Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
ACS Biomater Sci Eng ; 10(6): 3825-3832, 2024 06 10.
Article in English | MEDLINE | ID: mdl-38722049

ABSTRACT

In recent years, a novel treatment method for cancer has emerged, which is based on the starvation of tumors of amino acids like arginine. The deprivation of arginine in serum is based on enzymatic degradation and can be realized by arginine deaminases like the l-amino acid oxidase found in the ink toxin of the sea hare Aplysia punctata. Previously isolated from the ink, the l-amino acid oxidase was described to oxidate the essential amino acids l-lysine and l-arginine to their corresponding deaminated alpha-keto acids. Here, we present the recombinant production and functionalization of the amino acid oxidase Aplysia punctata ink toxin (APIT). PEGylated APIT (APIT-PEG) increased the blood circulation time. APIT-PEG treatment of patient-derived xenografted mice shows a significant dose-dependent reduction of tumor growth over time mediated by amino acid starvation of the tumor. Treatment of mice with APIT-PEG, which led to deprivation of arginine, was well tolerated.


Subject(s)
Aplysia , Arginine , Lysine , Polyethylene Glycols , Animals , Arginine/pharmacology , Arginine/chemistry , Lysine/pharmacology , Lysine/chemistry , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacology , Humans , Mice , Xenograft Model Antitumor Assays , Marine Toxins/pharmacology , Marine Toxins/therapeutic use , Marine Toxins/chemistry , Recombinant Proteins/pharmacology , Recombinant Proteins/therapeutic use , L-Amino Acid Oxidase/pharmacology , L-Amino Acid Oxidase/metabolism , L-Amino Acid Oxidase/chemistry , Female , Cell Line, Tumor
2.
Drug Test Anal ; 2021 Dec 14.
Article in English | MEDLINE | ID: mdl-34905300

ABSTRACT

Immunopurification of doping control samples is a mandatory necessity in erythropoietin (EPO) analysis during a confirmation procedure; moreover, it has become common practice to also immunopurify samples for the initial testing procedure. Typically used materials (e.g., Stemcell purification plate and MAIIA purification kit) rely on anti-EPO antibodies for purification. Also, the detection of EPO after electrophoretic separation and western blotting is based on a monoclonal anti-EPO antibody, clone AE7A5, directed against a 26 amino acid sequence of the N-terminal region of human EPO. While the electrophoretic separation and blot transfer efficiency can be monitored with reference standards and quality control samples, it is presently not possible to monitor the functionality of the entire sample preparation procedure. The reliance on antibodies for both purification and detection has complicated the implementation of an internal standard (ISTD). In this study, customized EPO-polyethylene glycol (PEG) conjugates were synthesized as potential ISTDs and assessed as to their compatibility with existing sample preparation procedures for urine and blood sample analysis using the most common immunopurification techniques. Moreover, probing for the impact of the ISTD on sodium N-lauroylsarcosinate ("sarcosyl") polyacrylamide gel electrophoresis (SAR-PAGE)-based EPO analysis concerning potential interference with target analytes was conducted. The presented data demonstrate that a 12-kDa PEG residue attached to human EPO represents a particularly useful construct to serve as ISTD for erythropoietin-receptor agonist (ERA) analysis. The conjugate is applicable to both urine and blood testing using the commonly employed purification techniques, supporting and improving result interpretations especially concerning specimens where the natural abundance of human EPO is low.

3.
Ther Adv Chronic Dis ; 12: 20406223211037830, 2021.
Article in English | MEDLINE | ID: mdl-34408824

ABSTRACT

BACKGROUND: Therapeutic treatment options for chronic autoimmune disorders such as multiple sclerosis (MS) rely largely on the use of non-specific immunosuppressive drugs, which are not able to cure the disease. Presently, approaches to induce antigen-specific tolerance as a therapeutic approach; for example, by peptide-based tolerogenic 'inverse' vaccines have regained great interest. We have previously shown that coupling of peptides to carriers can enhance their capacity to induce regulatory T cells in vivo. METHOD: In this present study, we investigated whether the tolerogenic potential of immunodominant myelin T-cell epitopes can be improved by conjugation to the synthetic carrier polyethylene glycol (PEG) in an experimental autoimmune encephalomyelitis (EAE) mouse model for chronic MS (MOG C57BL/6). RESULTS: Preventive administration of the PEGylated antigenic peptide could strongly suppress the development of EAE, accompanied by reduced immune cell infiltration in the central nervous system (CNS). Depletion of regulatory T cells (Tregs) abrogated the protective effect indicating that Tregs play a crucial role in induction of antigen-specific tolerance in EAE. Treatment during the acute phase of disease was safe and did not induce immune activation. However, treatment at the peak of disease did not affect the disease course, suggesting that either induction of Tregs does not occur in the highly inflamed situation, or that the immune system is refractory to regulation in this condition. CONCLUSION: PEGylation of antigenic peptides is an effective and feasible strategy to improve tolerogenic (Treg-inducing) peptide-based vaccines, but application for immunotherapy of overt disease might require modifications or combination therapies that simultaneously suppress effector mechanisms.

4.
Front Immunol ; 11: 529035, 2020.
Article in English | MEDLINE | ID: mdl-33162973

ABSTRACT

Current treatments for autoimmune disorders rely on non-specific immunomodulatory and global immunosuppressive drugs, which show a variable degree of efficiency and are often accompanied by side effects. In contrast, strategies aiming at inducing antigen-specific tolerance promise an exclusive specificity of the immunomodulation. However, although successful in experimental models, peptide-based tolerogenic "inverse" vaccines have largely failed to show efficacy in clinical trials. Recent studies showed that repetitive T cell epitopes, coupling of peptides to autologous cells, or peptides coupled to nanoparticles can improve the tolerogenic efficacy of peptides, suggesting that size and biophysical properties of antigen constructs affect the induction of tolerance. As these materials bear hurdles with respect to preparation or regulatory aspects, we wondered whether conjugation of peptides to the well-established and clinically proven synthetic material polyethylene glycol (PEG) might also work. We here coupled the T cell epitope OVA323-339 to polyethylene glycols of different size and structure and tested the impact of these nano-sized constructs on regulatory (Treg) and effector T cells in the DO11.10 adoptive transfer mouse model. Systemic vaccination with PEGylated peptides resulted in highly increased frequencies of Foxp3+ Tregs and reduced frequencies of antigen-specific T cells producing pro-inflammatory TNF compared to vaccination with the native peptide. PEGylation was found to extend the bioavailability of the model peptide. Both tolerogenicity and bioavailability were dependent on PEG size and structure. In conclusion, PEGylation of antigenic peptides is an effective and feasible strategy to improve Treg-inducing, peptide-based vaccines with potential use for the treatment of autoimmune diseases, allergies, and transplant rejection.


Subject(s)
Epitopes, T-Lymphocyte/pharmacology , Immunomodulation/drug effects , Peptides/pharmacology , Polyethylene Glycols/pharmacology , T-Lymphocytes, Regulatory/immunology , Animals , Epitopes, T-Lymphocyte/immunology , Mice , Mice, Transgenic , Peptides/immunology
5.
Eur J Pharm Sci ; 91: 122-30, 2016 Aug 25.
Article in English | MEDLINE | ID: mdl-27292820

ABSTRACT

The potential impact of pre-existing anti-PEG antibodies on the asparaginase activity kinetics of two pegylated l-asparaginase preparations - pegylated recombinant l-asparaginase (PEG-rASNase MC0609) and pegaspargase (pegylated Escherichia colil-asparaginase) - was investigated in immune competent, naïve B6D2F1-hybrid mice. To generate anti-PEG antibodies, mice were pre-sensitised by repeated injections of 40kDa PEG-Diol without being conjugated to a carrier. Successful PEG-Diol pre-sensitisation was verified by analysis of anti-PEG antibody titers in serum. 88-100% of animals developed PEG-specific anti-PEG IgM antibodies after PEG-Diol pre-sensitisation. All animals positive for anti-PEG IgM antibodies and control animals (without prior PEG-Diol pre-sensitisation) were treated once with PEG-rASNase MC0609 or pegaspargase, and asparaginase enzyme activity levels and immunogenicity of both preparations were analysed. Known serum asparaginase activity profiles were measured after treatment with PEG-rASNase MC0609 or pegaspargase in all treatment groups. No rapid decrease of asparaginase activity was observed - irrespective of successful PEG-Diol pre-sensitisation and presence of acquired anti-drug-IgG and/or anti-PEG IgM antibodies. In conclusion, the pharmacokinetics of pegylated l-asparaginase was unaffected by the presence of pre-existing anti-PEG IgM antibodies in immune competent B6D2F1-hybrid mice Probably the titre or affinity of these anti-PEG IgM antibodies were too low to influence the pharmacokinetics of PEG-rASNase MC0609 or pegaspargase or anti-PEG IgM antibodies bound to PEG-ASNase without neutralising capabilities. Thus, early loss of asparaginase activity as observed in serum of ALL patients is a complex process and cannot be explained solely by the existence of pre-existing anti-PEG antibodies.


Subject(s)
Antineoplastic Agents , Asparaginase , Immunoglobulin G/blood , Immunoglobulin M/blood , Polyethylene Glycols , Animals , Antineoplastic Agents/blood , Antineoplastic Agents/immunology , Antineoplastic Agents/pharmacokinetics , Asparaginase/antagonists & inhibitors , Asparaginase/blood , Asparaginase/immunology , Asparaginase/pharmacokinetics , Female , Immunoglobulin G/immunology , Immunoglobulin M/immunology , Mice , Polyethylene Glycols/pharmacokinetics , Recombinant Proteins/blood , Recombinant Proteins/immunology , Recombinant Proteins/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL