Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 130
Filter
Add more filters

Publication year range
1.
Am J Hum Genet ; 108(4): 722-738, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33798445

ABSTRACT

Progressive myoclonus epilepsies (PMEs) comprise a group of clinically and genetically heterogeneous rare diseases. Over 70% of PME cases can now be molecularly solved. Known PME genes encode a variety of proteins, many involved in lysosomal and endosomal function. We performed whole-exome sequencing (WES) in 84 (78 unrelated) unsolved PME-affected individuals, with or without additional family members, to discover novel causes. We identified likely disease-causing variants in 24 out of 78 (31%) unrelated individuals, despite previous genetic analyses. The diagnostic yield was significantly higher for individuals studied as trios or families (14/28) versus singletons (10/50) (OR = 3.9, p value = 0.01, Fisher's exact test). The 24 likely solved cases of PME involved 18 genes. First, we found and functionally validated five heterozygous variants in NUS1 and DHDDS and a homozygous variant in ALG10, with no previous disease associations. All three genes are involved in dolichol-dependent protein glycosylation, a pathway not previously implicated in PME. Second, we independently validate SEMA6B as a dominant PME gene in two unrelated individuals. Third, in five families, we identified variants in established PME genes; three with intronic or copy-number changes (CLN6, GBA, NEU1) and two very rare causes (ASAH1, CERS1). Fourth, we found a group of genes usually associated with developmental and epileptic encephalopathies, but here, remarkably, presenting as PME, with or without prior developmental delay. Our systematic analysis of these cases suggests that the small residuum of unsolved cases will most likely be a collection of very rare, genetically heterogeneous etiologies.


Subject(s)
Dolichols/metabolism , Mutation/genetics , Myoclonic Epilepsies, Progressive/genetics , Adolescent , Adult , Age of Onset , Child , Child, Preschool , Cohort Studies , DNA Copy Number Variations/genetics , Female , Glycosylation , Humans , Introns/genetics , Male , Middle Aged , Myoclonic Epilepsies, Progressive/classification , Exome Sequencing , Young Adult
2.
Brain ; 145(7): 2301-2312, 2022 07 29.
Article in English | MEDLINE | ID: mdl-35373813

ABSTRACT

Pathogenic variants in A Disintegrin And Metalloproteinase (ADAM) 22, the postsynaptic cell membrane receptor for the glycoprotein leucine-rich repeat glioma-inactivated protein 1 (LGI1), have been recently associated with recessive developmental and epileptic encephalopathy. However, so far, only two affected individuals have been described and many features of this disorder are unknown. We refine the phenotype and report 19 additional individuals harbouring compound heterozygous or homozygous inactivating ADAM22 variants, of whom 18 had clinical data available. Additionally, we provide follow-up data from two previously reported cases. All affected individuals exhibited infantile-onset, treatment-resistant epilepsy. Additional clinical features included moderate to profound global developmental delay/intellectual disability (20/20), hypotonia (12/20) and delayed motor development (19/20). Brain MRI findings included cerebral atrophy (13/20), supported by post-mortem histological examination in patient-derived brain tissue, cerebellar vermis atrophy (5/20), and callosal hypoplasia (4/20). Functional studies in transfected cell lines confirmed the deleteriousness of all identified variants and indicated at least three distinct pathological mechanisms: (i) defective cell membrane expression; (ii) impaired LGI1-binding; and/or (iii) impaired interaction with the postsynaptic density protein PSD-95. We reveal novel clinical and molecular hallmarks of ADAM22 deficiency and provide knowledge that might inform clinical management and early diagnostics.


Subject(s)
ADAM Proteins , Brain Diseases , Drug Resistant Epilepsy , Nerve Tissue Proteins , ADAM Proteins/genetics , ADAM Proteins/metabolism , Atrophy , Brain Diseases/genetics , Disks Large Homolog 4 Protein , Humans , Intracellular Signaling Peptides and Proteins , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism
3.
Ann Neurol ; 89(2): 402-407, 2021 02.
Article in English | MEDLINE | ID: mdl-33085104

ABSTRACT

Exome sequencing was performed in 2 unrelated families with progressive myoclonus epilepsy. Affected individuals from both families shared a rare, homozygous c.191A > G variant affecting a splice site in SLC7A6OS. Analysis of cDNA from lymphoblastoid cells demonstrated partial splice site abolition and the creation of an abnormal isoform. Quantitative reverse transcriptase polymerase chain reaction and Western blot showed a marked reduction of protein expression. Haplotype analysis identified a ~0.85cM shared genomic region on chromosome 16q encompassing the c.191A > G variant, consistent with a distant ancestor common to both families. Our results suggest that biallelic loss-of-function variants in SLC7A6OS are a novel genetic cause of progressive myoclonus epilepsy. ANN NEUROL 2021;89:402-407.


Subject(s)
Myoclonic Epilepsies, Progressive/genetics , Peptide Hydrolases/genetics , RNA Splice Sites/genetics , Adolescent , Ataxia/genetics , Ataxia/physiopathology , Atrophy , Blotting, Western , Brain/diagnostic imaging , Brain/pathology , Child , Cognitive Dysfunction/genetics , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/psychology , DNA, Complementary , Electroencephalography , Female , Homozygote , Humans , Loss of Function Mutation , Magnetic Resonance Imaging , Male , Myoclonic Epilepsies, Progressive/diagnostic imaging , Myoclonic Epilepsies, Progressive/physiopathology , Myoclonic Epilepsies, Progressive/psychology , Pedigree , Peptide Hydrolases/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Young Adult
4.
Cephalalgia ; 42(7): 631-644, 2022 06.
Article in English | MEDLINE | ID: mdl-35166138

ABSTRACT

HYPOTHESIS: To identify genetic factors predisposing to migraine-epilepsy phenotype utilizing a multi-generational family with known linkage to chr12q24.2-q24.3. METHODS: We used single nucleotide polymorphism (SNP) genotyping and next-generation sequencing technologies to perform linkage, haplotype, and variant analyses in an extended Finnish migraine-epilepsy family (n = 120). In addition, we used a large genome-wide association study (GWAS) dataset of migraine and two biobank studies, UK Biobank and FinnGen, to test whether variants within the susceptibility region associate with migraine or epilepsy related phenotypes in a population setting. RESULTS: The family showed the highest evidence of linkage (LOD 3.42) between rs7966411 and epilepsy. The haplotype shared among 12 out of 13 epilepsy patients in the family covers almost the entire NCOR2 and co-localizes with one of the risk loci of the recent GWAS on migraine. The haplotype harbors nine low-frequency variants with potential regulatory functions. Three of them, in addition to two common variants, show nominal associations with neurological disorders in either UK Biobank or FinnGen. CONCLUSION: We provide several independent lines of evidence supporting association between migraine-epilepsy phenotype and NCOR2. Our study suggests that NCOR2 may have a role in both migraine and epilepsy and thus would provide evidence for shared pathophysiology underlying these two diseases.


Subject(s)
Epilepsy , Migraine Disorders , Epilepsy/genetics , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study , Humans , Migraine Disorders/genetics , Nuclear Receptor Co-Repressor 2/genetics , Phenotype , Polymorphism, Single Nucleotide/genetics
5.
Neurobiol Dis ; 156: 105418, 2021 08.
Article in English | MEDLINE | ID: mdl-34102276

ABSTRACT

Cystatin B (CSTB) acts as an inhibitor of cysteine proteases of the cathepsin family and loss-of-function mutations result in human brain diseases with a genotype-phenotype correlation. In the most severe case, CSTB-deficiency disrupts brain development, and yet the molecular basis of this mechanism is missing. Here, we establish CSTB as a regulator of chromatin structure during neural stem cell renewal and differentiation. Murine neural precursor cells (NPCs) undergo transient proteolytic cleavage of the N-terminal histone H3 tail by cathepsins B and L upon induction of differentiation into neurons and glia. In contrast, CSTB-deficiency triggers premature H3 tail cleavage in undifferentiated self-renewing NPCs and sustained H3 tail proteolysis in differentiating neural cells. This leads to significant transcriptional changes in NPCs, particularly of nuclear-encoded mitochondrial genes. In turn, these transcriptional alterations impair the enhanced mitochondrial respiration that is induced upon neural stem cell differentiation. Collectively, our findings reveal the basis of epigenetic regulation in the molecular pathogenesis of CSTB deficiency.


Subject(s)
Cystatin B/deficiency , Histones/metabolism , Neural Stem Cells/metabolism , Neurogenesis/physiology , Animals , Cells, Cultured , Cystatin B/genetics , Epigenesis, Genetic/physiology , Histones/genetics , Mice , Mice, 129 Strain , Mice, Knockout
6.
Genet Med ; 23(6): 1050-1057, 2021 06.
Article in English | MEDLINE | ID: mdl-33495529

ABSTRACT

PURPOSE: To expand the recent description of a new neurodevelopmental syndrome related to alterations in CDK19. METHODS: Individuals were identified through international collaboration. Functional studies included autophosphorylation assays for CDK19 Gly28Arg and Tyr32His variants and in vivo zebrafish assays of the CDK19G28R and CDK19Y32H. RESULTS: We describe 11 unrelated individuals (age range: 9 months to 14 years) with de novo missense variants mapped to the kinase domain of CDK19, including two recurrent changes at residues Tyr32 and Gly28. In vitro autophosphorylation and substrate phosphorylation assays revealed that kinase activity of protein was lower for p.Gly28Arg and higher for p.Tyr32His substitutions compared with that of the wild-type protein. Injection of CDK19 messenger RNA (mRNA) with either the Tyr32His or the Gly28Arg variants using in vivo zebrafish model significantly increased fraction of embryos with morphological abnormalities. Overall, the phenotype of the now 14 individuals with CDK19-related disorder includes universal developmental delay and facial dysmorphism, hypotonia (79%), seizures (64%), ophthalmologic anomalies (64%), and autism/autistic traits (56%). CONCLUSION: CDK19 de novo missense variants are responsible for a novel neurodevelopmental disorder. Both kinase assay and zebrafish experiments showed that the pathogenetic mechanism may be more diverse than previously thought.


Subject(s)
Intellectual Disability , Neurodevelopmental Disorders , Animals , Cyclin-Dependent Kinases/genetics , Gain of Function Mutation , Humans , Infant , Mutation, Missense , Zebrafish/genetics
7.
Clin Genet ; 98(5): 493-498, 2020 11.
Article in English | MEDLINE | ID: mdl-32779182

ABSTRACT

TATA-box binding protein associated factor, RNA polymerase I subunit C (TAF1C) is a component of selectivity factor 1 belonging to RNA polymerase I (Pol I) transcription machinery. We report two unrelated patients with homozygous TAF1C missense variants and an early onset neurological phenotype with severe global developmental delay. Clinical features included lack of speech and ambulation and epilepsy. MRI of the brain demonstrated widespread cerebral atrophy and frontal periventricular white matter hyperintensity. The phenotype resembled that of a previously described variant of UBTF, which encodes another transcription factor of Pol I. TAF1C variants were located in two conserved amino acid positions and were predicted to be deleterious. In patient-derived fibroblasts, TAF1C mRNA and protein expression levels were substantially reduced compared with healthy controls. We propose that the variants impairing TAF1C expression are likely pathogenic and relate to a novel neurological disease. This study expands the disease spectrum related to Pol I transcription machinery, associating the TAF1C missense variants with a severe neurological phenotype for the first time.


Subject(s)
Epilepsy/genetics , RNA Polymerase I/genetics , Spasms, Infantile/genetics , TATA-Binding Protein Associated Factors/genetics , Transcription Factor TFIID/genetics , Child, Preschool , Epilepsy/diagnostic imaging , Epilepsy/pathology , Female , Fibroblasts/metabolism , Homozygote , Humans , Infant , Infant, Newborn , Magnetic Resonance Imaging , Male , Mutation, Missense/genetics , Phenotype , Spasms, Infantile/diagnostic imaging , Spasms, Infantile/pathology
8.
Epilepsia ; 61(11): 2593-2608, 2020 11.
Article in English | MEDLINE | ID: mdl-32940364

ABSTRACT

OBJECTIVE: Microglial phagocytosis of apoptotic cells is an essential component of the brain regenerative response during neurodegeneration. Whereas it is very efficient in physiological conditions, it is impaired in mouse and human mesial temporal lobe epilepsy, and now we extend our studies to a model of progressive myoclonus epilepsy type 1 in mice lacking cystatin B (CSTB). METHODS: We used confocal imaging and stereology-based quantification of apoptosis and phagocytosis of the hippocampus of Cstb knockout (KO) mice, an in vitro model of phagocytosis and siRNAs to acutely reduce Cstb expression, and a virtual three-dimensional (3D) model to analyze the physical relationship between apoptosis, phagocytosis, and active hippocampal neurons. RESULTS: Microglial phagocytosis was impaired in the hippocampus of Cstb KO mice at 1 month of age, when seizures arise and hippocampal atrophy begins. This impairment was not related to the lack of Cstb in microglia alone, as shown by in vitro experiments with microglial Cstb depletion. The phagocytosis impairment was also unrelated to seizures, as it was also present in Cstb KO mice at postnatal day 14, before seizures begin. Importantly, phagocytosis impairment was restricted to the granule cell layer and spared the subgranular zone, where there are no active neurons. Furthermore, apoptotic cells (both phagocytosed and not phagocytosed) in Cstb-deficient mice were at close proximity to active cFos+ neurons, and a virtual 3D model demonstrated that the physical relationship between apoptotic cells and cFos+ neurons was specific for Cstb KO mice. SIGNIFICANCE: These results suggest a complex crosstalk between apoptosis, phagocytosis, and neuronal activity, hinting that local neuronal activity could be related to phagocytosis dysfunction in Cstb KO mice. Overall, these data suggest that phagocytosis impairment is an early feature of hippocampal damage in epilepsy and opens novel therapeutic approaches for epileptic patients based on targeting microglial phagocytosis.


Subject(s)
Dentate Gyrus/metabolism , Disease Models, Animal , Microglia/metabolism , Neurons/metabolism , Phagocytosis/physiology , Unverricht-Lundborg Syndrome/metabolism , Animals , Cystatin B/deficiency , Cystatin B/genetics , Dentate Gyrus/pathology , Mice , Mice, Knockout , Microglia/pathology , Neurons/pathology , Unverricht-Lundborg Syndrome/genetics , Unverricht-Lundborg Syndrome/pathology
9.
Am J Hum Genet ; 99(3): 683-694, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27545674

ABSTRACT

The ubiquitin fold modifier 1 (UFM1) cascade is a recently identified evolutionarily conserved ubiquitin-like modification system whose function and link to human disease have remained largely uncharacterized. By using exome sequencing in Finnish individuals with severe epileptic syndromes, we identified pathogenic compound heterozygous variants in UBA5, encoding an activating enzyme for UFM1, in two unrelated families. Two additional individuals with biallelic UBA5 variants were identified from the UK-based Deciphering Developmental Disorders study and one from the Northern Finland Intellectual Disability cohort. The affected individuals (n = 9) presented in early infancy with severe irritability, followed by dystonia and stagnation of development. Furthermore, the majority of individuals display postnatal microcephaly and epilepsy and develop spasticity. The affected individuals were compound heterozygous for a missense substitution, c.1111G>A (p.Ala371Thr; allele frequency of 0.28% in Europeans), and a nonsense variant or c.164G>A that encodes an amino acid substitution p.Arg55His, but also affects splicing by facilitating exon 2 skipping, thus also being in effect a loss-of-function allele. Using an in vitro thioester formation assay and cellular analyses, we show that the p.Ala371Thr variant is hypomorphic with attenuated ability to transfer the activated UFM1 to UFC1. Finally, we show that the CNS-specific knockout of Ufm1 in mice causes neonatal death accompanied by microcephaly and apoptosis in specific neurons, further suggesting that the UFM1 system is essential for CNS development and function. Taken together, our data imply that the combination of a hypomorphic p.Ala371Thr variant in trans with a loss-of-function allele in UBA5 underlies a severe infantile-onset encephalopathy.


Subject(s)
Alleles , Brain Diseases/genetics , Brain Diseases/metabolism , Mutation/genetics , Proteins/genetics , Ubiquitin-Activating Enzymes/genetics , Ubiquitin/metabolism , Animals , Animals, Newborn , Apoptosis , Brain Diseases/pathology , Central Nervous System/metabolism , Central Nervous System/pathology , Cohort Studies , Epilepsy/genetics , Exome/genetics , Exons/genetics , Fibroblasts/metabolism , Fibroblasts/pathology , Finland , Gene Frequency , Heterozygote , Humans , Infant , Intellectual Disability/genetics , Mice , Mice, Knockout , Microcephaly/genetics , Microcephaly/pathology , Neurons/metabolism , Neurons/pathology , Proteins/metabolism , Spasms, Infantile/genetics , Spasms, Infantile/metabolism
10.
Epilepsia ; 60(5): 830-844, 2019 05.
Article in English | MEDLINE | ID: mdl-30968951

ABSTRACT

OBJECTIVE: Pathogenic variants in SCN8A have been associated with a wide spectrum of epilepsy phenotypes, ranging from benign familial infantile seizures (BFIS) to epileptic encephalopathies with variable severity. Furthermore, a few patients with intellectual disability (ID) or movement disorders without epilepsy have been reported. The vast majority of the published SCN8A patients suffer from severe developmental and epileptic encephalopathy (DEE). In this study, we aimed to provide further insight on the spectrum of milder SCN8A-related epilepsies. METHODS: A cohort of 1095 patients were screened using a next generation sequencing panel. Further patients were ascertained from a network of epilepsy genetics clinics. Patients with severe DEE and BFIS were excluded from the study. RESULTS: We found 36 probands who presented with an SCN8A-related epilepsy and normal intellect (33%) or mild (61%) to moderate ID (6%). All patients presented with epilepsy between age 1.5 months and 7 years (mean = 13.6 months), and 58% of these became seizure-free, two-thirds on monotherapy. Neurological disturbances included ataxia (28%) and hypotonia (19%) as the most prominent features. Interictal electroencephalogram was normal in 41%. Several recurrent variants were observed, including Ile763Val, Val891Met, Gly1475Arg, Gly1483Lys, Phe1588Leu, Arg1617Gln, Ala1650Val/Thr, Arg1872Gln, and Asn1877Ser. SIGNIFICANCE: With this study, we explore the electroclinical features of an intermediate SCN8A-related epilepsy with mild cognitive impairment, which is for the majority a treatable epilepsy.


Subject(s)
Epilepsy/genetics , Mutation, Missense , NAV1.6 Voltage-Gated Sodium Channel/genetics , Anticonvulsants/therapeutic use , Ataxia/genetics , Child , Child, Preschool , Cognitive Dysfunction/genetics , Electroencephalography , Epilepsy/drug therapy , Epilepsy/physiopathology , Genetic Testing , High-Throughput Nucleotide Sequencing , Humans , Infant , Intellectual Disability/genetics , Language Development Disorders/genetics , Movement Disorders/genetics , Muscle Hypotonia/genetics , Pedigree , Severity of Illness Index
11.
Ann Neurol ; 81(5): 677-689, 2017 May.
Article in English | MEDLINE | ID: mdl-28380698

ABSTRACT

OBJECTIVE: To comprehensively describe the new syndrome of myoclonus epilepsy and ataxia due to potassium channel mutation (MEAK), including cellular electrophysiological characterization of observed clinical improvement with fever. METHODS: We analyzed clinical, electroclinical, and neuroimaging data for 20 patients with MEAK due to recurrent KCNC1 p.R320H mutation. In vitro electrophysiological studies were conducted using whole cell patch-clamp to explore biophysical properties of wild-type and mutant KV 3.1 channels. RESULTS: Symptoms began at between 3 and 15 years of age (median = 9.5), with progressively severe myoclonus and rare tonic-clonic seizures. Ataxia was present early, but quickly became overshadowed by myoclonus; 10 patients were wheelchair-bound by their late teenage years. Mild cognitive decline occurred in half. Early death was not observed. Electroencephalogram (EEG) showed generalized spike and polyspike wave discharges, with documented photosensitivity in most. Polygraphic EEG-electromyographic studies demonstrated a cortical origin for myoclonus and striking coactivation of agonist and antagonist muscles. Magnetic resonance imaging revealed symmetrical cerebellar atrophy, which appeared progressive, and a prominent corpus callosum. Unexpectedly, transient clinical improvement with fever was noted in 6 patients. To explore this, we performed high-temperature in vitro recordings. At elevated temperatures, there was a robust leftward shift in activation of wild-type KV 3.1, increasing channel availability. INTERPRETATION: MEAK has a relatively homogeneous presentation, resembling Unverricht-Lundborg disease, despite the genetic and biological basis being quite different. A remarkable improvement with fever may be explained by the temperature-dependent leftward shift in activation of wild-type KV 3.1 subunit-containing channels, which would counter the loss of function observed for mutant channels, highlighting KCNC1 as a potential target for precision therapeutics. Ann Neurol 2017;81:677-689.


Subject(s)
Ataxia , Cognitive Dysfunction/etiology , Epilepsies, Myoclonic , Hot Temperature , Shaw Potassium Channels/metabolism , Adolescent , Adult , Age of Onset , Ataxia/complications , Ataxia/diagnostic imaging , Ataxia/genetics , Ataxia/physiopathology , Electroencephalography , Epilepsies, Myoclonic/complications , Epilepsies, Myoclonic/diagnostic imaging , Epilepsies, Myoclonic/genetics , Epilepsies, Myoclonic/physiopathology , Female , HEK293 Cells , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Mutation , Pedigree , Shaw Potassium Channels/genetics , Syndrome , Young Adult
12.
Epilepsia ; 59(2): 389-402, 2018 02.
Article in English | MEDLINE | ID: mdl-29315614

ABSTRACT

OBJECTIVE: Pathogenic SLC6A1 variants were recently described in patients with myoclonic atonic epilepsy (MAE) and intellectual disability (ID). We set out to define the phenotypic spectrum in a larger cohort of SCL6A1-mutated patients. METHODS: We collected 24 SLC6A1 probands and 6 affected family members. Four previously published cases were included for further electroclinical description. In total, we reviewed the electroclinical data of 34 subjects. RESULTS: Cognitive development was impaired in 33/34 (97%) subjects; 28/34 had mild to moderate ID, with language impairment being the most common feature. Epilepsy was diagnosed in 31/34 cases with mean onset at 3.7 years. Cognitive assessment before epilepsy onset was available in 24/31 subjects and was normal in 25% (6/24), and consistent with mild ID in 46% (11/24) or moderate ID in 17% (4/24). Two patients had speech delay only, and 1 had severe ID. After epilepsy onset, cognition deteriorated in 46% (11/24) of cases. The most common seizure types were absence, myoclonic, and atonic seizures. Sixteen cases fulfilled the diagnostic criteria for MAE. Seven further patients had different forms of generalized epilepsy and 2 had focal epilepsy. Twenty of 31 patients became seizure-free, with valproic acid being the most effective drug. There was no clear-cut correlation between seizure control and cognitive outcome. Electroencephalography (EEG) findings were available in 27/31 patients showing irregular bursts of diffuse 2.5-3.5 Hz spikes/polyspikes-and-slow waves in 25/31. Two patients developed an EEG pattern resembling electrical status epilepticus during sleep. Ataxia was observed in 7/34 cases. We describe 7 truncating and 18 missense variants, including 4 recurrent variants (Gly232Val, Ala288Val, Val342Met, and Gly362Arg). SIGNIFICANCE: Most patients carrying pathogenic SLC6A1 variants have an MAE phenotype with language delay and mild/moderate ID before epilepsy onset. However, ID alone or associated with focal epilepsy can also be observed.


Subject(s)
Epilepsies, Myoclonic/physiopathology , GABA Plasma Membrane Transport Proteins/genetics , Intellectual Disability/physiopathology , Language Development Disorders/physiopathology , Adolescent , Adult , Anticonvulsants/therapeutic use , Ataxia/complications , Ataxia/genetics , Ataxia/physiopathology , Child , Child, Preschool , Cohort Studies , Electroencephalography , Epilepsies, Myoclonic/complications , Epilepsies, Myoclonic/drug therapy , Epilepsies, Myoclonic/genetics , Epilepsies, Partial/complications , Epilepsies, Partial/drug therapy , Epilepsies, Partial/genetics , Epilepsies, Partial/physiopathology , Epilepsy, Generalized/complications , Epilepsy, Generalized/drug therapy , Epilepsy, Generalized/genetics , Epilepsy, Generalized/physiopathology , Female , Genetic Association Studies , Humans , Intellectual Disability/complications , Intellectual Disability/genetics , Language Development Disorders/complications , Language Development Disorders/genetics , Male , Mutation , Mutation, Missense , Neurodevelopmental Disorders/complications , Neurodevelopmental Disorders/genetics , Phenotype , Treatment Outcome , Valproic Acid/therapeutic use , Young Adult
13.
Brain ; 140(5): 1267-1279, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28335020

ABSTRACT

Progressive encephalopathy with oedema, hypsarrhythmia, and optic atrophy (PEHO) syndrome is an early childhood onset, severe autosomal recessive encephalopathy characterized by extreme cerebellar atrophy due to almost total granule neuron loss. By combining homozygosity mapping in Finnish families with Sanger sequencing of positional candidate genes and with exome sequencing a homozygous missense substitution of leucine for serine at codon 31 in ZNHIT3 was identified as the primary cause of PEHO syndrome. ZNHIT3 encodes a nuclear zinc finger protein previously implicated in transcriptional regulation and in small nucleolar ribonucleoprotein particle assembly and thus possibly to pre-ribosomal RNA processing. The identified mutation affects a highly conserved amino acid residue in the zinc finger domain of ZNHIT3. Both knockdown and genome editing of znhit3 in zebrafish embryos recapitulate the patients' cerebellar defects, microcephaly and oedema. These phenotypes are rescued by wild-type, but not mutant human ZNHIT3 mRNA, suggesting that the patient missense substitution causes disease through a loss-of-function mechanism. Transfection of cell lines with ZNHIT3 expression vectors showed that the PEHO syndrome mutant protein is unstable. Immunohistochemical analysis of mouse cerebellar tissue demonstrated ZNHIT3 to be expressed in proliferating granule cell precursors, in proliferating and post-mitotic granule cells, and in Purkinje cells. Knockdown of Znhit3 in cultured mouse granule neurons and ex vivo cerebellar slices indicate that ZNHIT3 is indispensable for granule neuron survival and migration, consistent with the zebrafish findings and patient neuropathology. These results suggest that loss-of-function of a nuclear regulator protein underlies PEHO syndrome and imply that establishment of its spatiotemporal interaction targets will be the basis for developing therapeutic approaches and for improved understanding of cerebellar development.


Subject(s)
Brain Edema/genetics , Brain Edema/pathology , Cerebellum/pathology , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology , Neurons/pathology , Nuclear Proteins/genetics , Nuclear Proteins/physiology , Optic Atrophy/genetics , Optic Atrophy/pathology , Spasms, Infantile/genetics , Spasms, Infantile/pathology , Animals , COP9 Signalosome Complex , Cell Movement/genetics , Cell Movement/physiology , Cell Survival/genetics , Cell Survival/physiology , Cerebellum/metabolism , Edema/complications , Edema/genetics , Exome/genetics , Gene Editing , Gene Knockdown Techniques , Humans , Mice , Microcephaly/complications , Microcephaly/genetics , Mutation, Missense/genetics , Mutation, Missense/physiology , Neurons/metabolism , Nuclear Proteins/biosynthesis , Sequence Analysis, DNA , Transcription Factors/biosynthesis , Zebrafish
14.
Neuropediatrics ; 49(4): 256-261, 2018 08.
Article in English | MEDLINE | ID: mdl-29801191

ABSTRACT

Alexander disease (AxD) is a genetic leukodystrophy caused by GFAP mutations leading to astrocyte dysfunction. Neonatal AxD is a rare phenotype with onset in the first month of life. The proband, belonging to a large pedigree with dominantly inherited benign familial neonatal epilepsy (BFNE), had a phenotype distinct from the rest of the family, with hypotonia and macrocephaly in addition to drug-resistant neonatal seizures. The patient deteriorated and passed away at 6 weeks of age. The pathological and neuroimaging data were consistent with the diagnosis of AxD. Genetic analysis of the proband identified a novel de novo GFAP missense mutation and a KCNQ2 splice site mutation segregating with the BFNE phenotype in the family. The GFAP mutation was located in the coil 2B region of GFAP protein, similar to most neonatal-onset AxD cases with an early death. The clinical and neuroradiological features of the previously published neonatal AxD patients are presented. This study further supports the classification of neonatal-onset AxD as a distinct phenotype based on the age of onset.


Subject(s)
Alexander Disease/genetics , Glial Fibrillary Acidic Protein/genetics , Mutation , Alexander Disease/diagnostic imaging , Alexander Disease/pathology , Brain/diagnostic imaging , Brain/pathology , Fatal Outcome , Humans , Infant , Male , Phenotype
15.
J Med Genet ; 54(7): 460-470, 2017 07.
Article in English | MEDLINE | ID: mdl-28377535

ABSTRACT

BACKGROUND: We aimed for a comprehensive delineation of genetic, functional and phenotypic aspects of GRIN2B encephalopathy and explored potential prospects of personalised medicine. METHODS: Data of 48 individuals with de novo GRIN2B variants were collected from several diagnostic and research cohorts, as well as from 43 patients from the literature. Functional consequences and response to memantine treatment were investigated in vitro and eventually translated into patient care. RESULTS: Overall, de novo variants in 86 patients were classified as pathogenic/likely pathogenic. Patients presented with neurodevelopmental disorders and a spectrum of hypotonia, movement disorder, cortical visual impairment, cerebral volume loss and epilepsy. Six patients presented with a consistent malformation of cortical development (MCD) intermediate between tubulinopathies and polymicrogyria. Missense variants cluster in transmembrane segments and ligand-binding sites. Functional consequences of variants were diverse, revealing various potential gain-of-function and loss-of-function mechanisms and a retained sensitivity to the use-dependent blocker memantine. However, an objectifiable beneficial treatment response in the respective patients still remains to be demonstrated. CONCLUSIONS: In addition to previously known features of intellectual disability, epilepsy and autism, we found evidence that GRIN2B encephalopathy is also frequently associated with movement disorder, cortical visual impairment and MCD revealing novel phenotypic consequences of channelopathies.


Subject(s)
Brain Diseases/genetics , Mutation/genetics , Receptors, N-Methyl-D-Aspartate/genetics , Brain Diseases/drug therapy , Heterozygote , Humans , Magnetic Resonance Imaging , Memantine/therapeutic use , Molecular Targeted Therapy , Neuroimaging , Phenotype , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/metabolism
16.
Hum Mol Genet ; 24(16): 4483-90, 2015 Aug 15.
Article in English | MEDLINE | ID: mdl-25954030

ABSTRACT

We studied a consanguineous Palestinian Arab family segregating an autosomal recessive progressive myoclonus epilepsy (PME) with early ataxia. PME is a rare, often fatal syndrome, initially responsive to antiepileptic drugs which over time becomes refractory and can be associated with cognitive decline. Linkage analysis was performed and the disease locus narrowed to chromosome 19p13.3. Fourteen candidate genes were screened by conventional Sanger sequencing and in one, LMNB2, a novel homozygous missense mutation was identified that segregated with the PME in the family. Whole exome sequencing excluded other likely pathogenic coding variants in the linked interval. The p.His157Tyr mutation is located in an evolutionarily highly conserved region of the alpha-helical rod of the lamin B2 protein. In vitro assembly analysis of mutant lamin B2 protein revealed a distinct defect in the assembly of the highly ordered fibrous arrays typically formed by wild-type lamin B2. Our data suggests that disruption of the organisation of the nuclear lamina in neurons, perhaps through abnormal neuronal migration, causes the epilepsy and early ataxia syndrome and extends the aetiology of PMEs to include dysfunction in nuclear lamin proteins.


Subject(s)
Ataxia/genetics , Chromosomes, Human, Pair 19/genetics , Epilepsies, Myoclonic/genetics , Lamin Type B/genetics , Mutation, Missense , Amino Acid Substitution , Child , Family , Female , Humans , Male
17.
Ann Neurol ; 80(4)2016 10.
Article in English | MEDLINE | ID: mdl-27543892

ABSTRACT

The hereditary spastic paraplegias (HSPs) are heterogeneous neurodegenerative disorders with over 50 known causative genes. We identified a recurrent mutation in KCNA2 (c.881G>A, p.R294H), encoding the voltage-gated K(+) -channel, KV 1.2, in two unrelated families with HSP, intellectual disability (ID), and ataxia. Follow-up analysis of > 2,000 patients with various neurological phenotypes identified a de novo p.R294H mutation in a proband with ataxia and ID. Two-electrode voltage-clamp recordings of Xenopus laevis oocytes expressing mutant KV 1.2 channels showed loss of function with a dominant-negative effect. Our findings highlight the phenotypic spectrum of a recurrent KCNA2 mutation, implicating ion channel dysfunction as a novel HSP disease mechanism. Ann Neurol 2016.


Subject(s)
Ataxia/genetics , Intellectual Disability/genetics , Kv1.2 Potassium Channel/genetics , Spastic Paraplegia, Hereditary/genetics , Adult , Animals , Ataxia/physiopathology , Child , Exome , Female , Humans , Intellectual Disability/physiopathology , Male , Middle Aged , Mutation , Oocytes/metabolism , Pedigree , Spastic Paraplegia, Hereditary/physiopathology , Xenopus laevis , Young Adult
18.
Am J Hum Genet ; 93(5): 967-75, 2013 Nov 07.
Article in English | MEDLINE | ID: mdl-24207121

ABSTRACT

Dravet syndrome is a severe epilepsy syndrome characterized by infantile onset of therapy-resistant, fever-sensitive seizures followed by cognitive decline. Mutations in SCN1A explain about 75% of cases with Dravet syndrome; 90% of these mutations arise de novo. We studied a cohort of nine Dravet-syndrome-affected individuals without an SCN1A mutation (these included some atypical cases with onset at up to 2 years of age) by using whole-exome sequencing in proband-parent trios. In two individuals, we identified a de novo loss-of-function mutation in CHD2 (encoding chromodomain helicase DNA binding protein 2). A third CHD2 mutation was identified in an epileptic proband of a second (stage 2) cohort. All three individuals with a CHD2 mutation had intellectual disability and fever-sensitive generalized seizures, as well as prominent myoclonic seizures starting in the second year of life or later. To explore the functional relevance of CHD2 haploinsufficiency in an in vivo model system, we knocked down chd2 in zebrafish by using targeted morpholino antisense oligomers. chd2-knockdown larvae exhibited altered locomotor activity, and the epileptic nature of this seizure-like behavior was confirmed by field-potential recordings that revealed epileptiform discharges similar to seizures in affected persons. Both altered locomotor activity and epileptiform discharges were absent in appropriate control larvae. Our study provides evidence that de novo loss-of-function mutations in CHD2 are a cause of epileptic encephalopathy with generalized seizures.


Subject(s)
DNA-Binding Proteins/genetics , Epilepsies, Myoclonic/genetics , Animals , Child , Cognition Disorders/genetics , Cognition Disorders/pathology , Cohort Studies , Epilepsies, Myoclonic/pathology , Exome , Female , Gene Knockdown Techniques , Haploinsufficiency , Humans , Intellectual Disability/genetics , Intellectual Disability/pathology , Larva/genetics , Male , NAV1.1 Voltage-Gated Sodium Channel/genetics , Phenotype , Seizures, Febrile/genetics , Seizures, Febrile/pathology , Young Adult , Zebrafish
19.
N Engl J Med ; 368(19): 1809-16, 2013 May 09.
Article in English | MEDLINE | ID: mdl-23656646

ABSTRACT

This report identifies human skeletal diseases associated with mutations in WNT1. In 10 family members with dominantly inherited, early-onset osteoporosis, we identified a heterozygous missense mutation in WNT1, c.652T→G (p.Cys218Gly). In a separate family with 2 siblings affected by recessive osteogenesis imperfecta, we identified a homozygous nonsense mutation, c.884C→A, p.Ser295*. In vitro, aberrant forms of the WNT1 protein showed impaired capacity to induce canonical WNT signaling, their target genes, and mineralization. In mice, Wnt1 was clearly expressed in bone marrow, especially in B-cell lineage and hematopoietic progenitors; lineage tracing identified the expression of the gene in a subset of osteocytes, suggesting the presence of altered cross-talk in WNT signaling between the hematopoietic and osteoblastic lineage cells in these diseases.


Subject(s)
Mutation , Osteogenesis Imperfecta/genetics , Osteoporosis/genetics , Wnt1 Protein/genetics , Adolescent , Adult , Age of Onset , Aged , Animals , Child , Female , Genes, Dominant , Genes, Recessive , Humans , Male , Mice , Mice, Transgenic , Middle Aged , Pedigree , Wnt1 Protein/metabolism , Young Adult
20.
J Neuroinflammation ; 13(1): 298, 2016 11 28.
Article in English | MEDLINE | ID: mdl-27894304

ABSTRACT

Progressive myoclonus epilepsy of Unverricht-Lundborg type (EPM1) is an autosomal recessively inherited childhood-onset neurodegenerative disorder, characterized by myoclonus, seizures, and ataxia. Mutations in the cystatin B gene (CSTB) underlie EPM1. The CSTB-deficient (Cstb -/- ) mouse model recapitulates key features of EPM1, including myoclonic seizures. The mice show early microglial activation that precedes seizure onset and neuronal loss and leads to neuroinflammation. We here characterized the inflammatory phenotype of Cstb -/- mice in more detail. We found higher concentrations of chemokines and pro-inflammatory cytokines in the serum of Cstb -/- mice and higher CXCL13 expression in activated microglia in Cstb -/- compared to control mouse brains. The elevated chemokine levels were not accompanied by blood-brain barrier disruption, despite increased brain vascularization. Macrophages in the spleen and brain of Cstb -/- mice were predominantly pro-inflammatory. Taken together, these data show that CXCL13 expression is a hallmark of microglial activation in Cstb -/- mice and that the brain inflammation is linked to peripheral inflammatory changes, which might contribute to the disease pathology of EPM1.


Subject(s)
Cystatin B/deficiency , Encephalitis/etiology , Gene Expression Regulation/genetics , Inflammation/etiology , Myoclonic Epilepsies, Progressive/complications , Myoclonic Epilepsies, Progressive/genetics , Animals , Brain/pathology , Cystatin B/genetics , Cytokines/blood , Disease Models, Animal , Encephalitis/blood , Inflammation/blood , Mice , Mice, Knockout , Microglia/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL