Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters

Publication year range
1.
Mol Psychiatry ; 28(3): 1248-1255, 2023 03.
Article in English | MEDLINE | ID: mdl-36476732

ABSTRACT

Attention-deficit/hyperactivity disorder (ADHD) persists in older age and is postulated as a risk factor for cognitive impairment and Alzheimer's Disease (AD). However, these findings rely primarily on electronic health records and can present biased estimates of disease prevalence. An obstacle to investigating age-related cognitive decline in ADHD is the absence of large-scale studies following patients with ADHD into older age. Alternatively, this study aimed to determine whether genetic liability for ADHD, as measured by a well-validated ADHD polygenic risk score (ADHD-PRS), is associated with cognitive decline and the development of AD pathophysiology in cognitively unimpaired (CU) older adults. We calculated a weighted ADHD-PRS in 212 CU individuals without a clinical diagnosis of ADHD (55-90 years). These individuals had baseline amyloid-ß (Aß) positron emission tomography, longitudinal cerebrospinal fluid (CSF) phosphorylated tau at threonine 181 (p-tau181), magnetic resonance imaging, and cognitive assessments for up to 6 years. Linear mixed-effects models were used to test the association of ADHD-PRS with cognition and AD biomarkers. Higher ADHD-PRS was associated with greater cognitive decline over 6 years. The combined effect between high ADHD-PRS and brain Aß deposition on cognitive deterioration was more significant than each individually. Additionally, higher ADHD-PRS was associated with increased CSF p-tau181 levels and frontoparietal atrophy in CU Aß-positive individuals. Our results suggest that genetic liability for ADHD is associated with cognitive deterioration and the development of AD pathophysiology. Findings were mostly observed in Aß-positive individuals, suggesting that the genetic liability for ADHD increases susceptibility to the harmful effects of Aß pathology.


Subject(s)
Alzheimer Disease , Attention Deficit Disorder with Hyperactivity , Cognitive Dysfunction , Humans , Aged , Alzheimer Disease/genetics , Amyloid beta-Peptides , Positron-Emission Tomography/methods , Risk Factors , tau Proteins , Biomarkers/cerebrospinal fluid
2.
Mol Psychiatry ; 27(11): 4781-4789, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35948658

ABSTRACT

Astrocytes can adopt multiple molecular phenotypes in the brain of Alzheimer's disease (AD) patients. Here, we studied the associations of cerebrospinal fluid (CSF) glial fibrillary acidic protein (GFAP) and chitinase-3-like protein 1 (YKL-40) levels with brain amyloid-ß (Aß) and tau pathologies. We assessed 121 individuals across the aging and AD clinical spectrum with positron emission tomography (PET) brain imaging for Aß ([18F]AZD4694) and tau ([18F]MK-6240), as well as CSF GFAP and YKL-40 measures. We observed that higher CSF GFAP levels were associated with elevated Aß-PET but not tau-PET load. By contrast, higher CSF YKL-40 levels were associated with elevated tau-PET but not Aß-PET burden. Structural equation modeling revealed that CSF GFAP and YKL-40 mediate the effects of Aß and tau, respectively, on hippocampal atrophy, which was further associated with cognitive impairment. Our results suggest the existence of distinct astrocyte biomarker signatures in response to brain Aß and tau accumulation, which may contribute to our understanding of the complex link between reactive astrogliosis heterogeneity and AD progression.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Biomarkers/cerebrospinal fluid , Cognitive Dysfunction/pathology , Positron-Emission Tomography/methods , tau Proteins/cerebrospinal fluid
3.
J Child Psychol Psychiatry ; 64(1): 167-174, 2023 01.
Article in English | MEDLINE | ID: mdl-35959538

ABSTRACT

BACKGROUND: Very few predictive models in Psychiatry had their performance validated in independent external samples. A previously developed multivariable demographic model for attention-deficit/hyperactivity disorder (ADHD) accurately predicted young adulthood ADHD using clinical and demographical information collected in childhood in three samples from developed countries, but failed to replicate its performance in a sample from a developing country. Furthermore, consolidated risk factors for ADHD were not included among its predictors. METHODS: Participants were 1905 children and adolescents from a community-based sample and followed from ages 6 to 14 years at baseline to ages 14 to 23 years (mean age 18) at follow-up. We applied the intercept and weights of the original model to the data, calculating the predicted probability of each participant according to the set of predictors collected in childhood, and compared the estimates with the actual outcome (ADHD) collected during adolescence and young adulthood. We explored the performance of the original model, and of models including novel predictors (prematurity, family history of ADHD, and polygenic risk score for ADHD). RESULTS: The observed area under the curve of the original model was .76 (95% Confidence Interval .70 to .82). The multivariable demographical model outperformed single variable models using only prematurity, family history, or the ADHD PRS. Adding either of these variables, or all at once, did not improve the performance of the original demographical model. CONCLUSIONS: Our findings suggest that the originally developed ADHD predictive model is suitable for use in different settings for clinical and research purposes.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Child , Adolescent , Humans , Young Adult , Adult , Attention Deficit Disorder with Hyperactivity/epidemiology , Developing Countries , Multifactorial Inheritance , Risk Factors
4.
Dev Psychopathol ; : 1-11, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37092659

ABSTRACT

Gene-environment interactions (GxE) have been increasingly explored in psychiatry but with low replication rates. Attention-deficit/hyperactivity disorder (ADHD) is a suitable candidate for studying GxE due to its high heritability and well-defined environmental risk factors. Here, we explored GxE using polygenic risk score (PRS) to represent the genetic liability to ADHD (ADHD-PRS) and environmental risk score (ERS) to represent the combined effects of environmental risk factors. We analyzed longitudinal data of 2,046 individuals (6-14 years of age at baseline and 14-23 at the last follow-up) from the Brazilian High-Risk Cohort Study for Psychiatric Disorders. Psychiatric evaluation included the Child Behavior Checklist and the Strength and Difficulties Questionnaire. Statistical analyses were performed using mixed-effects models. We observed statistically significant interactions between ADHD-PRS and ERS, suggesting that environmental and genetic factors act synergistically in the development of ADHD symptoms. These effects were not present for depression or anxiety symptoms. No evidence of GxE correlation was detected. Mechanistically, our findings suggest that environmental stressors modulate the genetic risk for ADHD. Future studies should investigate whether the reduction of environmental risks can prevent the development of symptoms of ADHD, especially in children with a family history of the disorder.

5.
Eur Child Adolesc Psychiatry ; 32(9): 1589-1597, 2023 Sep.
Article in English | MEDLINE | ID: mdl-35274169

ABSTRACT

The objective of this study is to examine the association between preterm infants' size at 1 year and attention-deficit/hyperactivity disorder (ADHD) assessed categorically and dimensionally in childhood and adolescence. We studied infants born < 37 weeks' gestation from two Brazilian birth cohorts (n = 653). ADHD was evaluated using the Development and Well-Being Assessment (DAWBA) interview at the age of 6 years in one cohort and by a structured interview according to DSM-5 criteria at 18 years in the other one. The presence of child attention difficulties was measured by the Strengths and Difficulties Questionnaire (SDQ) at 6 and 11 years in the 2004 and 1993 cohorts, respectively. We estimated associations of weight, length, head circumference, and BMI z-scores at 1-year chronological age with ADHD using Poisson Regression Model; and with attention difficulties using Linear Regression, adjusting for covariates. Mean birth weight was 2500 g and gestational age was 34.5 weeks. The aggregated ADHD prevalence in the two cohorts was 2.7%, and the median score for attention difficulties was 3.0. We found that increased head circumference at 1 year was associated with a lower risk of ADHD diagnosis (RR = 0.7, 95% CI 0.4, 0.9; p = 0.04 per standard deviation difference) and with fewer dimensional attention symptoms. In sensitivity analysis with other mental disorders, head circumference was associated with depression, but not with anxiety. Our findings emphasize poor head growth in the first year of life as a potential determinant of attentional difficulties in the preterm infant population.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Infant, Premature , Child , Infant , Adolescent , Humans , Infant, Newborn , Attention Deficit Disorder with Hyperactivity/diagnosis , Attention Deficit Disorder with Hyperactivity/epidemiology , Birth Cohort , Anxiety Disorders , Surveys and Questionnaires
6.
Alzheimers Dement ; 19(9): 3815-3825, 2023 09.
Article in English | MEDLINE | ID: mdl-36919582

ABSTRACT

INTRODUCTION: Amyloid-ß (Aß) and tau can be quantified in blood. However, biological factors can influence the levels of brain-derived proteins in the blood. The blood-brain barrier (BBB) regulates protein transport between cerebrospinal fluid (CSF) and blood. BBB altered permeability might affect the relationship between brain and blood biomarkers. METHODS: We assessed 224 participants in research (TRIAD, n = 96) and clinical (BIODEGMAR, n = 128) cohorts with plasma and CSF/positron emission tomography Aß, p-tau, and albumin measures. RESULTS: Plasma Aß42/40 better identified CSF Aß42/40 and Aß-PET positivity in individuals with high BBB permeability. An interaction between plasma Aß42/40 and BBB permeability on CSF Aß42/40 was observed. Voxel-wise models estimated that the association of positron emission tomography (PET), with plasma Aß was most affected by BBB permeability in AD-related brain regions. BBB permeability did not significantly impact the relationship between brain and plasma p-tau levels. DISCUSSION: These findings suggest that BBB integrity may influence the performance of plasma Aß, but not p-tau, biomarkers in research and clinical settings. HIGHLIGHTS: BBB permeability affects the association between brain and plasma Aß levels. BBB integrity does not affect the association between brain and plasma p-tau levels. Plasma Aß was most affected by BBB permeability in AD-related brain regions. BBB permeability increases with age but not according to cognitive status.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/metabolism , Blood-Brain Barrier/metabolism , tau Proteins/cerebrospinal fluid , Amyloid beta-Peptides/metabolism , Brain/pathology , Positron-Emission Tomography , Biomarkers/cerebrospinal fluid , Peptide Fragments/cerebrospinal fluid
7.
Alzheimers Dement ; 19(10): 4463-4474, 2023 10.
Article in English | MEDLINE | ID: mdl-37534889

ABSTRACT

INTRODUCTION: Phosphorylated tau (p-tau) biomarkers have been recently proposed to represent brain amyloid-ß (Aß) pathology. Here, we evaluated the plasma biomarkers' contribution beyond the information provided by demographics (age and sex) to identify Aß and tau pathologies in individuals segregated as cognitively unimpaired (CU) and impaired (CI). METHODS: We assessed 138 CU and 87 CI with available plasma p-tau231, 217+ , and 181, Aß42/40, GFAP and Aß- and tau-PET. RESULTS: In CU, only plasma p-tau231 and p-tau217+ significantly improved the performance of the demographics in detecting Aß-PET positivity, while no plasma biomarker provided additional information to identify tau-PET positivity. In CI, p-tau217+ and GFAP significantly contributed to demographics to identify both Aß-PET and tau-PET positivity, while p-tau231 only provided additional information to identify tau-PET positivity. DISCUSSION: Our results support plasma p-tau231 and p-tau217+ as state markers of early Aß deposition, but in later disease stages they inform on tau tangle accumulation. HIGHLIGHTS: It is still unclear how much plasma biomarkers contribute to identification of AD pathology across the AD spectrum beyond the information already provided by demographics (age + sex). Plasma p-tau231 and p-tau217+ contribute to demographic information to identify brain Aß pathology in preclinical AD. In CI individuals, plasma p-tau231 contributes to age and sex to inform on the accumulation of tau tangles, while p-tau217+ and GFAP inform on both Aß deposition and tau pathology.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Humans , Plasma , Biomarkers , tau Proteins , Positron-Emission Tomography
8.
Brain Behav Immun ; 97: 239-249, 2021 10.
Article in English | MEDLINE | ID: mdl-34371132

ABSTRACT

There is a high comorbidity between attention-deficit/hyperactivity disorder (ADHD) and asthma, and inflammation has been proposed as a potential pathophysiological mechanism behind this association. Most studies conducted so far have used a cross-sectional design, and none has evaluated the prevalence of asthma symptoms in patients with ADHD followed from childhood to adulthood. We relied on data from the 1993 Pelotas birth cohort to evaluate the association between ADHD and asthma in patients with distinct patterns of incidence, persistence and remission, and to explore the potential role of inflammatory markers in the comorbidity. We analyzed data from 3281 individuals from the 1993 Pelotas birth cohort collected at birth (1993), 11 years (2004), 18 years (2011), and 22 years (2015). Subjects were first classified according to their ADHD and asthma status as early-onset (EO) persistent (positive screening for ADHD at 11 years and diagnosis of ADHD according to DSM-5, except criterion E, at either 18 or 22 years), EO-remittent (positive screening for ADHD at 11 years only), late-onset (diagnosis of ADHD according to DSM-5, except criterion E, at 18 or 22 years only), or healthy subjects (negative for both conditions in all evaluation). After controlling for confounders, significant associations were observed between EO-remittent ADHD and EO-remittent asthma (OR 1.68, 95% CI 1.11-2.55), EO-persistent ADHD and EO-persistent asthma (OR 4.33, 95% CI 1.65-11.34), and between late-onset ADHD and late-onset asthma (OR 1.86, 95% CI 1.28-2.70), suggesting a state-dependent association. Serum interleukin-6 (IL-6) and C-reactive protein (CRP) were measured at the 18- and 22-year evaluations and compared between subjects positive for ADHD, asthma, and subjects with both or none conditions, regardless of the previously defined trajectories. Subjects with comorbid ADHD and asthma presented higher levels of IL-6 at the 18- and 22-year evaluations when compared to subjects negative for both conditions. Our results demonstrate a state-dependent association between ADHD and asthma despite underlying trajectories. Higher levels of serum IL-6 in patients with both conditions suggest that a pro-inflammatory environment might have a role in the pathophysiological mechanisms underlying the comorbidity.


Subject(s)
Asthma , Attention Deficit Disorder with Hyperactivity , Adolescent , Asthma/complications , Asthma/epidemiology , Attention Deficit Disorder with Hyperactivity/complications , Attention Deficit Disorder with Hyperactivity/epidemiology , Child , Comorbidity , Cross-Sectional Studies , Humans , Infant, Newborn , Inflammation , Young Adult
9.
Eur J Neurosci ; 49(12): 1673-1683, 2019 06.
Article in English | MEDLINE | ID: mdl-30667546

ABSTRACT

Attention deficit and hyperactivity disorder (ADHD) is characterized by impaired levels of hyperactivity, impulsivity, and inattention. Adenosine and endocannabinoid systems tightly interact in the modulation of dopamine signaling, involved in the neurobiology of ADHD. In this study, we evaluated the modulating effects of the cannabinoid and adenosine systems in a tolerance to delay of reward task using the most widely used animal model of ADHD. Spontaneous Hypertensive Rats (SHR) and Wistar-Kyoto rats were treated chronically or acutely with caffeine, a non-selective adenosine receptor antagonist, or acutely with a cannabinoid agonist (WIN55212-2, WIN) or antagonist (AM251). Subsequently, animals were tested in the tolerance to delay of reward task, in which they had to choose between a small, but immediate, or a large, but delayed, reward. Treatment with WIN decreased, whereas treatment with AM251 increased the choices of the large reward, selectively in SHR rats, indicating a CB1 receptor-mediated increase in impulsive behavior. An acute pre-treatment with caffeine blocked WIN effects. Conversely, a chronic treatment with caffeine increased the impulsive phenotype and potentiated the WIN effects. The results indicate that both cannabinoid and adenosine receptors modulate impulsive behavior in SHR: the antagonism of cannabinoid receptors might be effective in reducing impulsive symptoms present in ADHD; in addition, caffeine showed the opposite effects on impulsive behavior depending on the length of treatment. These observations are of particular importance to consider when therapeutic manipulation of CB1 receptors is applied to ADHD patients who consume coffee.


Subject(s)
Attention Deficit Disorder with Hyperactivity/drug therapy , Caffeine/pharmacology , Cannabinoid Receptor Agonists/pharmacology , Cannabinoid Receptor Antagonists/pharmacology , Impulsive Behavior/drug effects , Psychotropic Drugs/pharmacology , Animals , Benzoxazines/pharmacology , Disease Models, Animal , Male , Morpholines/pharmacology , Naphthalenes/pharmacology , Piperidines/pharmacology , Purinergic P1 Receptor Antagonists/pharmacology , Pyrazoles/pharmacology , Random Allocation , Rats, Inbred SHR , Rats, Inbred WKY
10.
Brain Behav Immun ; 80: 879-888, 2019 08.
Article in English | MEDLINE | ID: mdl-31176000

ABSTRACT

Sepsis is characterized by a severe and disseminated inflammation. In the central nervous system, sepsis promotes synaptic dysfunction and permanent cognitive impairment. Besides sepsis-induced neuronal dysfunction, glial cell response has been gaining considerable attention with microglial activation as a key player. By contrast, astrocytes' role during acute sepsis is still underexplored. Astrocytes are specialized immunocompetent cells involved in brain surveillance. In this context, the potential communication between the peripheral immune system and astrocytes during acute sepsis still remains unclear. We hypothesized that peripheral blood mononuclear cell (PBMC) mediators are able to affect the brain during an episode of acute sepsis. With this in mind, we first performed a data-driven transcriptome analysis of blood from septic patients to identify common features among independent clinical studies. Our findings evidenced pronounced impairment in energy-related signaling pathways in the blood of septic patients. Since astrocytes are key for brain energy homeostasis, we decided to investigate the communication between PBMC mediators and astrocytes in a rat model of acute sepsis, induced by cecal ligation and perforation (CLP). In the CLP animals, we identified widespread in vivo brain glucose hypometabolism. Ex vivo analyses demonstrated astrocyte reactivity along with reduced glutamate uptake capacity during sepsis. Also, by exposing cultured astrocytes to mediators released by PBMCs from CLP animals, we reproduced the energetic failure observed in vivo. Finally, by pharmacologically inhibiting phosphoinositide 3-kinase (PI3K), a central metabolic pathway downregulated in the blood of septic patients and reduced in the CLP rat brain, we mimicked the PBMC mediators effect on glutamate uptake but not on glucose metabolism. These results suggest that PBMC mediators are capable of directly mediating astrocyte reactivity and contribute to the brain energetic failure observed in acute sepsis. Moreover, the evidence of PI3K participation in this process indicates a potential target for therapeutic modulation.


Subject(s)
Astrocytes/metabolism , Leukocytes, Mononuclear/metabolism , Sepsis/physiopathology , Adult , Animals , Brain/metabolism , Central Nervous System/metabolism , Databases, Genetic , Disease Models, Animal , Female , Glutamic Acid/metabolism , Humans , Inflammation/metabolism , Leukocytes, Mononuclear/physiology , Male , Neurons/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Rats , Rats, Wistar , Sepsis/genetics , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL