Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
1.
J Biol Chem ; 299(8): 104950, 2023 08.
Article in English | MEDLINE | ID: mdl-37354972

ABSTRACT

Xenopus oocytes are encompassed by a layer of follicular cells that contribute to oocyte growth and meiosis in relation to oocyte maturation. However, the effects of the interaction between follicular cells and the oocyte surface on meiotic processes are unclear. Here, we investigated Xenopus follicular cell function using oocyte signaling and heterologous-expressing capabilities. We found that oocytes deprotected from their surrounding layer of follicular cells and expressing the epidermal growth factor (EGF) receptor (EGFR) and the Grb7 adaptor undergo accelerated prophase I to metaphase II meiosis progression upon stimulation by EGF. This unusual maturation unravels atypical spindle formation but is rescued by inhibiting integrin ß1 or Grb7 binding to the EGFR. In addition, we determined that oocytes surrounded by their follicular cells expressing EGFR-Grb7 exhibit normal meiotic resumption. These oocytes are protected from abnormal meiotic spindle formation through the recruitment of O-GlcNAcylated Grb7, and OGT (O-GlcNAc transferase), the enzyme responsible for O-GlcNAcylation processes, in the integrin ß1-EGFR complex. Folliculated oocytes can be forced to adopt an abnormal phenotype and exclusive Grb7 Y338 and Y188 phosphorylation instead of O-GlcNAcylation under integrin activation. Furthermore, an O-GlcNAcylation increase (by inhibition of O-GlcNAcase), the glycosidase that removes O-GlcNAc moieties, or decrease (by inhibition of OGT) amplifies oocyte spindle defects when follicular cells are absent highlighting a control of the meiotic spindle by the OGT-O-GlcNAcase duo. In summary, our study provides further insight into the role of the follicular cell layer in oocyte meiosis progression.


Subject(s)
Epidermal Growth Factor , Integrin beta1 , Oocytes , Xenopus laevis , Animals , Acylation , Down-Regulation , Epidermal Growth Factor/metabolism , ErbB Receptors/metabolism , GRB7 Adaptor Protein/metabolism , Integrin beta1/genetics , Integrin beta1/metabolism , Meiosis , Oocytes/cytology , Oocytes/growth & development , Oocytes/metabolism , Spindle Apparatus/metabolism , Xenopus laevis/metabolism
2.
Biochem Biophys Res Commun ; 724: 150198, 2024 09 10.
Article in English | MEDLINE | ID: mdl-38852504

ABSTRACT

Autophagy is a critical catabolic pathway that enables cells to survive and adapt to stressful conditions, especially nutrient deprivation. The fusion of autophagic vacuoles with lysosomes is the final step of autophagy, which degrades the engulfed contents into metabolic precursors for re-use by the cell. O-GlcNAc transferase (OGT) plays a crucial role in regulating autophagy flux in response to nutrient stress, particularly by targeting key proteins involved in autophagosome-lysosome fusion. However, the role of OGT in basal autophagy, which occurs at a low and constitutive levels under growth conditions, remains poorly understood. Silencing or inhibition of OGT was used to compare the effect of OGT downregulation on autophagy flux in the non-cancerous CCD841CoN and cancerous HCT116 human colon cell lines under nutrient-rich conditions. We provide evidence that the reduction of OGT activity impairs the maturation of autophagosomes, thereby blocking the completion of basal autophagy in both cell lines. Additionally, OGT inhibition results in the accumulation of lysosomes and enlarged late endosomes in the perinuclear region, as demonstrated by confocal imaging. This is associated with a defect in the localization of the small GTPase Rab7 to these organelles. The regulation of transport and fusion events between the endosomal and lysosomal compartments is crucial for maintaining the autophagic flux. These findings suggest an interplay between OGT and the homeostasis of the endolysosomal network in human cells.


Subject(s)
Autophagy , Down-Regulation , Endosomes , Lysosomes , N-Acetylglucosaminyltransferases , Nutrients , rab7 GTP-Binding Proteins , Humans , N-Acetylglucosaminyltransferases/metabolism , N-Acetylglucosaminyltransferases/genetics , Endosomes/metabolism , Lysosomes/metabolism , Nutrients/metabolism , rab GTP-Binding Proteins/metabolism , rab GTP-Binding Proteins/genetics , Colon/metabolism , Colon/pathology , HCT116 Cells , Autophagosomes/metabolism
3.
Cell Mol Life Sci ; 78(13): 5397-5413, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34046694

ABSTRACT

Fatty acid synthase (FASN) participates in many fundamental biological processes, including energy storage and signal transduction, and is overexpressed in many cancer cells. We previously showed in a context of lipogenesis that FASN is protected from degradation by its interaction with O-GlcNAc transferase (OGT) in a nutrient-dependent manner. We and others also reported that OGT and O-GlcNAcylation up-regulate the PI3K/AKT/mTOR pathway that senses mitogenic signals and nutrient availability to drive cell cycle. Using biochemical and microscopy approaches, we show here that FASN co-localizes with OGT in the cytoplasm and, to a lesser extent, in the membrane fraction. This interaction occurs in a cell cycle-dependent manner, following the pattern of FASN expression. Moreover, we show that FASN expression depends on OGT upon serum stimulation. The level of FASN also correlates with the activation of the PI3K/AKT/mTOR pathway in hepatic cell lines, and in livers of obese mice and in a chronically activated insulin and mTOR signaling mouse model (PTEN-null mice). These results indicate that FASN is under a dual control of O-GlcNAcylation and mTOR pathways. In turn, blocking FASN with the small-molecule inhibitor C75 reduces both OGT and O-GlcNAcylation levels, and mTOR activation, highlighting a novel reciprocal regulation between these actors. In addition to the role of O-GlcNAcylation in tumorigenesis, our findings shed new light on how aberrant activity of FASN and mTOR signaling may promote the emergence of hepatic tumors.


Subject(s)
Biomarkers, Tumor/metabolism , Carcinoma, Hepatocellular/pathology , Fatty Acid Synthase, Type I/metabolism , Liver Neoplasms/pathology , N-Acetylglucosaminyltransferases/metabolism , Animals , Apoptosis , Biomarkers, Tumor/genetics , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Cell Proliferation , Fatty Acid Synthase, Type I/genetics , Gene Expression Regulation, Neoplastic , Humans , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Obese , N-Acetylglucosaminyltransferases/genetics , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
4.
Proc Natl Acad Sci U S A ; 115(47): E11033-E11042, 2018 11 20.
Article in English | MEDLINE | ID: mdl-30397120

ABSTRACT

The nuclear receptor REV-ERBα integrates the circadian clock with hepatic glucose and lipid metabolism by nucleating transcriptional comodulators at genomic regulatory regions. An interactomic approach identified O-GlcNAc transferase (OGT) as a REV-ERBα-interacting protein. By shielding cytoplasmic OGT from proteasomal degradation and favoring OGT activity in the nucleus, REV-ERBα cyclically increased O-GlcNAcylation of multiple cytoplasmic and nuclear proteins as a function of its rhythmically regulated expression, while REV-ERBα ligands mostly affected cytoplasmic OGT activity. We illustrate this finding by showing that REV-ERBα controls OGT-dependent activities of the cytoplasmic protein kinase AKT, an essential relay in insulin signaling, and of ten-of-eleven translocation (TET) enzymes in the nucleus. AKT phosphorylation was inversely correlated to REV-ERBα expression. REV-ERBα enhanced TET activity and DNA hydroxymethylated cytosine (5hmC) levels in the vicinity of REV-ERBα genomic binding sites. As an example, we show that the REV-ERBα/OGT complex modulates SREBP-1c gene expression throughout the fasting/feeding periods by first repressing AKT phosphorylation and by epigenomically priming the Srebf1 promoter for a further rapid response to insulin. Conclusion: REV-ERBα regulates cytoplasmic and nuclear OGT-controlled processes that integrate at the hepatic SREBF1 locus to control basal and insulin-induced expression of the temporally and nutritionally regulated lipogenic SREBP-1c transcript.


Subject(s)
Insulin/metabolism , N-Acetylglucosaminyltransferases/metabolism , Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism , Sterol Regulatory Element Binding Protein 1/biosynthesis , Animals , Cell Line, Tumor , Circadian Clocks/physiology , Gene Expression Regulation/genetics , Glucose/metabolism , HEK293 Cells , Hep G2 Cells , Humans , Lipid Metabolism/physiology , Liver/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , N-Acetylglucosaminyltransferases/genetics , Nuclear Receptor Subfamily 1, Group D, Member 1/genetics , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Sterol Regulatory Element Binding Protein 1/genetics
5.
Glycoconj J ; 37(4): 499-509, 2020 08.
Article in English | MEDLINE | ID: mdl-32367480

ABSTRACT

The surface of the spermatozoa is coated with glycoproteins the redistribution of which during in vitro capacitation plays a key role in the subsequent fertilization process. Lipid rafts are membrane microdomains involved in signal transduction through receptors and include or recruit specific types of proteins and glycoproteins. Few studies have focused on identifying glycoproteins resident in the lipid rafts of spermatozoa. Proteins associated with lipid rafts modify their localization during capacitation. The objective of the study was to identify the glycoproteins associated with lipid rafts of capacitated boar spermatozoa through a lectin-binding assay coupled to mass spectrometry approach. From the proteomic profiles generated by the raft proteins extractions, we observed that after capacitation the intensity of some bands increased while that of others decreased. To determine whether the proteins obtained from lipid rafts are glycosylated, lectin blot assays were performed. Protein bands with a good resolution and showing significant glycosylation modifications after capacitation were analyzed by mass spectrometry. The bands of interest had an apparent molecular weight of 64, 45, 36, 34, 24, 18 and 15 kDa. We sequenced the 7 bands and 20 known or potential glycoproteins were identified. According to us, for ten of them this is the first time that their association with sperm lipid rafts is described (ADAM5, SPMI, SPACA1, Seminal plasma protein pB1, PSP-I, MFGE8, tACE, PGK2, SUCLA2, MDH1). Moreover, LYDP4, SPAM-1, HSP60, ZPBP1, AK1 were previously reported in lipid rafts of mouse and human spermatozoa but not in boar spermatozoa. We also found and confirmed the presence of ACR, ACRBP, AWN, AQN3 and PRDX5 in lipid rafts of boar spermatozoa. This paper provides an overview of the glycosylation pattern in lipid rafts of boar spermatozoa before and after capacitation. Further glycomic analysis is needed to determine the type and the variation of glycan chains of the lipid rafts glycoproteins on the surface of spermatozoa during capacitation and acrosome reaction.


Subject(s)
Glycoproteins/metabolism , Membrane Microdomains/chemistry , Spermatozoa/chemistry , Animals , Chemical Fractionation , Glycoproteins/analysis , Glycoproteins/isolation & purification , Lectins/metabolism , Male , Mass Spectrometry , Membrane Microdomains/metabolism , Sperm Capacitation/physiology , Spermatozoa/metabolism , Swine
6.
Molecules ; 25(19)2020 Oct 01.
Article in English | MEDLINE | ID: mdl-33019562

ABSTRACT

Monitoring glycosylation changes within cells upon response to stimuli remains challenging because of the complexity of this large family of post-translational modifications (PTMs). We developed an original tool, enabling labeling and visualization of the cell cycle key-regulator ß-catenin in its O-GlcNAcylated form, based on intramolecular Förster resonance energy transfer (FRET) technology in cells. We opted for a bioorthogonal chemical reporter strategy based on the dual-labeling of ß-catenin with a green fluorescent protein (GFP) for protein sequence combined with a chemically-clicked imaging probe for PTM, resulting in a fast and easy to monitor qualitative FRET assay. We validated this technology by imaging the O-GlcNAcylation status of ß-catenin in HeLa cells. The changes in O-GlcNAcylation of ß-catenin were varied by perturbing global cellular O-GlcNAc levels with the inhibitors of O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). Finally, we provided a flowchart demonstrating how this technology is transposable to any kind of glycosylation.


Subject(s)
Acetylglucosamine/metabolism , Metabolic Engineering , Optical Imaging , beta Catenin/metabolism , Fluorescence , Fluorescence Resonance Energy Transfer , Glycosylation , Green Fluorescent Proteins/metabolism , HeLa Cells , Humans , Oligosaccharides/chemistry , Oligosaccharides/metabolism , Recombinant Fusion Proteins/metabolism
7.
Proteomics ; 19(21-22): e1800452, 2019 11.
Article in English | MEDLINE | ID: mdl-31373757

ABSTRACT

Colorectal cancer (CRC) affects both women and men living in societies with a high sedentary lifestyle. Amongst the phenotypic changes exhibited by tumor cells, a wide range of glycosylation has been reported for colon cancer-derived cell lines and CRC tissues. These aberrant modifications affect different aspects of glycosylation, including an increase in core fucosylation and GlcNAc branching on N-glycans, alteration of O-glycans, upregulated sialylation, and O-GlcNAcylation. Although O-GlcNAcylation and complex glycosylations differ in many aspects, sparse evidences report on the interference of O-GlcNAcylation with complex glycosylation. Nevertheless, this relationship is still a matter of debate. Combining different approaches on three human colon cell lines (HT29, HCT116 and CCD841CoN), it is herein reported that silencing O-GlcNAc transferase (OGT, the sole enzyme driving O-GlcNAcylation), only slightly affects overall N- and O-glycosylation patterns. Interestingly, silencing of OGT in HT29 cells upregulates E-cadherin (a major actor of epithelial-to-mesenchymal transition) and changes its glycosylation. On the other hand, OGT silencing perturbs biosynthesis of glycosphingolipids resulting in a decrease in gangliosides and an increase in globosides. Together, these results provide novel insights regarding the selective regulation of complex glycosylations by O-GlcNAcylation in colon cancer cells.


Subject(s)
Cadherins/genetics , Colorectal Neoplasms/genetics , N-Acetylglucosaminyltransferases/genetics , Colorectal Neoplasms/pathology , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic/genetics , Gene Silencing , Glycosphingolipids/biosynthesis , Glycosphingolipids/genetics , Glycosylation , HCT116 Cells , HT29 Cells , Humans , Polysaccharides/genetics
8.
Cell Mol Life Sci ; 75(23): 4321-4339, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30069701

ABSTRACT

O-GlcNAcylation of proteins is governed by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). The homeostasis of O-GlcNAc cycling is regulated during cell cycle progression and is essential for proper cellular division. We previously reported the O-GlcNAcylation of the minichromosome maintenance proteins MCM2, MCM3, MCM6 and MCM7. These proteins belong to the MCM2-7 complex which is crucial for the initiation of DNA replication through its DNA helicase activity. Here we show that the six subunits of MCM2-7 are O-GlcNAcylated and that O-GlcNAcylation of MCM proteins mainly occurs in the chromatin-bound fraction of synchronized human cells. Moreover, we identify stable interaction between OGT and several MCM subunits. We also show that down-regulation of OGT decreases the chromatin binding of MCM2, MCM6 and MCM7 without affecting their steady-state level. Finally, OGT silencing or OGA inhibition destabilizes MCM2/6 and MCM4/7 interactions in the chromatin-enriched fraction. In conclusion, OGT is a new partner of the MCM2-7 complex and O-GlcNAcylation homeostasis might regulate MCM2-7 complex by regulating the chromatin loading of MCM6 and MCM7 and stabilizing MCM/MCM interactions.


Subject(s)
Chromatin/genetics , Gene Silencing , Minichromosome Maintenance Proteins/genetics , N-Acetylglucosaminyltransferases/genetics , Blotting, Western , Cell Line, Tumor , Chromatin/metabolism , Glycosylation , HEK293 Cells , Humans , MCF-7 Cells , Minichromosome Maintenance Proteins/metabolism , N-Acetylglucosaminyltransferases/metabolism , Protein Binding , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Subunits/genetics , Protein Subunits/metabolism , beta-N-Acetylhexosaminidases/genetics , beta-N-Acetylhexosaminidases/metabolism
9.
J Bioenerg Biomembr ; 50(3): 213-222, 2018 06.
Article in English | MEDLINE | ID: mdl-29524020

ABSTRACT

The hexosamine biosynthetic pathway (HBP) integrates glucose, amino acids, fatty acids and nucleotides metabolisms for uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) synthesis. UDP-GlcNAc is the nucleotide sugar donor for O-linked ß-N-acetylglucosaminylation (O-GlcNAcylation) processes. O-GlcNAc transferase (OGT) is the enzyme which transfers the N-acetylglucosamine (O-GlcNAc) residue onto target proteins. Several studies previously showed that glucose metabolism dysregulations associated with obesity, diabetes or cancer correlated with an increase of OGT expression and global O-GlcNAcylation levels. Moreover, these diseases present an increased activation of the nutrient sensing mammalian target of rapamycin (mTOR) pathway. Other works demonstrate that mTOR regulates protein O-GlcNAcylation in cancer cells through stabilization of OGT. In this context, we studied the cross-talk between these two metabolic sensors in vivo in obese mice predisposed to diabetes and in vitro in normal and colon cancer cells. We report that levels of OGT and O-GlcNAcylation are increased in obese mice colon tissues and colon cancer cells and are associated with a higher activation of mTOR signaling. In parallel, treatments with mTOR regulators modulate OGT and O-GlcNAcylation levels in both normal and colon cancer cells. However, deregulation of O-GlcNAcylation affects mTOR signaling activation only in cancer cells. Thus, a crosstalk exists between O-GlcNAcylation and mTOR signaling in contexts of metabolism dysregulation associated to obesity or cancer.


Subject(s)
Acetylglucosamine/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Animals , Colonic Neoplasms/metabolism , Glycosylation , Mice , Mice, Obese , N-Acetylglucosaminyltransferases/metabolism , Obesity/metabolism , Receptor Cross-Talk
10.
Molecules ; 23(11)2018 Nov 02.
Article in English | MEDLINE | ID: mdl-30400201

ABSTRACT

Unlike complex glycosylations, O-GlcNAcylation consists of the addition of a single N-acetylglucosamine unit to serine and threonine residues of target proteins, and is confined within the nucleocytoplasmic and mitochondrial compartments. Nevertheless, a number of clues tend to show that O-GlcNAcylation is a pivotal regulatory element of its complex counterparts. In this perspective, we gather the evidence reported to date regarding this connection. We propose different levels of regulation that encompass the competition for the nucleotide sugar UDP-GlcNAc, and that control the wide class of glycosylation enzymes via their expression, catalytic activity, and trafficking. We sought to better envision that nutrient fluxes control the elaboration of glycans, not only at the level of their structure composition, but also through sweet regulating actors.


Subject(s)
Glycosylation , Proteins/metabolism , Acetylglucosamine/metabolism , Animals , Gene Expression Regulation , Humans , Protein Processing, Post-Translational , Proteins/genetics , Proteolysis , Signal Transduction , Sugars/metabolism
11.
Glycobiology ; 27(2): 123-128, 2017 01.
Article in English | MEDLINE | ID: mdl-27798069

ABSTRACT

Glycosylation is a group of post-translational modifications that displays a large variety of structures and are implicated in a plethora of biological processes. Therefore, studying glycosylation requires different technical approaches and reliable tools, lectins being part of them. Here, we describe the use of the recombinant mushroom lectin PVL to discriminate O-GlcNAcylation, a modification consisting in the attachment of a single N-acetylglucosamine residue to proteins confined within the cytosolic, nuclear and mitochondrial compartments. Recombinant PVL (Psathyrella velutina lectin) (rPVL) displays significantly stronger affinity for GlcNAc over Neu5Ac residues as verified by thermal shift assays and surface plasmon resonance experiments, being therefore an excellent alternative to WGA (wheat germ agglutinin). Labeling of rPVL with biotin or HRP (horseradish peroxidase) allows its useful and efficient utilization by western blot. The staining of whole cell lysates with  labeled-rPVL was dramatically decreased in response to O-GlcNAc transferase knockdown and seen to increase after pharmacological blockade of O-GlcNAcase. Also, HRP-rPVL seemed to be more sensitive than the anti-O-GlcNAc antibody RL2. Thus, rPVL is a potent new tool to selectively detect O-GlcNAcylated proteins.


Subject(s)
Lectins/genetics , N-Acetylglucosaminyltransferases/genetics , beta-N-Acetylhexosaminidases/genetics , Acetylglucosamine/chemistry , Acetylglucosamine/genetics , Agaricales/chemistry , Agaricales/genetics , Gene Knockdown Techniques , Glycosylation , Humans , Lectins/chemistry , Protein Processing, Post-Translational/genetics , beta-N-Acetylhexosaminidases/chemistry
12.
Biochem Soc Trans ; 45(2): 323-338, 2017 04 15.
Article in English | MEDLINE | ID: mdl-28408473

ABSTRACT

Post-translational modifications of histones and the dynamic DNA methylation cycle are finely regulated by a myriad of chromatin-binding factors and chromatin-modifying enzymes. Epigenetic modifications ensure local changes in the architecture of chromatin, thus controlling in fine the accessibility of the machinery of transcription, replication or DNA repair to the chromatin. Over the past decade, the nutrient-sensor enzyme O-GlcNAc transferase (OGT) has emerged as a modulator of chromatin remodeling. In mammals, OGT acts either directly through dynamic and reversible O-GlcNAcylation of histones and chromatin effectors, or in an indirect manner through its recruitment into chromatin-bound multiprotein complexes. In particular, there is an increasing amount of evidence of a cross-talk between OGT and the DNA dioxygenase ten-eleven translocation proteins that catalyze active DNA demethylation. Conversely, the stability of OGT itself can be controlled by the histone lysine-specific demethylase 2 (LSD2). Finally, a few studies have explored the role of O-GlcNAcase (OGA) in chromatin remodeling. In this review, we summarize the recent findings on the link between OGT, OGA and chromatin regulators in mammalian cellular models, and discuss their relevance in physiological and pathological conditions.


Subject(s)
Chromatin Assembly and Disassembly , Mammals/metabolism , N-Acetylglucosaminyltransferases/metabolism , beta-N-Acetylhexosaminidases/metabolism , Acylation , Animals , DNA Methylation , Epigenesis, Genetic , Gene Expression Regulation , Histones/metabolism , Humans , Mammals/genetics , Protein Processing, Post-Translational
13.
Biochem Soc Trans ; 45(2): 365-370, 2017 04 15.
Article in English | MEDLINE | ID: mdl-28408476

ABSTRACT

O-GlcNAcylation is a highly dynamic post-translational modification whose level depends on nutrient status. Only two enzymes regulate O-GlcNAcylation cycling, the glycosyltransferase OGT (O-GlcNAc transferase) and the glycoside hydrolase OGA (O-GlcNAcase), that add and remove the GlcNAc moiety to and from acceptor proteins, respectively. During the last 30 years, OGT has emerged as a master regulator of cell life with O-GlcNAcylation being found in viruses, bacteria, insects, protists and metazoans. The study of OGT in different biological systems opens new perspectives for understanding this enzyme in many kingdoms of life. In this review, we summarize recent and older findings regarding the distribution of OGT in living organisms.


Subject(s)
Acetylglucosamine/metabolism , N-Acetylglucosaminyltransferases/metabolism , beta-N-Acetylhexosaminidases/metabolism , Acylation , Animals , Humans , Protein Processing, Post-Translational
14.
Malar J ; 16(1): 485, 2017 11 29.
Article in English | MEDLINE | ID: mdl-29187233

ABSTRACT

BACKGROUND: Post-translational modifications (PTMs) constitute a huge group of chemical modifications increasing the complexity of the proteomes of living beings. PTMs have been discussed as potential anti-malarial drug targets due to their involvement in many cell processes. O-GlcNAcylation is a widespread PTM found in different organisms including Plasmodium falciparum. The aim of this study was to identify O-GlcNAcylated proteins of P. falciparum, to learn more about the modification process and to understand its eventual functions in the Apicomplexans. METHODS: The P. falciparum strain 3D7 was amplified in erythrocytes and purified. The proteome was checked for O-GlcNAcylation using different methods. The level of UDP-GlcNAc, the donor of the sugar moiety for O-GlcNAcylation processes, was measured using high-pH anion exchange chromatography. O-GlcNAcylated proteins were enriched and purified utilizing either click chemistry labelling or adsorption on succinyl-wheat germ agglutinin beads. Proteins were then identified by mass-spectrometry (nano-LC MS/MS). RESULTS: While low when compared to MRC5 control cells, P. falciparum disposes of its own pool of UDP-GlcNAc. By using proteomics methods, 13 O-GlcNAcylated proteins were unambiguously identified (11 by click-chemistry and 6 by sWGA-beads enrichment; 4 being identified by the 2 approaches) in late trophozoites. These proteins are all part of pathways, functions and structures important for the parasite survival. By probing clicked-proteins with specific antibodies, Hsp70 and α-tubulin were identified as P. falciparum O-GlcNAc-bearing proteins. CONCLUSIONS: This study is the first report on the identity of P. falciparum O-GlcNAcylated proteins. While the parasite O-GlcNAcome seems close to those of other species, the structural differences exhibited by the proteomes provides a glimpse of innovative therapeutic paths to fight malaria. Blocking biosynthesis of UDP-GlcNAc in the parasites is another promising option to reduce Plasmodium life cycle.


Subject(s)
Acetylglucosamine/metabolism , Plasmodium falciparum/metabolism , Protein Processing, Post-Translational , Proteome , Protozoan Proteins/metabolism , Acetylglucosamine/chemistry , Glycosylation , Plasmodium falciparum/chemistry , Plasmodium falciparum/genetics , Protozoan Proteins/chemistry , Protozoan Proteins/genetics
15.
Biochem Biophys Res Commun ; 478(2): 942-8, 2016 09 16.
Article in English | MEDLINE | ID: mdl-27520373

ABSTRACT

Blood glucose fluctuates with the fasting-feeding cycle. One of the liver's functions is to maintain blood glucose concentrations within a physiological range. Glucokinase (GCK) or hexokinase IV, is the main enzyme that regulates the flux and the use of glucose in the liver leading to a compensation of hyperglycemia. In hepatocytes, GCK catalyzes the phosphorylation of glucose into glucose-6-phosphate. This critical enzymatic reaction is determinant for the metabolism of glucose in the liver which includes glycogen synthesis, glycolysis, lipogenesis and gluconeogenesis. In liver, simultaneous increase of glucose and insulin enhances GCK activity and gene expression, changes its subcellular location and interaction with regulatory proteins. The post-translational O-linked ß-N-acetylglucosaminylation (O-GlcNAcylation) acts as a glucose-sensitive modification and is believed to take part in hepatic glucose sensing by modifying key regulatory proteins. Therefore, we aimed to determine whether GCK is modified by O-GlcNAcylation in the liver of mice and investigated the role that this modification plays in regulating GCK protein expression. We demonstrated that endogenous GCK expression correlated with O-GlcNAc levels in the pathophysiological model ob/ob mice. More specifically, in response to the pharmacological inhibition of O-GlcNAcase (OGA) contents of GCK increased. Using the GlcNAc specific lectin succinylated-WGA and click chemistry labeling approaches, we demonstrated that GCK is modified by O-GlcNAcylation. Further, we demonstrated that siRNA-mediated Ogt knock-down not only decreases O-GlcNAc content but also GCK protein level. Altogether, our in vivo and in vitro results demonstrate that GCK expression is regulated by nutrient-sensing O-GlcNAc cycling in liver.


Subject(s)
Acetylglucosamine/metabolism , Glucokinase/metabolism , Glucose/pharmacology , Animals , Enzyme Stability , Fasting , Glycosylation/drug effects , Hep G2 Cells , Humans , Liver/enzymology , Male , Mice, Inbred C57BL , Mice, Obese , Models, Biological , N-Acetylglucosaminyltransferases/metabolism , beta-N-Acetylhexosaminidases/metabolism
16.
Pharmacol Res ; 105: 186-97, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26816085

ABSTRACT

Intracellular accumulation of hyperphosphorylated tau protein is linked to neuronal degeneration in Alzheimer's disease (AD). Mounting evidence suggests that tau phosphorylation and O-N-acetylglucosamine glycosylation (O-GlcNAcylation) are mutually exclusive post-translational modifications. O-GlcNAcylation depends on 3-5% of intracellular glucose that enters the hexosamine biosynthetic pathway. To our knowledge, the existence of an imbalance between tau phosphorylation and O-GlcNAcylation has not been reported in animal models of AD, as yet. Here, we used triple transgenic (3xTg-AD) mice at 12 months, an age at which hyperphosphorylated tau is already detected and associated with cognitive decline. In these mice, we showed that tau was hyperphosphorylated on both Ser396 and Thr205 in the hippocampus, and to a lower extent and exclusively on Thr205 in the frontal cortex. Tau O-GlcNAcylation, assessed in tau immunoprecipitates, was substantially reduced in the hippocampus of 3xTg-AD mice, with no changes in the frontal cortex or in the cerebellum. No changes in the expression of the three major enzymes involved in O-GlcNAcylation, i.e., glutamine fructose-6-phosphate amidotransferase, O-linked ß-N-acetylglucosamine transferase, and O-GlcNAc hydrolase were found in the hippocampus of 3xTg-AD mice. These data demonstrate that an imbalance between tau phosphorylation and O-GlcNAcylation exists in AD mice, and strengthens the hypothesis that O-GlcNAcylation might be targeted by disease modifying drugs in AD.


Subject(s)
Acetylglucosamine/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Hippocampus/metabolism , Hippocampus/pathology , tau Proteins/metabolism , Acylation , Animals , Brain/metabolism , Brain/pathology , Disease Models, Animal , Glycosylation , Humans , Male , Mice , Mice, Transgenic , Phosphorylation
17.
Proteomics ; 15(5-6): 1039-50, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25429863

ABSTRACT

O-GlcNAcylation (O-linked beta-N-acetylglucosaminylation) is a widespread PTM confined within the nuclear, the cytosolic, and the mitochondrial compartments of eukaryotes. Recently, O-GlcNAcylation has been also detected in the close vicinity of plasma membranes particularly in lipid microdomains. The detection of this PTM can be easily done if appropriate controls and precautions are taken using a wide variety of tools including lectins, antibodies, or click-chemistry-based methods. In contrast, the identification of the proteins bearing O-GlcNAc moieties and the localization of the precise sites of O-GlcNAcylation remain challenging. This is due to the lability of the glycosidic bond between hydroxyl group of serine or threonine and N-acetylglucosamine using conventional fragmentation techniques such as CID. To tentatively overcome this technical limitation, electron-capture dissociation, or electron-transfer dissociation MS/MS are now used. Thanks to these breakthroughs, a large number of O-GlcNAc sites have been identified to date but these methodologies remain far from being used in routine.


Subject(s)
Acetylglucosamine , Glycoproteins , Proteomics/methods , Acetylglucosamine/chemistry , Acetylglucosamine/metabolism , Animals , Cell Line , Glycoproteins/analysis , Glycoproteins/chemistry , Glycoproteins/metabolism , Glycosylation , Humans , Mice , Protein Processing, Post-Translational , Rats , Tandem Mass Spectrometry/methods
18.
Biochem Biophys Res Commun ; 462(2): 151-8, 2015 Jun 26.
Article in English | MEDLINE | ID: mdl-25944660

ABSTRACT

O-GlcNAcylation is a reversible post-translational modification that regulates cytosolic and nuclear proteins. We and others previously demonstrated that FoxO1 is O-GlcNAcylated in different cell types, resulting in an increase in its transcriptional activity. Four O-GlcNAcylation sites were identified in human FOXO1 but directed mutagenesis of each site individually had modest (T317) or no effect (S550, T648, S654) on its O-GlcNAcylation status and transcriptional activity. Moreover, the consequences of mutating all four sites had not been investigated. In the present work, we mutated these sites in the mouse Foxo1 and found that mutation of all four sites did not decrease Foxo1 O-GlcNAcylation status and transcriptional activity, and would even tend to increase them. In an attempt to identify other O-GlcNAcylation sites, we immunoprecipitated wild-type O-GlcNAcylated Foxo1 and analysed the tryptic digest peptides by mass spectrometry using High-energy Collisional Dissociation. We identified T646 as a new O-GlcNAcylation site on Foxo1. However, site directed mutagenesis of this site individually or together with all four previously identified residues did not impair Foxo1 O-GlcNAcylation and transcriptional activity. These results suggest that residues important for the control of Foxo1 activity by O-GlcNAcylation still remain to be identified.


Subject(s)
Forkhead Transcription Factors/chemistry , Acetylglucosamine/metabolism , Amino Acid Sequence , Animals , Binding Sites/genetics , Forkhead Box Protein O1 , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Glycosylation , HEK293 Cells , Humans , Mice , Molecular Sequence Data , Mutagenesis, Site-Directed , Protein Processing, Post-Translational , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Sequence Homology, Amino Acid , Tandem Mass Spectrometry
19.
Hepatology ; 59(5): 2022-33, 2014 May.
Article in English | MEDLINE | ID: mdl-24037988

ABSTRACT

UNLABELLED: Bile acid metabolism is intimately linked to the control of energy homeostasis and glucose and lipid metabolism. The nuclear receptor farnesoid X receptor (FXR) plays a major role in the enterohepatic cycling of bile acids, but the impact of nutrients on bile acid homeostasis is poorly characterized. Metabolically active hepatocytes cope with increases in intracellular glucose concentrations by directing glucose into storage (glycogen) or oxidation (glycolysis) pathways, as well as to the pentose phosphate shunt and the hexosamine biosynthetic pathway. Here we studied whether the glucose nonoxidative hexosamine biosynthetic pathway modulates FXR activity. Our results show that FXR interacts with and is O-GlcNAcylated by O-GlcNAc transferase in its N-terminal AF1 domain. Increased FXR O-GlcNAcylation enhances FXR gene expression and protein stability in a cell type-specific manner. High glucose concentrations increased FXR O-GlcNAcylation, hence its protein stability and transcriptional activity by inactivating corepressor complexes, which associate in a ligand-dependent manner with FXR, and increased FXR binding to chromatin. Finally, in vivo fasting-refeeding experiments show that FXR undergoes O-GlcNAcylation in fed conditions associated with increased direct FXR target gene expression and decreased liver bile acid content. CONCLUSION: FXR activity is regulated by glucose fluxes in hepatocytes through a direct posttranslational modification catalyzed by the glucose-sensing hexosamine biosynthetic pathway.


Subject(s)
Bile Acids and Salts/metabolism , Glucose/metabolism , N-Acetylglucosaminyltransferases/physiology , Receptors, Cytoplasmic and Nuclear/physiology , Acylation , Animals , Gene Expression Regulation , Hep G2 Cells , Hepatocytes/metabolism , Hexosamines/biosynthesis , Humans , Male , Mice , Mice, Inbred C57BL , Pentose Phosphate Pathway , Receptors, Cytoplasmic and Nuclear/genetics , Signal Transduction
20.
FASEB J ; 28(8): 3325-38, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24744147

ABSTRACT

Dysfunctions in Wnt signaling increase ß-catenin stability and are associated with cancers, including colorectal cancer. In addition, ß-catenin degradation is decreased by nutrient-dependent O-GlcNAcylation. Human colon tumors and colons from mice fed high-carbohydrate diets exhibited higher amounts of ß-catenin and O-GlcNAc relative to healthy tissues and mice fed a standard diet, respectively. Administration of the O-GlcNAcase inhibitor thiamet G to mice also increased colonic expression of ß-catenin. By ETD-MS/MS, we identified 4 O-GlcNAcylation sites at the N terminus of ß-catenin (S23/T40/T41/T112). Furthermore, mutation of serine and threonine residues within the D box of ß-catenin reduced O-GlcNAcylation by 75%. Interestingly, elevating O-GlcNAcylation in human colon cell lines drastically reduced phosphorylation at T41, a key residue of the D box responsible for ß-catenin stability. Analyses of ß-catenin O-GlcNAcylation mutants reinforced T41 as the most crucial residue that controls the ß-catenin degradation rate. Finally, inhibiting O-GlcNAcylation decreased the ß-catenin/α-catenin interaction necessary for mucosa integrity, whereas O-GlcNAcase silencing improved this interaction. These results suggest that O-GlcNAcylation regulates not only the stability of ß-catenin, but also affects its localization at the level of adherens junctions. Accordingly, we propose that O-GlcNAcylation of ß-catenin is a missing link between the glucose metabolism deregulation observed in metabolic disorders and the development of cancer.


Subject(s)
Acetylglucosamine/metabolism , Protein Processing, Post-Translational , Threonine/chemistry , beta Catenin/chemistry , Adenocarcinoma/etiology , Adenocarcinoma/metabolism , Adherens Junctions/metabolism , Adherens Junctions/pathology , Amino Acid Sequence , Animals , Colon/metabolism , Colorectal Neoplasms/etiology , Colorectal Neoplasms/metabolism , Dietary Carbohydrates/metabolism , Dietary Carbohydrates/toxicity , Enzyme Inhibitors/pharmacology , Glucose/metabolism , Glycosylation , HEK293 Cells , Humans , Hyperglycemia/complications , Hyperglycemia/metabolism , Intestinal Mucosa/metabolism , MCF-7 Cells , Male , Mice , Mice, Inbred C57BL , Molecular Sequence Data , N-Acetylglucosaminyltransferases/antagonists & inhibitors , N-Acetylglucosaminyltransferases/physiology , Neoplasm Proteins/chemistry , Neoplasm Proteins/metabolism , Phosphorylation , Protein Interaction Mapping , Protein Stability , Proteolysis , RNA, Small Interfering/pharmacology , Wnt Signaling Pathway , alpha Catenin/metabolism , beta Catenin/metabolism , beta-N-Acetylhexosaminidases/antagonists & inhibitors , beta-N-Acetylhexosaminidases/physiology
SELECTION OF CITATIONS
SEARCH DETAIL