Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Anim Microbiome ; 6(1): 9, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38438939

ABSTRACT

BACKGROUND: Alternatives to antibiotic as growth promoters in agriculture, such as supplemental prebiotics, are required to maintain healthy and high performing animals without directly contributing to antimicrobial resistance bioburden. While the gut microbiota of broiler hens has been well established and successfully correlated to performance, to our knowledge, a study has yet to be completed on the effect of prebiotic supplementation on correlating the mature laying hen productivity and microbiota. This study focused on establishing the impact of a yeast derived prebiotic, mannan rich fraction (MRF), on the cecal microbiota of late laying hens. This study benefitted from large sample sizes so intra- and intergroup variation effects could be statistically accounted for. RESULTS: Taxonomic richness was significantly greater at all taxonomic ranks and taxonomic evenness was significantly lower for all taxonomic ranks in MRF-supplemented birds (P < 0.005). Use of principal coordinate analyses and principal component analyses found significant variation between treatment groups. When assessed for compositional uniformity (an indicator of flock health), microbiota in MRF-supplemented birds was more uniform than control birds at the species level. From a food safety and animal welfare perspective, Campylobacter jejuni was significantly lower in abundance in MRF-supplemented birds. In this study, species associated with high weight gain (an anticorrelator of performance in laying hens) were significantly lower in abundance in laying hens while health-correlated butyrate and propionate producing species were significantly greater in abundance in MRF-supplemented birds. CONCLUSIONS: The use of prebiotics may be a key factor in controlling the microbiota balance limiting agri-food chain pathogen persistence and in promoting uniformity. In previous studies, increased α- and ß-diversity indices were determinants of pathogen mitigation and performance. MRF-supplemented birds in this study established greater α- and ß-diversity indices in post-peak laying hens, greater compositional uniformity across samples, a lower pathogenic bioburden and a greater abundance of correlators of performance.

2.
Sci Total Environ ; 886: 163926, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37156383

ABSTRACT

Land spreading of animal manure is an essential process in agriculture. Despite the importance of grassland in global food security the potential of the grass phyllosphere as a reservoir of antimicrobial resistance (AMR) is unknown. Additionally, the comparative risk associated with different manure sources is unclear. Due to the One Health nature of AMR there is an urgent need to fully understand the risk associated with AMR at the agriculture - environmental nexus. We performed a grassland field study to assess and compare the relative and temporal impact of bovine, swine and poultry manure application on the grass phyllosphere and soil microbiome and resistome over a period of four months, using 16S rRNA amplicon sequencing and high-throughput quantitative PCR (HT-qPCR). The soil and grass phyllosphere contained a diverse range of antimicrobial resistance genes (ARGs) and mobile genetic elements (MGEs). Manure treatment was found to introduce ARGs belonging to clinically important antimicrobial classes, such as aminoglycoside and sulphonamide into grass and soil. Temporal analysis of ARGs and MGEs associated with manure treatment indicated ARGs patterns were similar across the different manure types in the manure treated soil and grass phyllosphere. Manure treatment resulted in the enrichment in members of the indigenous microbiota and the introduction of manure associated bacteria, with this impact extending past the recommended six-week exclusion period. However, these bacteria were in low relative abundance and manure treatment was not found to significantly impact the overall composition of the microbiome or resistome. This provides evidence that the current guidelines facilitate reduction of biological risk to livestock. Additionally, in soil and grass samples MGEs correlated with ARGs from clinically important antimicrobial classes, indicating the key role MGEs play in horizontal gene transfer in agricultural grassland. These results demonstrate the role of the grass phyllosphere as an under-studied sink of AMR.


Subject(s)
Genes, Bacterial , Microbiota , Animals , Cattle , Swine , Manure/analysis , Poultry , RNA, Ribosomal, 16S/genetics , Grassland , Drug Resistance, Microbial/genetics , Soil Microbiology , Agriculture , Bacteria/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/analysis , Soil , Real-Time Polymerase Chain Reaction , Poaceae
3.
Anim Microbiome ; 4(1): 66, 2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36536475

ABSTRACT

BACKGROUND: The broiler gastrointestinal microbiome is a potent flock performance modulator yet may also serve as a reservoir for pathogen entry into the food chain. The goal of this project was to characterise the effect of mannan rich fraction (MRF) supplementation on microbiome diversity and composition of the intestinum tenue and cecum of commercial broilers. This study also aimed to address some of the intrinsic biases that exist in microbiome studies which arise due to the extensive disparity in 16S rRNA gene copy numbers between bacterial species and due to large intersample variation. RESULTS: We observed a divergent yet rich microbiome structure between different anatomical sites and observed the explicit effect MRF supplementation had on community structure, diversity, and pathogen modulation. Birds supplemented with MRF displayed significantly higher species richness in the cecum and significantly different bacterial community composition in each gastrointestinal (GI) tract section. Supplemented birds had lower levels of the zoonotic pathogens Escherichia coli and Clostridioides difficile across all three intestinum tenue sites highlighting the potential of MRF supplementation in maintaining food chain integrity. Higher levels of probiotic genera (eg. Lactobacillus and Blautia) were also noted in the MRF supplemented birds. Following MRF supplementation, the cecum displayed higher relative abundances of both short chain fatty acid (SFCA) synthesising bacteria and SCFA concentrations. CONCLUSIONS: Mannan rich fraction addition has been observed to reduce the bioburden of pathogens in broilers and to promote greater intestinal tract microbial biodiversity. This study is the first, to our knowledge, to investigate the effect of mannan-rich fraction supplementation on the microbiome associated with different GI tract anatomical geographies. In addition to this novelty, this study also exploited machine learning and biostatistical techniques to correct the intrinsic biases associated with microbiome community studies to enable a more robust understanding of community structure.

4.
J Med Microbiol ; 71(10)2022 Oct.
Article in English | MEDLINE | ID: mdl-36301610

ABSTRACT

Introduction. Enterococcus faecium has emerged as an important nosocomial pathogen, which is increasingly difficult to treat due to the genetic acquisition of vancomycin resistance. Ireland has a recalcitrant vancomycin-resistant bloodstream infection rate compared to other developed countries.Hypothesis/Gap statement. Vancomycin resistance rates persist amongst E. faecium isolates from Irish hospitals. The evolutionary genomics governing these trends have not been fully elucidated.Methodology. A set of 28 vancomycin-resistant isolates was sequenced to construct a dataset alongside 61 other publicly available Irish genomes. This dataset was extensively analysed using in silico methodologies (comparative genomics, pangenomics, phylogenetics, genotypics and comparative functional analyses) to uncover distinct evolutionary, coevolutionary and clinically relevant population trends.Results. These results suggest that a stable (in terms of genome size, GC% and number of genes), yet genetically diverse population (in terms of gene content) of E. faecium persists in Ireland with acquired resistance arising via plasmid acquisition (vanA) or, to a lesser extent, chromosomal recombination (vanB). Population analysis revealed five clusters with one cluster partitioned into four clades which transcend isolation dates. Pangenomic and recombination analyses revealed an open (whole genome and chromosomal specific) pangenome illustrating a rampant evolutionary pattern. Comparative resistomics and virulomics uncovered distinct chromosomal and mobilomal propensity for multidrug resistance, widespread chromosomal point-mutation-mediated resistance and chromosomally harboured arsenals of virulence factors. Interestingly, a potential difference in biofilm formation strategies was highlighted by coevolutionary analysis, suggesting differential biofilm genotypes between vanA and vanB isolates.Conclusions. These results highlight the evolutionary history of Irish E. faecium isolates and may provide insight into underlying infection dynamics in a clinical setting. Due to the apparent ease of vancomycin resistance acquisition over time, susceptible E. faecium should be concurrently reduced in Irish hospitals to mitigate potential resistant infections.


Subject(s)
Enterococcus faecium , Gram-Positive Bacterial Infections , Vancomycin-Resistant Enterococci , Humans , Enterococcus faecium/genetics , Vancomycin Resistance/genetics , Vancomycin/pharmacology , Gram-Positive Bacterial Infections/epidemiology , Hospitals , Genomics , Anti-Bacterial Agents/pharmacology , Vancomycin-Resistant Enterococci/genetics , Bacterial Proteins/genetics
5.
Microb Genom ; 8(8)2022 08.
Article in English | MEDLINE | ID: mdl-35960657

ABSTRACT

Our study provides novel insights into the global nature of antimicrobial resistance (AMR) plasmids across the food chain. We provide compelling evidence of the globetrotting nature of AMR plasmids and the need for surveillance to sequence plasmids with a template of analyses for others to expand these data. The AMR plasmids analysed were detected in 63 countries and in samples from humans, animals and the environment. They contained a combination of known and novel AMR genes, metal resistance genes, virulence factors, phage and replicon types.


Subject(s)
Anti-Infective Agents , One Health , Animals , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Humans , Plasmids/genetics
SELECTION OF CITATIONS
SEARCH DETAIL