loss-of-function mutations of NALCN cause infantile hypotonia with psychomotor retardation and characteristic facies (IHPRF). We report four individuals from three unrelated families who have homozygous missense or compound heterozygous truncating mutations in UNC80 and persistent hypotonia, encephalopathy, growth failure, and severe intellectual disability. Compared to control cells, HEK293T cells transfected with an expression plasmid containing the c.5098C>T (p.Pro1700Ser) UNC80 mutation found in one individual showed markedly decreased NALCN channel currents. Our findings demonstrate the fundamental significance of UNC80 and basal ionic conductance to human health.
Subject(s)
Alleles , Brain Diseases/genetics , Carrier Proteins/genetics , Growth Disorders/genetics , Intellectual Disability/genetics , Membrane Proteins/genetics , Muscle Hypotonia/genetics , Mutation , Adolescent , Child , Child, Preschool , Female , Humans , Severity of Illness IndexABSTRACT
BACKGROUND/AIMS: Therapies using stem/progenitor cells have been experimentally and clinically investigated to regenerate damaged hearts. Substance-P (SP) induces bone marrow (BM) stem cell mobilization and suppresses inflammation in ischemic injuries. This study investigated the role of SP in BM stem cell mobilization and immune responses for tissue repair after ischemic-reperfusion injury (IRI), in comparison with that of granulocyte colony-stimulating factor (GCSF). METHODS: SP was intravenously injected into IRI rats and its affect was evaluated by determining colony forming efficiency, immune cell/ cytokine profiles, histological changes, and heart function through echocardiography. RESULTS: In the rat cardiac IRI model, SP suppressed IRI-mediated tumor necrosis factor-α induction, but increased the levels of interleukin-10, CD206+ monocytes, and regulatory T cells in the blood; reduced myocardial apoptosis at day 1 post-IRI; and markedly stimulated colony forming unit (CFU)-e and (CFU)-f cell mobilization. Efficacy of SP in the recovery of cardiac function after IRI was demonstrated by increased cardiac contractility, accompanied by reduced infarction sizes and fibrosis, and increased revascularization of vessels covered with alpha smooth muscle actin. These effects of SP were confirmed in an acute myocardial infarction (AMI) model. All effects mediated by SP were superior to those mediated by GCSF. CONCLUSION: Systemic injection of SP decreased early inflammatory responses and promoted stem cell mobilization, leading to a compact vasculature and improved cardiac function in cardiac IRI and AMI.
Subject(s)
Hematopoietic Stem Cell Mobilization , Myocardial Infarction , Myocardial Reperfusion Injury , Substance P/pharmacokinetics , Animals , Granulocyte Colony-Stimulating Factor/pharmacology , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/pathology , Interleukin-10/metabolism , Lectins, C-Type/metabolism , Male , Mannose Receptor , Mannose-Binding Lectins/metabolism , Myocardial Infarction/drug therapy , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Rats , Rats, Sprague-Dawley , Receptors, Cell Surface/metabolism , Tumor Necrosis Factor-alpha/metabolismABSTRACT
By sensing fundamental parameters, including nutrient availability, activated mechanistic target of rapamycin complex 1 (mTORC1) suppresses catabolic outcomes and promotes anabolic processes needed for herpes simplex virus 1 (HSV-1) productive growth. While the virus-encoded Us3 Ser/Thr kinase is required to activate mTORC1, whether stress associated with amino acid insufficiency impacts mTORC1 activation in infected cells and virus reproduction was unknown. In contrast to uninfected cells, where amino acid withdrawal inhibits mTORC1 activation, we demonstrate that mTORC1 activity is sustained in HSV-1-infected cells during amino acid insufficiency. We show that in the absence of Us3, the insensitivity of mTORC1 to amino acid withdrawal in infected cells was dependent on the host kinase Akt and establish a role for the HSV-1 UL46 gene product, which stimulates phosphatidylinositol (PI) 3-kinase signaling. Significantly, virus reproduction during amino acid insufficiency was stimulated by the viral UL46 gene product. By synergizing with Us3, UL46 reprograms mTORC1 such that it is insensitive to amino acid withdrawal and supports sustained mTORC1 activation and virus reproduction during amino acid insufficiency. This identifies an unexpected function for UL46 in supporting virus reproduction during physiological stress and identifies a new class of virus-encoded mTORC1 regulators that selectively uncouple mTORC1 activation from amino acid sufficiency.IMPORTANCE Mechanistic target of rapamycin complex 1 (mTORC1) is a multisubunit cellular kinase that coordinates protein synthesis with changing amino acid levels. During amino acid insufficiency, mTORC1 is repressed in uninfected cells, dampening protein synthesis and potentially restricting virus reproduction. Here, we establish that HSV-1 alters the responsiveness of mTORC1 to metabolic stress resulting from amino acid insufficiency. Unlike in uninfected cells, mTORC1 remains activated in HSV-1-infected cells deprived of amino acids. Synergistic action of the HSV-1 UL46 gene product, which stimulates PI 3-kinase, and the Us3 kinase supports virus reproduction during amino acid withdrawal. These results define how HSV-1, a medically important human pathogen associated with a range of diseases, uncouples mTORC1 activation from amino acid availability. Furthermore, they help explain how the virus reproduces during physiological stress. Reproduction triggered by physiological stress is characteristic of herpesvirus infections, where lifelong latency is punctuated by episodic reactivation events.
Subject(s)
Amino Acids/deficiency , Antigens, Viral/metabolism , Herpesvirus 1, Human/physiology , Mechanistic Target of Rapamycin Complex 1/metabolism , Protein Serine-Threonine Kinases/metabolism , Viral Proteins/metabolism , Animals , Cell Line , Chlorocebus aethiops , Gene Expression Regulation, Viral , Humans , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Vero Cells , Virus ReplicationABSTRACT
Erythroid differentiation regulator 1 (Erdr1) has been identified as a stromal survival factor released under stressful conditions. Previously, Erdr1 was reported to be expressed highly in thymus, but roles of Erdr1 in thymus were not known. Here, the effects of Erdr1 on T cell development were investigated. The expression of Erdr1 was higher in thymus than bone marrow and Erdr1 was detected in both the cortex and medulla of thymus. Erdr1 treatment significantly induced the expression of activation marker, CD69, from thymocytes in the presence of TCR stimuli in vitro and the induction was dependent on increased Ca2+ influx. In addition, in vivo administration of Erdr1 resulted in significant increase of total and positive selected thymocyte numbers, particularly in the number of CD3TCRhiCD69+ DP thymocytes. Taken together, our results show that Erdr1 enhances the strength of TCR signaling and cellularity of thymocytes by amplifying Ca2+ influx in thymocytes receiving TCR signals.
Subject(s)
Calcium/metabolism , Membrane Proteins/physiology , Receptors, Antigen, T-Cell/physiology , Thymocytes/metabolism , Tumor Suppressor Proteins/physiology , Animals , Antigens, CD/analysis , Antigens, Differentiation, T-Lymphocyte/analysis , Lectins, C-Type/analysis , Mice , Mice, Inbred C57BL , Signal Transduction/physiologyABSTRACT
This study aimed to evaluate the usefulness of four microRNAs (miRNAs) in an acute pancreatic injury dog model. Acute pancreatitis was induced by infusion of cerulein for 2 h (7.5 µg/kg/h). The levels of well-known miRNAs, microRNA-216a (miR-216a) and microRNA-375 (miR-375), and new candidates microRNA-551b (miR-551b), and microRNA-7 (miR-7), were measured at 0, 0.5, 1, 2, 6, 12, and 24 h with serum amylase and lipase, and histopathological examination was performed. Among the four miRNAs, miR-216a and miR-375, and serum enzymes were significantly increased by cerulein treatment. The expression levels of miRNAs and serum enzymes peaked at 2â»6 h with a similar pattern; however, the overall increases in miR-216a and miR-375 levels were much higher than those of the serum enzyme biomarkers. Increased levels of miR-216a and miR-375 were most highly correlated to the degree of individual histopathological injuries of the pancreas, and showed much greater dynamic response than serum enzyme biomarkers. Twenty-four-hour time-course analysis in this study revealed time-dependent changes of miRNA expression levels, from initial increase to decrease by predose level in acute pancreatitis. Our findings demonstrate that, in dogs, miR-216a and miR-375 have the potential to sensitively detect pancreatitis and reflect well the degree of pancreatic injury, whereas miR-551b and miR-7 do not.
Subject(s)
Biomarkers , Circulating MicroRNA , Pancreatitis/genetics , Acute Disease , Amylases/blood , Animals , Disease Models, Animal , Dogs , Pancreas/metabolism , Pancreas/pathology , Pancreatitis/blood , Pancreatitis/diagnosis , Severity of Illness Index , Time FactorsABSTRACT
Viroporin p7 of the hepatitis C virus (HCV) acts as an ion channel for pH equilibration to stabilize HCV particles; most studies of p7 have focused on this role. However, pH equilibration by p7 via its ion channel activity does not fully explain the importance of p7 in HCV particle production. Indeed, several researchers have suggested p7 to have an unidentified ion channel-independent function. Here, we show that p7 has a novel role as a lipid raft adhesion factor, which is independent of its ion channel activity. We found that p7 targets not only the liquid-disordered (Ld) phase, but also the negatively-charged liquid-ordered (Lo) phase that can be represented as a lipid raft. p7 clusters at the phase boundary of the neutral Ld phase and the negatively-charged Lo phase. Interestingly, p7 targeting the Lo phase facilitates membrane-to-membrane adhesion, and this activity is not inhibited by p7 ion channel inhibitors. Our results demonstrated that HCV p7 has dual roles as a viroporin and as a lipid raft adhesion factor. This ion channel-independent function of p7 might be an attractive target for development of anti-HCV compounds.
Subject(s)
Hepacivirus/genetics , Hepatitis C/genetics , Viral Proteins/genetics , Amino Acid Sequence/genetics , Cell Adhesion/genetics , Cell Line , Gene Expression Regulation, Viral , Hepacivirus/metabolism , Hepacivirus/pathogenicity , Hepatitis C/pathology , Hepatitis C/virology , Humans , Hydrogen-Ion Concentration , Membrane Microdomains/genetics , Membrane Microdomains/metabolism , Viral Proteins/metabolism , Virus Replication/geneticsABSTRACT
OBJECTIVES: To evaluate equivalence in efficacy for rheumatoid arthritis (RA) and compare the safety of the biosimilar HD203 with innovator etanercept (ETN) plus methotrexate (MTX) (ClinicalTrials.gov NCT01270997). METHODS: Patients with active RA received 25â mg HD203 or ETN subcutaneously twice-weekly with MTX for 48â weeks in a phase III, multicentre, randomised, double-blind, parallel-group design. The primary end point was the proportion of patients achieving the American College of Rheumatology 20% response (ACR20) at week 24 for per-protocol study completer set (PPS). Secondary end points included ACR response criteria, ACRn, European League against Rheumatism (EULAR) response, change in Disease Activity Score 28 (DAS28), patient-reported outcomes, safety and immunogenicity. RESULTS: Of the 294 randomised patients (HD203, n=147; ETN, n=147), 233 comprised the 24-week PPS (n=115 and 118, respectively). ACR20 at week 24 was achieved by 83.48% and 81.36% of PPS patients, respectively, demonstrating equivalent efficacy within predefined margins of ±20% (treatment difference 2.12%, 95% CI -7.65% to 11.89%). Outcomes for secondary end points were consistent with the primary efficacy findings. Groups were comparable for overall incidences of treatment-emergent (all-causality) adverse events (AEs) (HD203 113 (76.9%) vs ETN 114 (78.1%) (p=0.804)), adverse drug reactions, serious AEs and discontinuations due to AEs. Few patients (HD203, n=8; ETN, n=3) tested positive for anti-drug antibodies. CONCLUSION: The study met the primary objective of demonstrating equivalent efficacy of HD203 and ETN. HD203 was well tolerated, with safety comparable with ETN in this population of patients with RA. TRIAL REGISTRATION NUMBER: NCT01270997; Results.
Subject(s)
Antirheumatic Agents/pharmacokinetics , Antirheumatic Agents/therapeutic use , Arthritis, Rheumatoid/drug therapy , Biosimilar Pharmaceuticals/pharmacokinetics , Biosimilar Pharmaceuticals/therapeutic use , Etanercept/pharmacokinetics , Etanercept/therapeutic use , Adult , Aged , Antibodies/blood , Antirheumatic Agents/adverse effects , Antirheumatic Agents/immunology , Double-Blind Method , Drug Therapy, Combination , Etanercept/adverse effects , Etanercept/immunology , Female , Humans , Male , Methotrexate/therapeutic use , Middle Aged , Therapeutic Equivalency , Treatment OutcomeABSTRACT
Anti-vascular endothelial growth factor (VEGF) therapy has revolutionized the treatment of retinal vascular diseases. However, constitutive VEGF also acts as a trophic factor on retinal nonvascular cells. We have studied the effects of aflibercept and ranibizumab on human Müller cells and photoreceptors exposed to starvation media containing various concentrations of glucose, with or without CoCl2-induced hypoxia. Cell survival was assessed by calcein-AM cell viability assays. Expression of heat shock proteins (Hsp) and redox proteins thioredoxin 1 and 2 (TRX1, TRX2) was studied by Western blots. The production of neurotrophic factors in Müller cells and interphotoreceptor retinoid-binding protein (IRBP) in photoreceptors was measured by enzymelinked immunosorbent assays. Aflibercept and ranibizumab did not affect the viability of both types of cells. Neither aflibercept nor ranibizumab affected the production of neurotrophic factors or expression of Hsp60 and Hsp90 in Müller cells. However, aflibercept but not ranibizumab affected the expression of Hsp60, Hsp9, TRX1 and TRX2 in photoreceptors. Aflibercept and ranibizumab both inhibited the production of IRBP in photoreceptors, aflibercept more so than ranibizumab. Our data indicates that the potential influence of aflibercept and ranibizumab on photoreceptors should be specifically monitored in clinical studies.
Subject(s)
Angiogenesis Inhibitors/pharmacology , Ependymoglial Cells/drug effects , Ependymoglial Cells/metabolism , Photoreceptor Cells/drug effects , Photoreceptor Cells/metabolism , Ranibizumab/pharmacology , Recombinant Fusion Proteins/pharmacology , Stress, Physiological , Cell Survival/drug effects , Cells, Cultured , Eye Proteins/metabolism , Gene Expression , Glucose/pharmacology , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Humans , Hypoxia/metabolism , Nerve Growth Factors/metabolism , Receptors, Vascular Endothelial Growth Factor , Retinol-Binding Proteins/metabolism , Thioredoxins/genetics , Thioredoxins/metabolismABSTRACT
BACKGROUND: Exenatide exerts cardioprotective effects by attenuating ischaemic reperfusion (IR) injury, possibly through activating the opening of mitochondrial ATP-sensitive potassium channels. We used atomic force microscopy (AFM) to investigate changes in mitochondrial morphology and properties in order to assess exenatide-mediated cardioprotection in IR injury. METHODS: We used an in vivo Sprague-Dawley rat IR model and ex vivo Langendorff injury model. In the left anterior descending artery (LAD) occlusion model, animals were randomly divided into three groups: sham-operated rats (Sham, n=5), IR-injured rats treated with placebo (IR, n=6), and IR-injured treated with exenatide (IR + EXE, n=6). For the Langendorff model, rats were randomly divided into two groups: IR injury with placebo (IR, n=4) and IR injury with exenatide (IR+EXE, n=4). Morphological and mechanical changes of mitochondria were analysed by AFM. RESULTS: Exenatide pre-treatment improved cardiac function as evidenced by improvement in echocardiographic results. The ratio of infarct area (IA) to risk area (RA) was significantly reduced in exenatide-treated rats. According to AFM, IR significantly increased the area of isolated mitochondria, indicative of mitochondrial swelling. Treatment with exenatide reduced the mitochondrial area and ameliorated the adhesion force of mitochondrial surfaces. CONCLUSIONS: Exenatide pre-treatment improves morphological and mechanical characteristics of mitochondria in response to IR injury in a rat model. These alterations in mitochondrial characteristics appear to play a cardioprotective role against IR injury.
Subject(s)
Echocardiography , Mitochondria, Heart , Myocardial Reperfusion Injury , Peptides/pharmacology , Venoms/pharmacology , Animals , Disease Models, Animal , Exenatide , Male , Microscopy, Atomic Force , Mitochondria, Heart/metabolism , Mitochondria, Heart/ultrastructure , Myocardial Reperfusion Injury/diagnostic imaging , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/physiopathology , Rats , Rats, Sprague-DawleyABSTRACT
Retinal diseases such as macular telangiectasis type 2 (MacTel), age-related macular degeneration (AMD) and diabetic retinopathy (DR) affect both neurons and blood vessels. Treatments addressing both at the same time might have advantages over more specific approaches, such as vascular endothelial growth factor (VEGF) inhibitors, which are used to treat vascular leak but are suspected to have a neurotoxic effect. Here, we studied the effects of an intravitreal injection of triamcinolone acetonide (TA) in a transgenic model in which patchy Müller cell ablation leads to photoreceptor degeneration, vascular leak, and intraretinal neovascularization. TA was injected 4 days before Müller cell ablation. Changes in photoreceptors, microglia and Müller cells, retinal vasculature, differential expression of p75 neurotrophin receptor (p75(NTR) ), tumor necrosis factor-α (TNFα), the precursor and mature forms of neurotrophin 3 (pro-NT3 and mature NT3) and activation of the p53 and p38 stress-activated protein kinase (p38/SAPK) signaling pathways were examined. We found that TA prevented photoreceptor degeneration and inhibited activation of microglial and Müller cells. TA attenuated Müller cell loss and inhibited overexpression of p75(NTR) , TNFα, pro-NT, and the activation of p53 and p38/SAPK signaling pathways. TA not only prevented the development of retinal vascular lesions but also inhibited fluorescein leakage from established vascular lesions. TA inhibited overexpression of VEGF in transgenic mice but without affecting its basal level expression in the normal retina. Our data suggest that glucocorticoid treatment may be beneficial for treatment of retinal diseases such as MacTel, AMD, and DR that affect both neurons and the vasculature.