Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Chemistry ; 30(22): e202400066, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38366887

ABSTRACT

Photoisomerizable peptides are promising drug candidates in photopharmacology. While azobenzene- and diarylethene-containing photoisomerizable peptides have already demonstrated their potential in this regard, reports on the use of spiropyrans to photoregulate bioactive peptides are still scarce. This work focuses on the design and synthesis of a spiropyran-derived amino acid, (S)-2-amino-3-(6'-methoxy-1',3',3'-trimethylspiro-[2H-1-benzopyran-2,2'-indolin-6-yl])propanoic acid, which is suitable for the preparation of photoisomerizable peptides. The utility of this amino acid is demonstrated by incorporating it into the backbone of BP100, a known membrane-active peptide, and by examining the photoregulation of the membrane perturbation by the spiropyran-containing peptides. The toxicity of the peptides (against the plant cell line BY-2), their bacteriotoxicity (E. coli), and actin-auxin oscillator modulation ability were shown to be significantly dependent on the photoisomeric state of the spiropyran unit.


Subject(s)
Escherichia coli , Indoles , Nitro Compounds , Peptides , Benzopyrans/chemistry , Amino Acids
2.
Org Biomol Chem ; 21(26): 5433-5439, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37335076

ABSTRACT

An analogue of a toxic moiety (TM84) of natural product agrocin 84 containing threonine amide instead of 2,3-dihydroxy-4-methylpentanamide was prepared and evaluated as a putative Plasmodium falciparum threonyl t-RNA synthetase (PfThrRS) inhibitor. This TM84 analogue features submicromolar inhibitory potency (IC50 = 440 nM) comparable to that of borrelidin (IC50 = 43 nM) and therefore complements chemotypes known to inhibit malarial PfThrRS, which are currently limited to borrelidin and its analogues. The crystal structure of the inhibitor in complex with the E. coli homologue enzyme (EcThrRS) was obtained, revealing crucial ligand-protein interactions that will pave the way for the design of novel ThrRS inhibitors.


Subject(s)
Threonine-tRNA Ligase , Escherichia coli , Adenine Nucleotides
3.
J Chem Inf Model ; 62(13): 3263-3273, 2022 07 11.
Article in English | MEDLINE | ID: mdl-35712895

ABSTRACT

Selectivity is a major issue in the development of drugs targeting pathogen aspartic proteases. Here, we explore the selectivity-determining factors by studying specifically designed malaria aspartic protease (plasmepsin) open-flap inhibitors. Metadynamics simulations are used to uncover the complex binding/unbinding pathways of these inhibitors and describe the critical transition states in atomistic resolution. The simulation results are compared with experimentally determined enzymatic activities. Our findings demonstrate that plasmepsin inhibitor selectivity can be achieved by targeting the flap loop with hydrophobic substituents that enable ligand binding under the flap loop, as such a behavior is not observed for several other aspartic proteases. The ability to estimate the selectivity of compounds before they are synthesized is of considerable importance in drug design; therefore, we expect that our approach will be useful in selective inhibitor designs against not only aspartic proteases but also other enzyme classes.


Subject(s)
Antimalarials , Aspartic Acid Endopeptidases , Plasmodium falciparum , Protease Inhibitors , Antimalarials/chemistry , Aspartic Acid Endopeptidases/antagonists & inhibitors , Aspartic Acid Endopeptidases/chemistry , Computer Simulation , Drug Design , Malaria/drug therapy , Plasmodium falciparum/drug effects , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Protozoan Proteins/chemistry
4.
Arch Pharm (Weinheim) ; 351(9): e1800151, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30063266

ABSTRACT

The spread of drug-resistant malaria parasites urges the search for new antimalarial drugs. Malarial aspartic proteases - plasmepsins (Plms) - are differentially expressed in multiple stages of the Plasmodium parasite's lifecycle and are considered as attractive drug targets. We report the development of novel azole-based non-peptidomimetic plasmepsin inhibitors that have been designed by bioisosteric substitution of the amide moiety in the Actelion amino-piperazine inhibitors. The best triazole-based inhibitors show submicromolar potency toward Plm II, which is comparable to that of the parent Actelion compounds. The new inhibitors can be used as a starting point for the development of a resistance-free antimalarial drug targeting the non-digestive Plm IX or X, which are essential for the malaria parasite life cycle.


Subject(s)
Antimalarials/pharmacology , Aspartic Acid Endopeptidases/antagonists & inhibitors , Azoles/pharmacology , Plasmodium falciparum/drug effects , Protease Inhibitors/pharmacology , Antimalarials/chemical synthesis , Antimalarials/chemistry , Aspartic Acid Endopeptidases/metabolism , Azoles/chemical synthesis , Azoles/chemistry , Parasitic Sensitivity Tests , Plasmodium falciparum/metabolism , Protease Inhibitors/chemical synthesis , Protease Inhibitors/chemistry
5.
Antimicrob Agents Chemother ; 60(5): 3219-21, 2016 05.
Article in English | MEDLINE | ID: mdl-26976861

ABSTRACT

GSK2251052 is a broad-spectrum antibacterial inhibitor of leucyl tRNA-synthetase (LeuRS) that has been evaluated in phase II clinical trials. Here, we report the identification of a clinical isolate of Staphylococcus aureus that exhibits reduced susceptibility to GSK2251052 without prior exposure to the compound and demonstrate that this phenotype is attributable to a single amino acid polymorphism (P329) within the editing domain of LeuRS.


Subject(s)
Anti-Bacterial Agents/pharmacology , Boron Compounds/pharmacology , Polymorphism, Genetic/genetics , Staphylococcus aureus/drug effects , Bacterial Proteins/genetics , Leucine-tRNA Ligase/genetics , Leucine-tRNA Ligase/metabolism , Staphylococcus aureus/genetics , Staphylococcus aureus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL