Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters

Country/Region as subject
Publication year range
1.
N Engl J Med ; 390(12): 1092-1104, 2024 03 21.
Article in English | MEDLINE | ID: mdl-38507752

ABSTRACT

BACKGROUND: Giant axonal neuropathy is a rare, autosomal recessive, pediatric, polysymptomatic, neurodegenerative disorder caused by biallelic loss-of-function variants in GAN, the gene encoding gigaxonin. METHODS: We conducted an intrathecal dose-escalation study of scAAV9/JeT-GAN (a self-complementary adeno-associated virus-based gene therapy containing the GAN transgene) in children with giant axonal neuropathy. Safety was the primary end point. The key secondary clinical end point was at least a 95% posterior probability of slowing the rate of change (i.e., slope) in the 32-item Motor Function Measure total percent score at 1 year after treatment, as compared with the pretreatment slope. RESULTS: One of four intrathecal doses of scAAV9/JeT-GAN was administered to 14 participants - 3.5×1013 total vector genomes (vg) (in 2 participants), 1.2×1014 vg (in 4), 1.8×1014 vg (in 5), and 3.5×1014 vg (in 3). During a median observation period of 68.7 months (range, 8.6 to 90.5), of 48 serious adverse events that had occurred, 1 (fever) was possibly related to treatment; 129 of 682 adverse events were possibly related to treatment. The mean pretreatment slope in the total cohort was -7.17 percentage points per year (95% credible interval, -8.36 to -5.97). At 1 year after treatment, posterior mean changes in slope were -0.54 percentage points (95% credible interval, -7.48 to 6.28) with the 3.5×1013-vg dose, 3.23 percentage points (95% credible interval, -1.27 to 7.65) with the 1.2×1014-vg dose, 5.32 percentage points (95% credible interval, 1.07 to 9.57) with the 1.8×1014-vg dose, and 3.43 percentage points (95% credible interval, -1.89 to 8.82) with the 3.5×1014-vg dose. The corresponding posterior probabilities for slowing the slope were 44% (95% credible interval, 43 to 44); 92% (95% credible interval, 92 to 93); 99% (95% credible interval, 99 to 99), which was above the efficacy threshold; and 90% (95% credible interval, 89 to 90). Between 6 and 24 months after gene transfer, sensory-nerve action potential amplitudes increased, stopped declining, or became recordable after being absent in 6 participants but remained absent in 8. CONCLUSIONS: Intrathecal gene transfer with scAAV9/JeT-GAN for giant axonal neuropathy was associated with adverse events and resulted in a possible benefit in motor function scores and other measures at some vector doses over a year. Further studies are warranted to determine the safety and efficacy of intrathecal AAV-mediated gene therapy in this disorder. (Funded by the National Institute of Neurological Disorders and Stroke and others; ClinicalTrials.gov number, NCT02362438.).


Subject(s)
Gene Transfer Techniques , Genetic Therapy , Giant Axonal Neuropathy , Child , Humans , Cytoskeletal Proteins/genetics , Genetic Therapy/adverse effects , Genetic Therapy/methods , Giant Axonal Neuropathy/genetics , Giant Axonal Neuropathy/therapy , Transgenes , Injections, Spinal
2.
Mol Cell ; 69(3): 426-437.e7, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29395064

ABSTRACT

R-loops are three-stranded nucleic acid structures found abundantly and yet often viewed as by-products of transcription. Studying cells from patients with a motor neuron disease (amyotrophic lateral sclerosis 4 [ALS4]) caused by a mutation in senataxin, we uncovered how R-loops promote transcription. In ALS4 patients, the senataxin mutation depletes R-loops with a consequent effect on gene expression. With fewer R-loops in ALS4 cells, the expression of BAMBI, a negative regulator of transforming growth factor ß (TGF-ß), is reduced; that then leads to the activation of the TGF-ß pathway. We uncovered that genome-wide R-loops influence promoter methylation of over 1,200 human genes. DNA methyl-transferase 1 favors binding to double-stranded DNA over R-loops. Thus, in forming R-loops, nascent RNA blocks DNA methylation and promotes further transcription. Hence, our results show that nucleic acid structures, in addition to sequences, influence the binding and activity of regulatory proteins.


Subject(s)
Gene Expression Regulation/genetics , Promoter Regions, Genetic , RNA Helicases/genetics , RNA Helicases/metabolism , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , DNA/genetics , DNA/ultrastructure , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , DNA Helicases , DNA Methylation/genetics , Humans , Membrane Proteins/metabolism , Multifunctional Enzymes , Mutation , Promoter Regions, Genetic/genetics , Protein Processing, Post-Translational , RNA/genetics , RNA/ultrastructure , RNA-Binding Motifs , Transcriptional Activation/genetics , Transforming Growth Factor beta/metabolism
3.
Muscle Nerve ; 69(3): 288-294, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37787098

ABSTRACT

INTRODUCTION/AIMS: Electrical impedance myography (EIM) is a noninvasive technique being used in clinical studies to characterize muscle by phase, reactance, and resistance after application of a low-intensity current. The aim of this study was to obtain 50-kHz EIM data from healthy volunteers (HVs) for use in future clinical and research studies, perform reliability tests on EIM outcome measures, and compare findings with muscle ultrasound variables. METHODS: Four arm and four leg muscles of HVs were evaluated using an EIM device with two sensors, P/N 20-0045 and P/N 014-009. Muscles were evaluated individually and eight-muscle average (8MU), four-muscle upper extremity average, and four-muscle lower extremity average. An intraclass correlation coefficient (ICC) was applied to assess interrater, intrarater, and intersensor reliability using a subset of HVs. Ultrasound studies on muscle thickness and elastography were also performed on a subset of HVs. RESULTS: For the P/N 20-0045 sensor, the 8MU EIM mean and standard deviation (n = 41) was 14.54 ± 3.31 for phase, 7.04 ± 1.22 for reactance, and 28.91 ± 7.63 for resistance. Reliability for 8MU phase (n = 22) was good to excellent for both interrater (n = 22, ICC = 0.920, 95% CI 0.820 to 0.966) and intrarater (n = 22, ICC = 0.950, 95% CI 0.778 to 0.983). The P/N 014-009 sensor had similar reliability findings. Correlation analyses showed no association between EIM and muscle thickness. DISCUSSION: EIM is a reproducible measure of muscle physiology. Obtaining EIM values from HVs allows us to gain a better understanding how EIM may be altered in diseased muscle.


Subject(s)
Muscle, Skeletal , Myography , Humans , Electric Impedance , Reproducibility of Results , Healthy Volunteers , Myography/methods , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/physiology
4.
Brain ; 144(10): 3239-3250, 2021 11 29.
Article in English | MEDLINE | ID: mdl-34114613

ABSTRACT

Giant axonal neuropathy (GAN) is an ultra-rare autosomal recessive, progressive neurodegenerative disease with early childhood onset that presents as a prominent sensorimotor neuropathy and commonly progresses to affect both the PNS and CNS. The disease is caused by biallelic mutations in the GAN gene located on 16q23.2, leading to loss of functional gigaxonin, a substrate specific ubiquitin ligase adapter protein necessary for the regulation of intermediate filament turnover. Here, we report on cross-sectional data from the first study visit of a prospectively collected natural history study of 45 individuals, age range 3-21 years with genetically confirmed GAN to describe and cross-correlate baseline clinical and functional cohort characteristics. We review causative variants distributed throughout the GAN gene in this cohort and identify a recurrent founder mutation in individuals with GAN of Mexican descent as well as cases of recurrent uniparental isodisomy. Through cross-correlational analysis of measures of strength, motor function and electrophysiological markers of disease severity, we identified the Motor Function Measure 32 to have the strongest correlation across measures and age in individuals with GAN. We analysed the Motor Function Measure 32 scores as they correspond to age and ambulatory status. Importantly, we identified and characterized a subcohort of individuals with a milder form of GAN and with a presentation similar to Charcot-Marie-Tooth disease. Such a clinical presentation is distinct from the classic presentation of GAN, and we demonstrate how the two groups diverge in performance on the Motor Function Measure 32 and other functional motor scales. We further present data on the first systematic clinical analysis of autonomic impairment in GAN as performed on a subset of the natural history cohort. Our cohort of individuals with genetically confirmed GAN is the largest reported to date and highlights the clinical heterogeneity and the unique phenotypic and functional characteristics of GAN in relation to disease state. The present work is designed to serve as a foundation for a prospective natural history study and functions in concert with the ongoing gene therapy trial for children with GAN.


Subject(s)
Giant Axonal Neuropathy/diagnostic imaging , Giant Axonal Neuropathy/physiopathology , Adolescent , Child , Child, Preschool , Cohort Studies , Cross-Sectional Studies , Female , Giant Axonal Neuropathy/genetics , Humans , Male , Young Adult
5.
Hum Genet ; 140(12): 1709-1731, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34652576

ABSTRACT

Microtubules are formed from heterodimers of alpha- and beta-tubulin, each of which has multiple isoforms encoded by separate genes. Pathogenic missense variants in multiple different tubulin isoforms cause brain malformations. Missense mutations in TUBB3, which encodes the neuron-specific beta-tubulin isotype, can cause congenital fibrosis of the extraocular muscles type 3 (CFEOM3) and/or malformations of cortical development, with distinct genotype-phenotype correlations. Here, we report fourteen individuals from thirteen unrelated families, each of whom harbors the identical NM_006086.4 (TUBB3):c.785G>A (p.Arg262His) variant resulting in a phenotype we refer to as the TUBB3 R262H syndrome. The affected individuals present at birth with ptosis, ophthalmoplegia, exotropia, facial weakness, facial dysmorphisms, and, in most cases, distal congenital joint contractures, and subsequently develop intellectual disabilities, gait disorders with proximal joint contractures, Kallmann syndrome (hypogonadotropic hypogonadism and anosmia), and a progressive peripheral neuropathy during the first decade of life. Subsets may also have vocal cord paralysis, auditory dysfunction, cyclic vomiting, and/or tachycardia at rest. All fourteen subjects share a recognizable set of brain malformations, including hypoplasia of the corpus callosum and anterior commissure, basal ganglia malformations, absent olfactory bulbs and sulci, and subtle cerebellar malformations. While similar, individuals with the TUBB3 R262H syndrome can be distinguished from individuals with the TUBB3 E410K syndrome by the presence of congenital and acquired joint contractures, an earlier onset peripheral neuropathy, impaired gait, and basal ganglia malformations.


Subject(s)
Facial Paralysis/genetics , Fibrosis/genetics , Mutation , Ophthalmoplegia/genetics , Peripheral Nervous System Diseases/genetics , Tubulin/genetics , Abnormalities, Multiple/genetics , Adolescent , Adult , Amino Acid Substitution , Arginine , Child , Child, Preschool , Facial Paralysis/diagnosis , Facial Paralysis/physiopathology , Female , Fibrosis/diagnosis , Fibrosis/physiopathology , Histidine , Humans , Infant , Male , Ophthalmoplegia/diagnosis , Ophthalmoplegia/physiopathology , Peripheral Nervous System Diseases/diagnosis , Peripheral Nervous System Diseases/physiopathology , Syndrome , Young Adult
6.
Am J Med Genet A ; 185(7): 2102-2107, 2021 07.
Article in English | MEDLINE | ID: mdl-34089226

ABSTRACT

A woman with ichthyosis, contractures, and progressive neuropathy represents the first case of phosphoserine aminotransferase deficiency diagnosed and treated in an adult. She has novel compound heterozygous mutations in the gene PSAT1. Treatment with high dose oral L-serine completely resolved the ichthyosis. Consideration of this diagnosis is important because early treatment with L-serine repletion can halt progression of neurodegeneration and potentially improve neurological disabilities. As exome sequencing becomes more widely implemented in the diagnostic evaluation of progressive neurodegenerative phenotypes, adult neurologists and geneticists will increasingly encounter later onset manifestations of inborn errors of metabolism classically considered in infancy and early childhood.


Subject(s)
Congenital Abnormalities/genetics , Ichthyosis/genetics , Serine/biosynthesis , Transaminases/genetics , Adult , Child, Preschool , Congenital Abnormalities/pathology , Female , Fetal Growth Retardation/genetics , Fetal Growth Retardation/metabolism , Fetal Growth Retardation/pathology , Humans , Ichthyosis/metabolism , Ichthyosis/pathology , Limb Deformities, Congenital/genetics , Limb Deformities, Congenital/pathology , Microcephaly/genetics , Microcephaly/pathology , Psychomotor Disorders/genetics , Psychomotor Disorders/pathology , Seizures/genetics , Seizures/pathology , Serine/deficiency , Serine/genetics , Sphingolipids/deficiency , Sphingolipids/genetics , Transaminases/deficiency , Exome Sequencing
7.
Muscle Nerve ; 63(4): 516-524, 2021 04.
Article in English | MEDLINE | ID: mdl-33389762

ABSTRACT

INTRODUCTION: Congenital facial weakness (CFW) can result from facial nerve paresis with or without other cranial nerve and systemic involvement, or generalized neuropathic and myopathic disorders. Moebius syndrome is one type of CFW. In this study we explored the utility of electrodiagnostic studies (EDx) in the evaluation of individuals with CFW. METHODS: Forty-three subjects enrolled prospectively into a dedicated clinical protocol and had EDx evaluations, including blink reflex and facial and peripheral nerve conduction studies, with optional needle electromyography. RESULTS: MBS and hereditary congenital facial paresis (HCFP) subjects had low-amplitude cranial nerve 7 responses without other neuropathic or myopathic findings. Carriers of specific pathogenic variants in TUBB3 had, in addition, a generalized sensorimotor axonal polyneuropathy with demyelinating features. Myopathic findings were detected in individuals with Carey-Fineman-Ziter syndrome, myotonic dystrophy, other undefined myopathies, or CFW with arthrogryposis, ophthalmoplegia, and other system involvement. DISCUSSION: EDx in CFW subjects can assist in characterizing the underlying pathogenesis, as well as guide diagnosis and genetic counseling.


Subject(s)
Facial Paralysis/congenital , Facial Paralysis/diagnosis , Mobius Syndrome/diagnosis , Muscular Diseases/diagnosis , Pierre Robin Syndrome/diagnosis , Adult , Diagnosis, Differential , Facial Paralysis/genetics , Facial Paralysis/physiopathology , Female , Heterozygote , Humans , Male , Mobius Syndrome/genetics , Mobius Syndrome/physiopathology , Muscular Diseases/genetics , Muscular Diseases/physiopathology , Mutation/genetics , Pierre Robin Syndrome/genetics , Pierre Robin Syndrome/physiopathology
8.
BMC Neurol ; 21(1): 393, 2021 Oct 09.
Article in English | MEDLINE | ID: mdl-34627174

ABSTRACT

BACKGROUND: Xeroderma pigmentosum (XP) is a rare autosomal recessive genetic disorder with defective DNA nucleotide excision repair and associated with a high frequency of skin cancer. Approximately 25% of patients develop progressive neurological degeneration. Complementation groups XP-A and XP-D are most frequently associated with neurological disorders. DESIGN/METHODS: This is a retrospective review of patients with XP who were evaluated at NIH from 1986 to 2015 and had nerve conduction studies (NCS). In the complementation groups with peripheral neuropathy, further comparisons of the NCS were made with audiological, brain imaging, neuropsychological assessments that were also performed on most of the patients. Limited neuropathology of XP-A and XP-D patients were examined.. RESULTS: The 33 patients had NCS: XP-A (9 patients), XP-C (7 patients), XP-D (10 patients), XP-E (1 patient), XP-V (4 patients), and XP-unknown (2 patients). Peripheral neuropathy based on nerve conduction studies was documented only in two complementation groups: 78% (7/9) of XP-A patients had a sensorimotor neuropathy while 50% (5/10) of XP-D patients had a sensory neuropathy only. Analysis of sural sensory nerve amplitude in both complementation groups XP-A and XP-D correlated with sensorineural hearing loss (SNHL), MRI/CT severity, and Full-scale Intelligence Quotient (IQ). Analysis of fibular motor nerve amplitude in complementation XP-A correlated with SNHL and MRI/CT severity. Limited follow-up studies showed gradual loss of NCS responses compared to an earlier and more rapid progression of the hearing loss. CONCLUSIONS: Despite similar brain imaging and audiological findings patients, XP-A and XP-D complementation groups differ in the type of neuropathy, sensorimotor versus sensory alone. A few cases suggest that sensorineural hearing loss may precede abnormal NCS in XP and therefore serve as valuable clinical indicators of XP patients that will later develop peripheral neuropathy.


Subject(s)
Peripheral Nervous System Diseases , Xeroderma Pigmentosum , DNA Repair , Humans , Neural Conduction , Peripheral Nervous System Diseases/diagnostic imaging , Peripheral Nervous System Diseases/genetics , Retrospective Studies , Xeroderma Pigmentosum/complications , Xeroderma Pigmentosum/genetics
9.
Am J Med Genet A ; 182(5): 1278-1283, 2020 05.
Article in English | MEDLINE | ID: mdl-32150337

ABSTRACT

Waardenburg syndrome (WS) is a group of genetic disorders associated with varying components of sensorineural hearing loss and abnormal pigmentation of the hair, skin, and eyes. There exist four different WS subtypes, each defined by the absence or presence of additional features. One of the genes associated with WS is SOX10, a key transcription factor for the development of neural crest-derived lineages. Here we report a 12-year-old boy with a novel de novo SOX10 frameshift mutation and unique combination of clinical features including primary peripheral demyelinating neuropathy, hearing loss and visual impairment but absence of Hirschsprung disease and the typical pigmentary changes of hair or skin. This expands the spectrum of currently recognized phenotypes associated with WS and illustrates the phenotypic heterogeneity of SOX10-associated WS.


Subject(s)
Genetic Predisposition to Disease , Hirschsprung Disease/genetics , SOXE Transcription Factors/genetics , Waardenburg Syndrome/genetics , Autoimmune Diseases of the Nervous System/genetics , Autoimmune Diseases of the Nervous System/physiopathology , Child , Demyelinating Diseases/genetics , Demyelinating Diseases/physiopathology , Frameshift Mutation/genetics , Hirschsprung Disease/physiopathology , Humans , Male , Pedigree , Phenotype , Waardenburg Syndrome/physiopathology
10.
Am J Med Genet A ; 182(10): 2272-2283, 2020 10.
Article in English | MEDLINE | ID: mdl-32776697

ABSTRACT

Synaptotagmins are integral synaptic vesicle membrane proteins that function as calcium sensors and regulate neurotransmitter release at the presynaptic nerve terminal. Synaptotagmin-2 (SYT2), is the major isoform expressed at the neuromuscular junction. Recently, dominant missense variants in SYT2 have been reported as a rare cause of distal motor neuropathy and myasthenic syndrome, manifesting with stable or slowly progressive distal weakness of variable severity along with presynaptic NMJ impairment. These variants are thought to have a dominant-negative effect on synaptic vesicle exocytosis, although the precise pathomechanism remains to be elucidated. Here we report seven patients of five families, with biallelic loss of function variants in SYT2, clinically manifesting with a remarkably consistent phenotype of severe congenital onset hypotonia and weakness, with variable degrees of respiratory involvement. Electrodiagnostic findings were consistent with a presynaptic congenital myasthenic syndrome (CMS) in some. Treatment with an acetylcholinesterase inhibitor pursued in three patients showed clinical improvement with increased strength and function. This series further establishes SYT2 as a CMS-disease gene and expands its clinical and genetic spectrum to include recessive loss-of-function variants, manifesting as a severe congenital onset presynaptic CMS with potential treatment implications.


Subject(s)
Genetic Predisposition to Disease , Muscle Hypotonia/genetics , Myasthenic Syndromes, Congenital/genetics , Synaptotagmin II/genetics , Adolescent , Child , Child, Preschool , Female , Humans , Male , Muscle Hypotonia/complications , Muscle Hypotonia/pathology , Muscle Weakness/genetics , Muscle Weakness/pathology , Mutation, Missense/genetics , Myasthenic Syndromes, Congenital/complications , Myasthenic Syndromes, Congenital/pathology , Pedigree , Phenotype , Synaptic Transmission/genetics
11.
Muscle Nerve ; 61(2): 143-155, 2020 02.
Article in English | MEDLINE | ID: mdl-31724199

ABSTRACT

Nerve conduction studies and needle electromyography, collectively known as electrodiagnostic (EDX) studies, have been available for pediatric patients for decades, but the accessibility of this diagnostic modality and the approach to testing vary significantly depending on the physician and institution. The maturation of molecular diagnostic approaches and other diagnostic technologies such as neuromuscular ultrasound indicate that an analysis of current needs and practices for EDX studies in the pediatric population is warranted. The American Association of Neuromuscular & Electrodiagnostic Medicine convened a consensus panel to perform literature searches, share collective experiences, and develop a consensus statement. The panel found that electrodiagnostic studies continue to have high utility for the diagnosis of numerous childhood neuromuscular disorders, and that standardized approaches along with the use of high-quality reference values are important to maximize the diagnostic yield of these tests in infants, children, and adolescents.


Subject(s)
Electrodiagnosis/methods , Neuromuscular Diseases/diagnosis , Pediatrics/methods , Adolescent , Adult , Child , Child, Preschool , Consensus , Electric Stimulation , Electrodiagnosis/standards , Electromyography , Evoked Potentials , Humans , Infant , Infant, Newborn , Informed Consent , Mononeuropathies/diagnosis , Mononeuropathies/therapy , Neuromuscular Diseases/therapy , Patient Comfort , Pediatrics/standards , Reference Values , Young Adult
12.
Muscle Nerve ; 57(1): 54-60, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28224647

ABSTRACT

INTRODUCTION: Electrical impedance myography (EIM) is a noninvasive electrophysiological technique that characterizes muscle properties through bioimpedance. We compared EIM measurements to function, strength, and disease severity in a population with congenital muscular dystrophy (CMD). METHODS: Forty-one patients with CMD, either collagen 6 related disorders (COL6-RD; n = 21) or laminin α-2-related disorders (LAMA2-RD; n = 20), and 21 healthy pediatric controls underwent 2 yearly EIM exams. In the CMD cohorts, EIM was compared with functional and strength measurements. RESULTS: Both CMD cohorts exhibited change over time and had correlation with disease severity. The 50-kHZ phase correlated well with function and strength in the COL6-RD cohort but not in the LAMA2-RD cohort. DISCUSSION: EIM is a potentially useful measure in clinical studies with CMD because of its sensitivity to change over a 1-year period and correlation with disease severity. For COL6-RD, there were also functional and strength correlations. Muscle Nerve 57: 54-60, 2018.


Subject(s)
Collagen Type VI/genetics , Electric Impedance , Laminin/genetics , Muscular Dystrophies/congenital , Muscular Dystrophies/genetics , Myography/methods , Adolescent , Child , Child, Preschool , Cohort Studies , Cross-Sectional Studies , Female , Humans , Male , Muscle Strength , Neurologic Examination/methods , Running , Sensitivity and Specificity , Severity of Illness Index
13.
Genet Med ; 19(2): 160-168, 2017 02.
Article in English | MEDLINE | ID: mdl-27388694

ABSTRACT

PURPOSE: The cytosolic enzyme N-glycanase 1, encoded by NGLY1, catalyzes cleavage of the ß-aspartyl glycosylamine bond of N-linked glycoproteins, releasing intact N-glycans from proteins bound for degradation. In this study, we describe the clinical spectrum of NGLY1 deficiency (NGLY1-CDDG). METHODS: Prospective natural history protocol. RESULTS: In 12 individuals ages 2 to 21 years with confirmed, biallelic, pathogenic NGLY1 mutations, we identified previously unreported clinical features, including optic atrophy and retinal pigmentary changes/cone dystrophy, delayed bone age, joint hypermobility, and lower than predicted resting energy expenditure. Novel laboratory findings include low cerebral spinal fluid (CSF) total protein and albumin and unusually high antibody titers toward rubella and/or rubeola following vaccination. We also confirmed and further quantified previously reported findings noting that decreased tear production, transient transaminitis, small feet, a complex hyperkinetic movement disorder, and varying degrees of global developmental delay with relatively preserved socialization are the most consistent features. CONCLUSION: Our prospective phenotyping expands the clinical spectrum of NGLY1-CDDG, offers prognostic information, and provides baseline data for evaluating therapeutic interventions.Genet Med 19 2, 160-168.


Subject(s)
Developmental Disabilities/genetics , Glycoproteins/genetics , Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase/genetics , Adolescent , Adult , Albumins/cerebrospinal fluid , Cerebrospinal Fluid Proteins/genetics , Child , Child, Preschool , Developmental Disabilities/physiopathology , Female , Glycosylation , Humans , Male , Mutation , Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase/deficiency , Phenotype , Young Adult
14.
Muscle Nerve ; 55(3): 359-365, 2017 03.
Article in English | MEDLINE | ID: mdl-27429304

ABSTRACT

INTRODUCTION: Chediak-Higashi disease (CHD) is a rare autosomal recessive disorder with hematologic, infectious, pigmentary, and neurologic manifestations. Classic CHD (C-CHD) presents in early childhood with severe infectious or hematologic complications unless treated with bone marrow transplantation. Atypical CHD (A-CHD) has less severe hematologic and infectious manifestations. Both C-CHD and A-CHD develop neurological problems. METHODS: Eighteen patients with CHD (9 A-CHD and 9 C-CHD) underwent electrodiagnostic studies as part of a natural history study (NCT 00005917). Longitudinal studies were available for 10 patients. RESULTS: All A-CHD patients had either sensory neuropathy, sensorimotor neuropathy, and/or diffuse neurogenic findings. In C-CHD, 3 adults had sensorimotor neuropathies with diffuse neurogenic findings, and 1 adult had a sensory neuropathy. The 5 children with C-CHD had normal electrodiagnostic findings. CONCLUSIONS: CHD can result in sensory or sensorimotor neuropathies and/or a diffuse motor neuronopathy. It may take 2-3 decades for the neuropathic findings to develop, because children appear to be spared. Muscle Nerve 55: 359-365, 2017.


Subject(s)
Action Potentials/physiology , Chediak-Higashi Syndrome/pathology , Neural Conduction/physiology , Peripheral Nervous System/physiopathology , Adolescent , Adult , Child , Child, Preschool , Electromyography , Female , Humans , Male , Young Adult
15.
Muscle Nerve ; 53(3): 402-6, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26179210

ABSTRACT

INTRODUCTION: Electrical impedance myography (EIM) is an emerging non-invasive, highly reproducible electrophysiological technique that objectively characterizes muscle structure and composition by measuring bioimpedance. We assessed the ability of EIM ability to discriminate 2 forms of congenital muscular dystrophy (CMD), laminin α2 (LAMA2)-deficient CMD and collagen VI-deficient (COL6) CMD, from a group of healthy children. We also investigated correlations between subcutaneous fat thickness and EIM parameters. METHODS: Twenty-eight children with LAMA2 CMD (n = 12) or COL6 (n = 16) CMD and 18 normal children underwent EIM testing. RESULTS: The EIM 50-kHz phase was decreased in LAMA2 and COL6 CMD when compared with controls (P < 0.001). Reactance, however, was decreased in COL6 but not LAMA2 CMD compared with controls (P < 0.001). CONCLUSIONS: Our findings suggest that EIM may be useful in discriminating CMD from controls and may serve as a useful biomarker to follow disease progression in clinical trials.


Subject(s)
Electric Impedance , Muscular Dystrophies/diagnosis , Muscular Dystrophies/physiopathology , Adipose Tissue/pathology , Adolescent , Analysis of Variance , Child , Collagen/genetics , Electromyography , Female , Humans , Laminin/genetics , Male , Muscle, Skeletal/pathology , Muscular Dystrophies/genetics , Skin/pathology
16.
Muscle Nerve ; 54(2): 264-9, 2016 08.
Article in English | MEDLINE | ID: mdl-26799151

ABSTRACT

INTRODUCTION: Patients with mutations in C9orf72 can have amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), or ALS-FTD. The goals were to establish whether cortical hyperexcitability occurs in C9orf72 patients with different clinical presentations. METHODS: Cortical thresholds and silent periods were measured in thenar muscles in 19 participants with C9orf72 expansions and 21 healthy controls using transcranial magnetic stimulation (TMS). El Escorial and Rascovsky criteria were used to diagnose ALS and FTD. Fourteen participants with C9orf72 expansions were re-tested 6 months later. Correlations with finger-tapping speed, timed peg test, the ALS functional rating scale, and Dementia Rating Scale were examined. RESULTS: Most participants with C9orf72 expansions had normal or low cortical thresholds. Among them, ALS patients had the lowest thresholds and significantly shorter silent periods. Thresholds correlated with timed peg-test scores. TMS did not correlate with the Dementia Rating Scale. CONCLUSIONS: TMS measures of cortical excitability may serve as noninvasive biomarkers of ALS disease activity. Muscle Nerve, 2016 Muscle Nerve 54: 264-269, 2016.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Cerebral Cortex/physiopathology , Evoked Potentials, Motor/physiology , Mutation/genetics , Proteins/genetics , Adult , C9orf72 Protein , Electromyography , Evoked Potentials, Motor/genetics , Female , Follow-Up Studies , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Functional Laterality , Humans , Male , Middle Aged , Neuropsychological Tests , Phenotype , Statistics, Nonparametric , Transcranial Magnetic Stimulation
20.
Neuromuscul Disord ; 33(3): 257-262, 2023 03.
Article in English | MEDLINE | ID: mdl-36774715

ABSTRACT

MYH2 encodes MyHCIIa, a myosin heavy chain found in fast type 2A fibers. Pathogenic variants in this gene have previously been implicated in dominant and recessive forms of myopathy. Three individuals reported here are part of a family in which four generations of individuals are affected by a slowly progressive, predominantly proximal myopathy in an autosomal dominant inheritance pattern. Affected individuals in this family lacked classic features of an MYH2-associated myopathy such as congenital contractures and ophthalmoplegia. A novel variant, MYH2 c.5673+1G>C, was detected in the proband and subsequently found to segregate with disease in five additional family members. Further studies demonstrated that this variant affects splicing, resulting in novel transcripts. These data and muscle biopsy findings in the proband, indicate that this family's MYH2 variant is causative of their myopathy, adding to our understanding of the clinical and molecular characteristics of the disease.


Subject(s)
Contracture , Muscular Diseases , Humans , Muscular Diseases/genetics , Family , Muscles/pathology , Myosin Heavy Chains/genetics
SELECTION OF CITATIONS
SEARCH DETAIL