Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
1.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Article in English | MEDLINE | ID: mdl-33431561

ABSTRACT

Most animal species on Earth are insects, and recent reports suggest that their abundance is in drastic decline. Although these reports come from a wide range of insect taxa and regions, the evidence to assess the extent of the phenomenon is sparse. Insect populations are challenging to study, and most monitoring methods are labor intensive and inefficient. Advances in computer vision and deep learning provide potential new solutions to this global challenge. Cameras and other sensors can effectively, continuously, and noninvasively perform entomological observations throughout diurnal and seasonal cycles. The physical appearance of specimens can also be captured by automated imaging in the laboratory. When trained on these data, deep learning models can provide estimates of insect abundance, biomass, and diversity. Further, deep learning models can quantify variation in phenotypic traits, behavior, and interactions. Here, we connect recent developments in deep learning and computer vision to the urgent demand for more cost-efficient monitoring of insects and other invertebrates. We present examples of sensor-based monitoring of insects. We show how deep learning tools can be applied to exceptionally large datasets to derive ecological information and discuss the challenges that lie ahead for the implementation of such solutions in entomology. We identify four focal areas, which will facilitate this transformation: 1) validation of image-based taxonomic identification; 2) generation of sufficient training data; 3) development of public, curated reference databases; and 4) solutions to integrate deep learning and molecular tools.


Subject(s)
Deep Learning , Ecological Parameter Monitoring/trends , Entomology/trends , Insecta , Animals , Ecological Parameter Monitoring/instrumentation , Entomology/instrumentation
2.
Bioinformatics ; 38(20): 4817-4819, 2022 10 14.
Article in English | MEDLINE | ID: mdl-36029248

ABSTRACT

SUMMARY: DNA metabarcoding is an emerging approach to assess and monitor biodiversity worldwide and consequently the number and size of data sets increases exponentially. To date, no published DNA metabarcoding data processing pipeline exists that is (i) platform independent, (ii) easy to use [incl. graphical user interface (GUI)], (iii) fast (does scale well with dataset size) and (iv) complies with data protection regulations of e.g. environmental agencies. The presented pipeline APSCALE meets these requirements and handles the most common tasks of sequence data processing, such as paired-end merging, primer trimming, quality filtering, clustering and denoising of any popular metabarcoding marker, such as internal transcribed spacer, 16S or cytochrome c oxidase subunit I. APSCALE comes in a command line and a GUI version. The latter provides the user with additional summary statistics options and links to GUI-based downstream applications. AVAILABILITY AND IMPLEMENTATION: APSCALE is written in Python, a platform-independent language, and integrates functions of the open-source tools, VSEARCH (Rognes et al., 2016), cutadapt (Martin, 2011) and LULU (Frøslev et al., 2017). All modules support multithreading to allow fast processing of larger DNA metabarcoding datasets. Further information and troubleshooting are provided on the respective GitHub pages for the command-line version (https://github.com/DominikBuchner/apscale) and the GUI-based version (https://github.com/TillMacher/apscale_gui), including a detailed tutorial. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
DNA Barcoding, Taxonomic , Software , Electron Transport Complex IV
3.
Glob Chang Biol ; 29(1): 21-40, 2023 01.
Article in English | MEDLINE | ID: mdl-36131639

ABSTRACT

The increasing production, use and emission of synthetic chemicals into the environment represents a major driver of global change. The large number of synthetic chemicals, limited knowledge on exposure patterns and effects in organisms and their interaction with other global change drivers hamper the prediction of effects in ecosystems. However, recent advances in biomolecular and computational methods are promising to improve our capacity for prediction. We delineate three idealised perspectives for the prediction of chemical effects: the suborganismal, organismal and ecological perspective, which are currently largely separated. Each of the outlined perspectives includes essential and complementary theories and tools for prediction but captures only part of the phenomenon of chemical effects. Links between the perspectives may foster predictive modelling of chemical effects in ecosystems and extrapolation between species. A major challenge for the linkage is the lack of data sets simultaneously covering different levels of biological organisation (here referred to as biological levels) as well as varying temporal and spatial scales. Synthesising the three perspectives, some central aspects and associated types of data seem particularly necessary to improve prediction. First, suborganism- and organism-level responses to chemicals need to be recorded and tested for relationships with chemical groups and organism traits. Second, metrics that are measurable at many biological levels, such as energy, need to be scrutinised for their potential to integrate across levels. Third, experimental data on the simultaneous response over multiple biological levels and spatiotemporal scales are required. These could be collected in nested and interconnected micro- and mesocosm experiments. Lastly, prioritisation of processes involved in the prediction framework needs to find a balance between simplification and capturing the essential complexity of a system. For example, in some cases, eco-evolutionary dynamics and interactions may need stronger consideration. Prediction needs to move from a static to a real-world eco-evolutionary view.


Subject(s)
Ecosystem
4.
Cladistics ; 39(2): 129-143, 2023 04.
Article in English | MEDLINE | ID: mdl-36576962

ABSTRACT

DNA sequence information has revealed many morphologically cryptic species worldwide. For animals, DNA-based assessments of species diversity usually rely on the mitochondrial cytochrome c oxidase subunit I (COI) gene. However, a growing amount of evidence indicate that mitochondrial markers alone can lead to misleading species diversity estimates due to mito-nuclear discordance. Therefore, reports of putative species based solely on mitochondrial DNA should be verified by other methods, especially in cases where COI sequences are identical for different morphospecies or where divergence within the same morphospecies is high. Freshwater amphipods are particularly interesting in this context because numerous putative cryptic species have been reported. Here, we investigated the species status of the numerous mitochondrial molecular operational taxonomic units (MOTUs) found within Echinogammarus sicilianus. We used an integrative approach combining DNA barcoding with mate selection observations, detailed morphometrics and genome-wide double digest restriction site-associated DNA sequencing (ddRAD-seq). Within a relatively small sampling area, we detected twelve COI MOTUs (divergence = 1.8-20.3%), co-occurring in syntopy at two-thirds of the investigated sites. We found that pair formation was random and there was extensive nuclear gene flow among the ten MOTUs co-occurring within the same river stretch. The four most common MOTUs were also indistinguishable with respect to functional morphology. Therefore, the evidence best fits the hypothesis of a single, yet genetically diverse, species within the main river system. The only two MOTUs sampled outside the focal area were genetically distinct at the nuclear level and may represent distinct species. Our study reveals that COI-based species delimitation can significantly overestimate species diversity, highlighting the importance of integrative taxonomy for species validation, especially in hyperdiverse complexes with syntopically occurring mitochondrial MOTUs.


Subject(s)
Amphipoda , DNA Barcoding, Taxonomic , Electron Transport Complex IV , Mating Preference, Animal , Animals , Amphipoda/genetics , DNA, Mitochondrial/genetics , Fresh Water , Polymorphism, Single Nucleotide , Electron Transport Complex IV/genetics , Electron Transport Complex IV/metabolism , Mating Preference, Animal/physiology
5.
Nature ; 541(7638): 536-540, 2017 01 26.
Article in English | MEDLINE | ID: mdl-28092920

ABSTRACT

The Southern Ocean houses a diverse and productive community of organisms. Unicellular eukaryotic diatoms are the main primary producers in this environment, where photosynthesis is limited by low concentrations of dissolved iron and large seasonal fluctuations in light, temperature and the extent of sea ice. How diatoms have adapted to this extreme environment is largely unknown. Here we present insights into the genome evolution of a cold-adapted diatom from the Southern Ocean, Fragilariopsis cylindrus, based on a comparison with temperate diatoms. We find that approximately 24.7 per cent of the diploid F. cylindrus genome consists of genetic loci with alleles that are highly divergent (15.1 megabases of the total genome size of 61.1 megabases). These divergent alleles were differentially expressed across environmental conditions, including darkness, low iron, freezing, elevated temperature and increased CO2. Alleles with the largest ratio of non-synonymous to synonymous nucleotide substitutions also show the most pronounced condition-dependent expression, suggesting a correlation between diversifying selection and allelic differentiation. Divergent alleles may be involved in adaptation to environmental fluctuations in the Southern Ocean.


Subject(s)
Acclimatization/genetics , Cold Temperature , Diatoms/genetics , Evolution, Molecular , Genome/genetics , Genomics , Alleles , Carbon Dioxide/metabolism , Darkness , Diatoms/metabolism , Freezing , Gene Expression Profiling , Genetic Drift , Ice Cover , Iron/metabolism , Mutation Rate , Oceans and Seas , Phylogeny , Recombination, Genetic , Transcriptome/genetics
6.
BMC Genomics ; 23(1): 816, 2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36482300

ABSTRACT

BACKGROUND: Freshwaters are exposed to multiple anthropogenic stressors, leading to habitat degradation and biodiversity decline. In particular, agricultural stressors are known to result in decreased abundances and community shifts towards more tolerant taxa. However, the combined effects of stressors are difficult to predict as they can interact in complex ways, leading to enhanced (synergistic) or decreased (antagonistic) response patterns. Furthermore, stress responses may remain undetected if only the abundance changes in ecological experiments are considered, as organisms may have physiological protective pathways to counteract stressor effects. Therefore, we here used transcriptome-wide sequencing data to quantify single and combined effects of elevated fine sediment deposition, increased salinity and reduced flow velocity on the gene expression of the amphipod Gammarus fossarum in a mesocosm field experiment. RESULTS: Stressor exposure resulted in a strong transcriptional suppression of genes involved in metabolic and energy consuming cellular processes, indicating that G. fossarum responds to stressor exposure by directing energy to vitally essential processes. Treatments involving increased salinity induced by far the strongest transcriptional response, contrasting the observed abundance patterns where no effect was detected. Specifically, increased salinity induced the expression of detoxification enzymes and ion transporter genes, which control the membrane permeability of sodium, potassium or chloride. Stressor interactions at the physiological level were mainly antagonistic, such as the combined effect of increased fine sediment and reduced flow velocity. The compensation of the fine sediment induced effect by reduced flow velocity is in line with observations based on specimen abundance data. CONCLUSIONS: Our findings show that gene expression data provide new mechanistic insights in responses of freshwater organisms to multiple anthropogenic stressors. The assessment of stressor effects at the transcriptomic level and its integration with stressor effects at the level of specimen abundances significantly contribute to our understanding of multiple stressor effects in freshwater ecosystems.


Subject(s)
Ecosystem
7.
Environ Microbiol ; 23(7): 3809-3824, 2021 07.
Article in English | MEDLINE | ID: mdl-33559305

ABSTRACT

Ecological stability under environmental change is determined by both interspecific and intraspecific processes. Particularly for planktonic microorganisms, it is challenging to follow intraspecific dynamics over space and time. We propose a new method, microsatellite PoolSeq barcoding (MPB), for tracing allele frequency changes in protist populations. We successfully applied this method to experimental community incubations and field samples of the diatom Thalassiosira hyalina from the Arctic, a rapidly changing ecosystem. Validation of the method found compelling accuracy in comparison with established genotyping approaches within different diversity contexts. In experimental and environmental samples, we show that MPB can detect meaningful patterns of population dynamics, resolving allelic stability and shifts within a key diatom species in response to experimental treatments as well as different bloom phases and years. Through our novel MPB approach, we produced a large dataset of populations at different time-points and locations with comparably little effort. Results like this can add insights into the roles of selection and plasticity in natural protist populations under stable experimental but also variable field conditions. Especially for organisms where genotype sampling remains challenging, MPB holds great potential to efficiently resolve eco-evolutionary dynamics and to assess the mechanisms and limits of resilience to environmental stressors.


Subject(s)
Diatoms , Arctic Regions , Diatoms/genetics , Ecosystem , Microsatellite Repeats/genetics , Population Dynamics
8.
Mol Ecol ; 30(13): 3203-3220, 2021 07.
Article in English | MEDLINE | ID: mdl-33150613

ABSTRACT

Macroinvertebrate assemblages are the most common bioindicators used for stream biomonitoring, yet the standard approach exhibits several time-consuming steps, including the sorting and identification of organisms based on morphological criteria. In this study, we examined if DNA metabarcoding could be used as an efficient molecular-based alternative to the morphology-based monitoring of streams using macroinvertebrates. We compared results achieved with the standard morphological identification of organisms sampled in 18 sites located on 15 French wadeable streams to results obtained with the DNA metabarcoding identification of sorted bulk material of the same macroinvertebrate samples, using read numbers (expressed as relative frequencies) as a proxy for abundances. In particular, we evaluated how combining and filtering metabarcoding data obtained from three different markers (COI: BF1-BR2, 18S: Euka02 and 16S: Inse01) could improve the efficiency of bioassessment. In total, 140 taxa were identified based on morphological criteria, and 127 were identified based on DNA metabarcoding using the three markers, with an overlap of 99 taxa. The threshold values used for sequence filtering based on the "best identity" criterion and the number of reads had an effect on the assessment efficiency of data obtained with each marker. Compared to single marker results, combining data from different markers allowed us to improve the match between biotic index values obtained with the bulk DNA versus morphology-based approaches. Both approaches assigned the same ecological quality class to a majority (86%) of the site sampling events, highlighting both the efficiency of metabarcoding as a biomonitoring tool but also the need for further research to improve this efficiency.


Subject(s)
DNA Barcoding, Taxonomic , Rivers , Animals , Biodiversity , DNA/genetics , Environmental Monitoring , Invertebrates/genetics
9.
Mol Ecol ; 30(13): 2937-2958, 2021 07.
Article in English | MEDLINE | ID: mdl-32416615

ABSTRACT

A decade after environmental scientists integrated high-throughput sequencing technologies in their toolbox, the genomics-based monitoring of anthropogenic impacts on the biodiversity and functioning of ecosystems is yet to be implemented by regulatory frameworks. Despite the broadly acknowledged potential of environmental genomics to this end, technical limitations and conceptual issues still stand in the way of its broad application by end-users. In addition, the multiplicity of potential implementation strategies may contribute to a perception that the routine application of this methodology is premature or "in development", hence restraining regulators from binding these tools into legal frameworks. Here, we review recent implementations of environmental genomics-based methods, applied to the biomonitoring of ecosystems. By taking a general overview, without narrowing our perspective to particular habitats or groups of organisms, this paper aims to compare, review and discuss the strengths and limitations of four general implementation strategies of environmental genomics for monitoring: (a) Taxonomy-based analyses focused on identification of known bioindicators or described taxa; (b) De novo bioindicator analyses; (c) Structural community metrics including inferred ecological networks; and (d) Functional community metrics (metagenomics or metatranscriptomics). We emphasise the utility of the three latter strategies to integrate meiofauna and microorganisms that are not traditionally utilised in biomonitoring because of difficult taxonomic identification. Finally, we propose a roadmap for the implementation of environmental genomics into routine monitoring programmes that leverage recent analytical advancements, while pointing out current limitations and future research needs.


Subject(s)
Ecosystem , Metagenomics , Biodiversity , DNA Barcoding, Taxonomic , Environmental Monitoring
10.
Mol Ecol ; 30(5): 1120-1135, 2021 03.
Article in English | MEDLINE | ID: mdl-33432777

ABSTRACT

High-throughput sequencing (HTS) is increasingly being used for the characterization and monitoring of biodiversity. If applied in a structured way, across broad geographical scales, it offers the potential for a much deeper understanding of global biodiversity through the integration of massive quantities of molecular inventory data generated independently at local, regional and global scales. The universality, reliability and efficiency of HTS data can potentially facilitate the seamless linking of data among species assemblages from different sites, at different hierarchical levels of diversity, for any taxonomic group and regardless of prior taxonomic knowledge. However, collective international efforts are required to optimally exploit the potential of site-based HTS data for global integration and synthesis, efforts that at present are limited to the microbial domain. To contribute to the development of an analogous strategy for the nonmicrobial terrestrial domain, an international symposium entitled "Next Generation Biodiversity Monitoring" was held in November 2019 in Nicosia (Cyprus). The symposium brought together evolutionary geneticists, ecologists and biodiversity scientists involved in diverse regional and global initiatives using HTS as a core tool for biodiversity assessment. In this review, we summarize the consensus that emerged from the 3-day symposium. We converged on the opinion that an effective terrestrial Genomic Observatories network for global biodiversity integration and synthesis should be spatially led and strategically united under the umbrella of the metabarcoding approach. Subsequently, we outline an HTS-based strategy to collectively build an integrative framework for site-based biodiversity data generation.


Subject(s)
Biodiversity , DNA Barcoding, Taxonomic , Cyprus , Genomics , Reproducibility of Results
11.
Mol Phylogenet Evol ; 136: 206-214, 2019 07.
Article in English | MEDLINE | ID: mdl-31002869

ABSTRACT

Sea spiders (Pycnogonida) constitute a group of marine benthic arthropods that has a particularly high species diversity in the Southern Ocean. The "longitarsal" group of the sea spider family Colossendeidae is especially abundant in this region. However, this group also includes some representatives from other oceans, which raises the question where the group originates from. Therefore, we here investigated the phylogeny of the group with a hybrid enrichment approach that yielded a dataset of 1607 genes and over one million base pairs. We obtained a well-resolved phylogeny of the group, which is mostly consistent with morphological data. The data support an Antarctic origin of the longitarsal Colossendeidae and multiple dispersal events to other regions, which occurred at different timescales. This scenario is consistent with evidence found in other groups of marine invertebrates and highlights the role of the Southern Ocean as a source for non-Antarctic biota, especially of the deep sea. Our results suggest an initially slow rate of diversification followed by a more rapid radiation possibly correlated with the mid-Miocene cooling of Antarctica, similar to what is found in other taxa.


Subject(s)
Aquatic Organisms/classification , Aquatic Organisms/genetics , Arthropods/classification , Arthropods/genetics , Phylogeny , Animals , Antarctic Regions , Bayes Theorem , Likelihood Functions , Oceans and Seas , Phylogeography
12.
Front Zool ; 16: 36, 2019.
Article in English | MEDLINE | ID: mdl-31516540

ABSTRACT

BACKGROUND: Pallenopsis patagonica (Hoek, 1881) is a morphologically and genetically variable sea spider species whose taxonomic classification is challenging. Currently, it is considered as a species complex including several genetic lineages, many of which have not been formally described as species. Members of this species complex occur on the Patagonian and Antarctic continental shelves as well as around sub-Antarctic islands. These habitats have been strongly influenced by historical large-scale glaciations and previous studies suggested that communities were limited to very few refugia during glacial maxima. Therefore, allopatric speciation in these independent refugia is regarded as a common mechanism leading to high biodiversity of marine benthic taxa in the high-latitude Southern Hemisphere. However, other mechanisms such as ecological speciation have rarely been considered or tested. Therefore, we conducted an integrative morphological and genetic study on the P. patagonica species complex to i) resolve species diversity using a target hybrid enrichment approach to obtain multiple genomic markers, ii) find morphological characters and analyze morphometric measurements to distinguish species, and iii) investigate the speciation processes that led to multiple lineages within the species complex. RESULTS: Phylogenomic results support most of the previously reported lineages within the P. patagonica species complex and morphological data show that several lineages are distinct species with diagnostic characters. Two lineages are proposed as new species, P. aulaeturcarum sp. nov. Dömel & Melzer, 2019 and P. obstaculumsuperavit sp. nov. Dömel, 2019, respectively. However, not all lineages could be distinguished morphologically and thus likely represent cryptic species that can only be identified with genetic tools. Further, morphometric data of 135 measurements showed a high amount of variability within and between species without clear support of adaptive divergence in sympatry. CONCLUSIONS: We generated an unprecedented molecular data set for members of the P. patagonica sea spider species complex with a target hybrid enrichment approach, which we combined with extensive morphological and morphometric analyses to investigate the taxonomy, phylogeny and biogeography of this group. The extensive data set enabled us to delineate species boundaries, on the basis of which we formally described two new species. No consistent evidence for positive selection was found, rendering speciation in allopatric glacial refugia as the most likely model of speciation.

13.
Genome ; 62(3): 122-136, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30457888

ABSTRACT

Metabarcoding is a powerful, increasingly popular tool for biodiversity assessment, but it still suffers from some drawbacks (specimen destruction, separation, and size sorting). In the present study, we tested a non-destructive protocol that excludes any sample sorting, where the ethanol used for sample preserving is filtered and DNA is extracted from the filter for subsequent DNA metabarcoding. When tested on macroinvertebrate mock communities, the method was widely successful but was unable to reliably detect mollusc taxa. Three different protocols (no treatment, shaking, and freezing) were successfully applied to increase DNA release to the fixative. The protocols resulted in similar success in taxa detection (6.8-7 taxa) but differences in read numbers assigned to taxa of interest (33.8%-93.7%). In comparison to conventional bulk sample metabarcoding of environmental samples, taxa with pronounced exoskeleton and small-bodied taxa were especially underrepresented in ethanol samples. For EPT (Ephemeroptera, Plecoptera, Trichoptera) taxa, which are important for determining stream ecological status, the methods detected 46 OTUs in common, with only 4 unique to the ethanol samples and 10 to the bulk samples. These results indicate that fixative-based metabarcoding is a non-destructive, time-saving alternative for biodiversity assessments focussing on taxa used for ecological status determination. However, for a comprehensive assessment on total invertebrate biodiversity, the method may not be sufficient, and conventional bulk sample metabarcoding should be applied.


Subject(s)
Biodiversity , DNA Barcoding, Taxonomic/methods , DNA/genetics , Fixatives/metabolism , Mollusca/classification , Mollusca/genetics , Animals , DNA/analysis
14.
Front Zool ; 15: 7, 2018.
Article in English | MEDLINE | ID: mdl-29568315

ABSTRACT

Sea spiders (Pycnogonida) are a widespread and phylogenetically important group of marine arthropods. However, their biology remains understudied, and detailed information about their feeding ecology is difficult to find. Observations on pycnogonid feeding are scattered in the literature, often in older sources written in various languages, and have never been comprehensively summarized. Here we provide an overview of all information on feeding in pycnogonids that we have been able to find and review what is known on feeding specializations and preferences in the various pycnogonid taxa. We deduce general findings where possible and outline future steps necessary to gain a better understanding of the feeding ecology of one of the world's most bizarre animal taxa.

15.
Parasitology ; 145(11): 1421-1429, 2018 09.
Article in English | MEDLINE | ID: mdl-29455678

ABSTRACT

The bird-infecting acanthocephalan Polymorphus minutus has been suggested to comprise different lineages or even cryptic species using different intermediate hosts. To clarify this open question, we investigated Polymorphus cf. minutus cystacanths originating from amphipod intermediate hosts from 27 sites in Germany and France. Parasites and hosts were identified using integrated datasets (COI and/or morphology for hosts and COI + ITS1-5.8S-ITS2 for parasites).Mitochondrial and nuclear data (ITS1) strongly support the existence of three cryptic species in Polymorphus cf. minutus (type 1-3). These three types reveal a high degree of intermediate host specificity, with Polymorphus type 1 only encountered in Gammarus fossarum type B, Polymorphus type 2 in Echinogammarus sp. and Echinogammarus berilloni, and Polymorphus type 3 in Gammarus pulex and Gammarus roeselii. Our results point to a so far neglected cryptic diversity of the genus Polymorphus in Central Europe. Furthermore, Polymorphus type 2 is most likely a non-native parasite in Germany that co-invaded with E. berilloni from the Mediterranean area. Potentially, type 3 originates from South-East Europe and migrated to Germany by G. roeselii, where it might have captured G. pulex as an intermediate host. Therefore, our findings can be seen in the context of ecological globalization in terms of the anthropogenic displacement of intermediate hosts and its impact on the genetic divergence of the parasites.


Subject(s)
Acanthocephala/genetics , Amphipoda/parasitology , Genetic Variation , Host-Parasite Interactions , Acanthocephala/classification , Animals , DNA Barcoding, Taxonomic , Ecology , France , Germany
16.
Mol Ecol ; 26(20): 5705-5715, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28792677

ABSTRACT

An increasing number of phylogenetic studies have reported discordances among nuclear and mitochondrial markers. These discrepancies are highly relevant to widely used biodiversity assessment approaches, such as DNA barcoding, that rely almost exclusively on mitochondrial markers. Although the theoretical causes of mito-nuclear discordances are well understood, it is often extremely challenging to determine the principal underlying factor in a given study system. In this study, we uncovered significant mito-nuclear discordances in a pair of sibling caddisfly species. Application of genome sequencing, ddRAD and DNA barcoding revealed ongoing hybridization, as well as historical hybridization in Pleistocene refugia, leading us to identify introgression as the ultimate cause of the observed discordance pattern. Our novel genomic data, the discovery of a European-wide hybrid zone and the availability of established techniques for laboratory breeding make this species pair an ideal model system for studying species boundaries with ongoing gene flow.


Subject(s)
Biological Evolution , DNA Barcoding, Taxonomic , Hybridization, Genetic , Insecta/classification , Animals , Cell Nucleus/genetics , DNA, Mitochondrial/genetics , Europe , Gene Flow , Genetic Markers , Genome, Insect , Phylogeny , Sequence Analysis, DNA
17.
BMC Evol Biol ; 16: 153, 2016 07 29.
Article in English | MEDLINE | ID: mdl-27473498

ABSTRACT

BACKGROUND: The actual connectivity between populations of freshwater organisms is largely determined by species biology, but is also influenced by many area- and site-specific factors, such as water pollution and habitat fragmentation. Therefore, the prediction of effective gene flow, even for well-studied organisms, is difficult. The amphipod crustacean Gammarus fossarum is a key invertebrate in freshwater ecosystems and contains many cryptic species. One of these species is the broadly distributed G. fossarum clade 11 (type B). In this study, we tested for factors driving the genetic structure of G. fossarum clade 11 in a human-impacted landscape at local and regional scales. To determine population structure, we analyzed the mitochondrial cytochrome c oxidase 1 (CO1) gene of 2,086 specimens from 54 sampling sites and microsatellite loci of 420 of these specimens from ten sites. RESULTS: We detected strong overall genetic differentiation between populations at regional and local scales with both independent marker systems, often even within few kilometers. Interestingly, we observed only a weak correlation of genetic distances with geographic distances or catchment boundaries. Testing for factors explaining the observed population structure revealed, that it was mostly the colonization history, which has influenced the structure rather than any of the chosen environmental factors. Whereas the number of in-stream barriers did not explain population differentiation, the few large water reservoirs in the catchment likely act as dispersal barriers. CONCLUSIONS: We showed that populations of Gammarus fossarum clade 11 are strongly isolated even at local scales in the human-impacted region. The observed genetic structure was best explained by the effects of random genetic drift acting independently on isolated populations after historical colonization events. Genetic drift in isolated populations was probably further enhanced by anthropogenic impacts, as G. fossarum is sensitive to many anthropogenic stressors. These findings highlight the importance of small-scale genetic studies to determine barriers restricting gene flow to prevent further loss of genetic diversity and maintain intact freshwater ecosystems.


Subject(s)
Amphipoda/genetics , Amphipoda/classification , Animals , Ecosystem , Gene Flow , Genetic Drift , Genetic Variation , Microsatellite Repeats , Rivers
18.
BMC Evol Biol ; 15: 142, 2015 Jul 19.
Article in English | MEDLINE | ID: mdl-26187050

ABSTRACT

BACKGROUND: The White Spot Syndrome Virus (WSSV) is an important pathogen that infects a variety of decapod species and causes a highly contagious disease in penaeid shrimps. Mass mortalities caused by WSSV have pronounced commercial impact on shrimp aquaculture. Until now WSSV is the only known member of the virus family Nimaviridae, a group with obscure phylogenetic affinities. Its isolated position makes WSSV studies challenging due to large number of genes without homology in other viruses or cellular organisms. RESULTS: Here we report the discovery of an unusually large amount of sequences with high similarity to WSSV in a genomic library from the Jamaican bromeliad crab Metopaulias depressus. De novo assembly of these sequences allowed for the partial reconstruction of the genome of this endogenized virus with total length of 200 kbp encompassed in three scaffolds. The genome includes at least 68 putative open reading frames with homology in WSSV, most of which are intact. Among these, twelve orthologs of WSSV genes coding for non-structural proteins and nine genes known to code for the major components of the WSSV virion were discovered. Together with reanalysis of two similar cases of WSSV-like sequences in penaeid shrimp genomic libraries, our data allowed comparison of gene composition and gene order between different lineages related to WSSV. Furthermore, screening of published sequence databases revealed sequences with highest similarity to WSSV and the newly described virus in genomic libraries of at least three further decapod species. Analysis of the viral sequences detected in decapods suggests that they are less a result of contemporary WSSV infection, but rather originate from ancestral infection events. Phylogenetic analyses suggest that genes were acquired repeatedly by divergent viruses or viral strains of the Nimaviridae. CONCLUSIONS: Our results shed new light on the evolution of the Nimaviridae and point to a long association of this viral group with decapod crustaceans.


Subject(s)
Decapoda/virology , Fossils , Nimaviridae/genetics , Nimaviridae/isolation & purification , White spot syndrome virus 1/genetics , Animals , Genome, Viral , Open Reading Frames , Penaeidae/virology , Phylogeny
19.
BMC Evol Biol ; 15: 176, 2015 Aug 28.
Article in English | MEDLINE | ID: mdl-26314297

ABSTRACT

BACKGROUND: Insects rely more on chemical signals (semiochemicals) than on any other sensory modality to find, identify, and choose mates. In most insects, pheromone production is typically regulated through biosynthetic pathways, whereas pheromone sensory detection is controlled by the olfactory system. Orchid bees are exceptional in that their semiochemicals are not produced metabolically, but instead male bees collect odoriferous compounds (perfumes) from the environment and store them in specialized hind-leg pockets to subsequently expose during courtship display. Thus, the olfactory sensory system of orchid bees simultaneously controls male perfume traits (sender components) and female preferences (receiver components). This functional linkage increases the opportunities for parallel evolution of male traits and female preferences, particularly in response to genetic changes of chemosensory detection (e.g. Odorant Receptor genes). To identify whether shifts in pheromone composition among related lineages of orchid bees are associated with divergence in chemosensory genes of the olfactory periphery, we searched for patterns of divergent selection across the antennal transcriptomes of two recently diverged sibling species Euglossa dilemma and E. viridissima. RESULTS: We identified 3185 orthologous genes including 94 chemosensory loci from five different gene families (Odorant Receptors, Ionotropic Receptors, Gustatory Receptors, Odorant Binding Proteins, and Chemosensory Proteins). Our results revealed that orthologs with signatures of divergent selection between E. dilemma and E. viridissima were significantly enriched for chemosensory genes. Notably, elevated signals of divergent selection were almost exclusively observed among chemosensory receptors (i.e. Odorant Receptors). CONCLUSIONS: Our results suggest that rapid changes in the chemosensory gene family occurred among closely related species of orchid bees. These findings are consistent with the hypothesis that strong divergent selection acting on chemosensory receptor genes plays an important role in the evolution and diversification of insect pheromone systems.


Subject(s)
Bees/genetics , Insect Proteins/genetics , Receptors, Odorant/genetics , Animals , Bees/classification , Bees/physiology , Evolution, Molecular , Female , Male , Pheromones/metabolism , Phylogeny , Smell
20.
Proc Biol Sci ; 282(1816): 20151440, 2015 Oct 07.
Article in English | MEDLINE | ID: mdl-26423840

ABSTRACT

The waterflea Daphnia is a model to investigate the genetic basis of phenotypic plasticity resulting from one differentially expressed genome. Daphnia develops adaptive phenotypes (e.g. morphological defences) thwarting predators, based on chemical predator cue perception. To understand the genomic basis of phenotypic plasticity, the description of the precedent cellular and neuronal mechanisms is fundamental. However, key regulators remain unknown. All neuronal and endocrine stimulants were able to modulate but not induce defences, indicating a pathway of interlinked steps. A candidate able to link neuronal with endocrine responses is the multi-functional amine dopamine. We here tested its involvement in trait formation in Daphnia pulex and Daphnia longicephala using an induction assay composed of predator cues combined with dopaminergic and cholinergic stimulants. The mere application of both stimulants was sufficient to induce morphological defences. We determined dopamine localization in cells found in close association with the defensive trait. These cells serve as centres controlling divergent morphologies. As a mitogen and sclerotization agent, we anticipate that dopamine is involved in proliferation and structural formation of morphological defences. Furthermore, dopamine pathways appear to be interconnected with endocrine pathways, and control juvenile hormone and ecdysone levels. In conclusion, dopamine is suggested as a key regulator of phenotypic plasticity.


Subject(s)
Daphnia/physiology , Dopamine/metabolism , Food Chain , Predatory Behavior , Signal Transduction , Animals , Phenotype , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL