ABSTRACT
Chitosan is suggested as no or low toxicity and biocompatible biomaterial. Digestion of chitosan to reduce molecular weight and formulate nanoparticle was generally used to improve efficiency for DNA or protein delivery. However, the toxicity of low-molecular-weight chitosan (LMWCS) towards freshwater fishes has not been well evaluated. Here, we reported the toxic mechanism of LMWCS using zebrafish (Danio rerio) liver (ZFL) cell line, zebrafish larvae, and adult fish. LMWCS rapidly induced cytotoxicity of ZFL cells and death of zebrafish. Cell membrane damaged by LMWCS reduced cell viability. Damaged membrane of epithelial cell in zebrafish larvae induced breakage of the yolk. Adult fish exhibited hypoxia before death due to multiple damages induced by LMWCS. Although the toxicity of LMWCS was revealed in zebrafish model, the toxicity was only present in pH < 7 and easy be neutralized by other negative ions. Collectively, these data improved a new understanding of LMWCS properties.
Subject(s)
Biocompatible Materials/toxicity , Chitosan/toxicity , Larva/drug effects , Liver/drug effects , Zebrafish/metabolism , Animals , Cell Line , Cell Membrane/drug effects , Chitosan/analogs & derivatives , Epithelial Cells/cytology , Epithelial Cells/drug effects , Molecular Weight , Toxicity TestsABSTRACT
Reactive oxygen species (ROS) homeostasis is maintained at a higher level in cancer cells, which promotes tumorigenesis. Oxidative stress induced by anticancer drugs may further increase ROS to promote apoptosis, but can also enhance the metastasis of cancer cells. The effects of ROS homeostasis on cancer cells remain to be fully elucidated. In the present study, the effect of a reduction in manganese superoxide dismutase (MnSOD) on the migration and invasion of A431 cells was investigated. Our previous microassay data revealed that the mRNA expression of MnSOD was higher in the invasive A431III cell line compared with that in the parental A431 cell line (A431P). In the present study, high protein levels of MnSOD and H2O2 production were observed in A431III cells; however, catalase protein levels were significantly lower in A431III cells compared with those in the A431P cell line. The knockdown of MnSOD increased H2O2 levels, enzyme activity, the mRNA levels of matrix metalloproteinase1, 2 and 9, and the migratory and invasive abilities of the cells. Inducing a reduction in H2O2 using diphenyleneiodonium (DPI) and Nacetyllcysteine decreased the migratory abilities of the cell lines, and DPI attenuated the migratory ability that had been increased by MnSOD small interfering RNA knockdown. Luteolin (Lu) and quercetin (Qu) increased the expression of catalase and reduced H2O2 levels, but without an observed change in the protein levels of MnSOD. Taken together, these data suggest that reduced MnSOD may induce ROS imbalance in cells and promote the metastatic ability of cancer cells. Lu and Qu may attenuate these processes and may be promising potential anticancer agents.
Subject(s)
Carcinoma, Squamous Cell/genetics , Down-Regulation , Reactive Oxygen Species/metabolism , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Acetylcysteine/pharmacology , Carcinoma, Squamous Cell/metabolism , Cell Movement , Gene Expression Regulation, Neoplastic/drug effects , Gene Knockdown Techniques , Humans , Luteolin/pharmacology , Matrix Metalloproteinases/genetics , Neoplasm Invasiveness , Onium Compounds/pharmacology , Quercetin/pharmacologyABSTRACT
Flavonoids are well-known antioxidants and have shown the ability to prevent tumor formation and recurrence. Especially in dietary flavonoids, they have provided convenience and consistence of intake for long-term prevention of tumor formation. Previous reports suggested that S100 calcium-binding protein A7 (S100A7) might activate epithelial-mesenchymal transition (EMT) signaling and promote the metastasis of tumor cells; however, the regulatory signaling was unclear. In this study, we found that S100A7 was highly expressed in cancer cells and could be reduced by luteolin (Lu) and quercetin (Qu) through Src/Stat3 signaling. We found that the protein levels of S100A7, phosphorylated Src (p-Src), and p-Stat3 were increased in A431-III cells. Flavonoids Lu and Qu reduce protein levels of p-Src, p-Stat3 and S100A7 in A431-III cells. Treatment of A431-III cells with Src inhibitor SU6656 and Stat3 inhibitor S3I-201 also reduced the protein levels of S100A7. Transactivation activity of 5'-upstream regions of S100A7 was activated by Stat3 but was reduced by treatment with Lu, Qu, SU6656 and S3I-201. The treatment also reduced the migratory and invasive abilities of A431-III cells. In a further analysis of EMT markers, the protein level of E-cad increased and that of Twist decreased after treatment with the inhibitors and flavonoids. Overexpression of S100A7 decreased the protein level of E-cad and increased the Twist level, whereas knockdown of S100A7 had the opposite effects. Treatment with S3I-201, Lu and Qu, compared to the control, were found to decrease metastasis of tumor cells in zebrafish larvae. These results suggest that Lu and Qu may inhibit Src/Stat3/S100A7 signaling to reduce tumorigenesis of cancer cells.