Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 97
Filter
Add more filters

Country/Region as subject
Publication year range
1.
BMC Med ; 21(1): 93, 2023 03 13.
Article in English | MEDLINE | ID: mdl-36907864

ABSTRACT

BACKGROUND: Childhood maltreatment is associated with depression and cardiometabolic disease in adulthood. However, the relationships with these two diseases have so far only been evaluated in different samples and with different methodology. Thus, it remains unknown how the effect sizes magnitudes for depression and cardiometabolic disease compare with each other and whether childhood maltreatment is especially associated with the co-occurrence ("comorbidity") of depression and cardiometabolic disease. This pooled analysis examined the association of childhood maltreatment with depression, cardiometabolic disease, and their comorbidity in adulthood. METHODS: We carried out an individual participant data meta-analysis on 13 international observational studies (N = 217,929). Childhood maltreatment comprised self-reports of physical, emotional, and/or sexual abuse before 18 years. Presence of depression was established with clinical interviews or validated symptom scales and presence of cardiometabolic disease with self-reported diagnoses. In included studies, binomial and multinomial logistic regressions estimated sociodemographic-adjusted associations of childhood maltreatment with depression, cardiometabolic disease, and their comorbidity. We then additionally adjusted these associations for lifestyle factors (smoking status, alcohol consumption, and physical activity). Finally, random-effects models were used to pool these estimates across studies and examined differences in associations across sex and maltreatment types. RESULTS: Childhood maltreatment was associated with progressively higher odds of cardiometabolic disease without depression (OR [95% CI] = 1.27 [1.18; 1.37]), depression without cardiometabolic disease (OR [95% CI] = 2.68 [2.39; 3.00]), and comorbidity between both conditions (OR [95% CI] = 3.04 [2.51; 3.68]) in adulthood. Post hoc analyses showed that the association with comorbidity was stronger than with either disease alone, and the association with depression was stronger than with cardiometabolic disease. Associations remained significant after additionally adjusting for lifestyle factors, and were present in both males and females, and for all maltreatment types. CONCLUSIONS: This meta-analysis revealed that adults with a history of childhood maltreatment suffer more often from depression and cardiometabolic disease than their non-exposed peers. These adults are also three times more likely to have comorbid depression and cardiometabolic disease. Childhood maltreatment may therefore be a clinically relevant indicator connecting poor mental and somatic health. Future research should investigate the potential benefits of early intervention in individuals with a history of maltreatment on their distal mental and somatic health (PROSPERO CRD42021239288).


Subject(s)
Cardiovascular Diseases , Child Abuse , Male , Adult , Female , Child , Humans , Depression , Child Abuse/psychology , Comorbidity , Self Report , Cardiovascular Diseases/epidemiology
2.
J Magn Reson Imaging ; 58(6): 1797-1812, 2023 12.
Article in English | MEDLINE | ID: mdl-36929232

ABSTRACT

BACKGROUND: Biological heart age estimation can provide insights into cardiac aging. However, existing studies do not consider differential aging across cardiac regions. PURPOSE: To estimate biological age of the left ventricle (LV), right ventricle (RV), myocardium, left atrium, and right atrium using magnetic resonance imaging radiomics phenotypes and to investigate determinants of aging by cardiac region. STUDY TYPE: Cross-sectional. POPULATION: A total of 18,117 healthy UK Biobank participants including 8338 men (mean age = 64.2 ± 7.5) and 9779 women (mean age = 63.0 ± 7.4). FIELD STRENGTH/SEQUENCE: A 1.5 T/balanced steady-state free precession. ASSESSMENT: An automated algorithm was used to segment the five cardiac regions, from which radiomic features were extracted. Bayesian ridge regression was used to estimate biological age of each cardiac region with radiomics features as predictors and chronological age as the output. The "age gap" was the difference between biological and chronological age. Linear regression was used to calculate associations of age gap from each cardiac region with socioeconomic, lifestyle, body composition, blood pressure and arterial stiffness, blood biomarkers, mental well-being, multiorgan health, and sex hormone exposures (n = 49). STATISTICAL TEST: Multiple testing correction with false discovery method (threshold = 5%). RESULTS: The largest model error was with RV and the smallest with LV age (mean absolute error in men: 5.26 vs. 4.96 years). There were 172 statistically significant age gap associations. Greater visceral adiposity was the strongest correlate of larger age gaps, for example, myocardial age gap in women (Beta = 0.85, P = 1.69 × 10-26 ). Poor mental health associated with large age gaps, for example, "disinterested" episodes and myocardial age gap in men (Beta = 0.25, P = 0.001), as did a history of dental problems (eg LV in men Beta = 0.19, P = 0.02). Higher bone mineral density was the strongest associate of smaller age gaps, for example, myocardial age gap in men (Beta = -1.52, P = 7.44 × 10-6 ). DATA CONCLUSION: This work demonstrates image-based heart age estimation as a novel method for understanding cardiac aging. EVIDENCE LEVEL: 1. TECHNICAL EFFICACY: Stage 1.


Subject(s)
Heart Ventricles , Heart , Male , Humans , Female , Middle Aged , Aged , Cross-Sectional Studies , Bayes Theorem , Heart/diagnostic imaging , Heart Ventricles/diagnostic imaging , Aging/physiology , Magnetic Resonance Imaging , Ventricular Function, Left/physiology
3.
Eur Radiol ; 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37987834

ABSTRACT

OBJECTIVES: To use pericardial adipose tissue (PAT) radiomics phenotyping to differentiate existing and predict future heart failure (HF) cases in the UK Biobank. METHODS: PAT segmentations were derived from cardiovascular magnetic resonance (CMR) studies using an automated quality-controlled model to define the region-of-interest for radiomics analysis. Prevalent (present at time of imaging) and incident (first occurrence after imaging) HF were ascertained using health record linkage. We created balanced cohorts of non-HF individuals for comparison. PyRadiomics was utilised to extract 104 radiomics features, of which 28 were chosen after excluding highly correlated ones (0.8). These features, plus sex and age, served as predictors in binary classification models trained separately to detect (1) prevalent and (2) incident HF. We tested seven modeling methods using tenfold nested cross-validation and examined feature importance with explainability methods. RESULTS: We studied 1204 participants in total, 297 participants with prevalent (60 ± 7 years, 21% female) and 305 with incident (61 ± 6 years, 32% female) HF, and an equal number of non-HF comparators. We achieved good discriminative performance for both prevalent (voting classifier; AUC: 0.76; F1 score: 0.70) and incident (light gradient boosting machine: AUC: 0.74; F1 score: 0.68) HF. Our radiomics models showed marginally better performance compared to PAT area alone. Increased PAT size (maximum 2D diameter in a given column or slice) and texture heterogeneity (sum entropy) were important features for prevalent and incident HF classification models. CONCLUSIONS: The amount and character of PAT discriminate individuals with prevalent HF and predict incidence of future HF. CLINICAL RELEVANCE STATEMENT: This study presents an innovative application of pericardial adipose tissue (PAT) radiomics phenotyping as a predictive tool for heart failure (HF), a major public health concern. By leveraging advanced machine learning methods, the research uncovers that the quantity and characteristics of PAT can be used to identify existing cases of HF and predict future occurrences. The enhanced performance of these radiomics models over PAT area alone supports the potential for better personalised care through earlier detection and prevention of HF. KEY POINTS: •PAT radiomics applied to CMR was used for the first time to derive binary machine learning classifiers to develop models for discrimination of prevalence and prediction of incident heart failure. •Models using PAT area provided acceptable discrimination between cases of prevalent or incident heart failure and comparator groups. •An increased PAT volume (increased diameter using shape features) and greater texture heterogeneity captured by radiomics texture features (increased sum entropy) can be used as an additional classifier marker for heart failure.

4.
Eur Radiol ; 33(5): 3488-3500, 2023 May.
Article in English | MEDLINE | ID: mdl-36512045

ABSTRACT

OBJECTIVES: Evaluation of the feasibility of using cardiovascular magnetic resonance (CMR) radiomics in the prediction of incident atrial fibrillation (AF), heart failure (HF), myocardial infarction (MI), and stroke using machine learning techniques. METHODS: We identified participants from the UK Biobank who experienced incident AF, HF, MI, or stroke during the continuous longitudinal follow-up. The CMR indices and the vascular risk factors (VRFs) as well as the CMR images were obtained for each participant. Three-segmented regions of interest (ROIs) were computed: right ventricle cavity, left ventricle (LV) cavity, and LV myocardium in end-systole and end-diastole phases. Radiomics features were extracted from the 3D volumes of the ROIs. Seven integrative models were built for each incident cardiovascular disease (CVD) as an outcome. Each model was built with VRF, CMR indices, and radiomics features and a combination of them. Support vector machine was used for classification. To assess the model performance, the accuracy, sensitivity, specificity, and AUC were reported. RESULTS: AF prediction model using the VRF+CMR+Rad model (accuracy: 0.71, AUC 0.76) obtained the best result. However, the AUC was similar to the VRF+Rad model. HF showed the most significant improvement with the inclusion of CMR metrics (VRF+CMR+Rad: 0.79, AUC 0.84). Moreover, adding only the radiomics features to the VRF reached an almost similarly good performance (VRF+Rad: accuracy 0.77, AUC 0.83). Prediction models looking into incident MI and stroke reached slightly smaller improvement. CONCLUSIONS: Radiomics features may provide incremental predictive value over VRF and CMR indices in the prediction of incident CVDs. KEY POINTS: • Prediction of incident atrial fibrillation, heart failure, stroke, and myocardial infarction using machine learning techniques. • CMR radiomics, vascular risk factors, and standard CMR indices will be considered in the machine learning models. • The experiments show that radiomics features can provide incremental predictive value over VRF and CMR indices in the prediction of incident cardiovascular diseases.


Subject(s)
Atrial Fibrillation , Heart Failure , Myocardial Infarction , Stroke , Humans , Heart Failure/diagnostic imaging , Machine Learning , Stroke/diagnostic imaging , Magnetic Resonance Spectroscopy , Myocardial Infarction/diagnostic imaging
5.
Rev Invest Clin ; 75(6): 309-317, 2023 12 18.
Article in English | MEDLINE | ID: mdl-37734067

ABSTRACT

Artificial intelligence (AI) generative models driven by the integration of AI and natural language processing technologies, such as OpenAI's chatbot generative pre-trained transformer large language model (LLM), are receiving much public attention and have the potential to transform personalized medicine. Dialysis patients are highly dependent on technology and their treatment generates a challenging large volume of data that has to be analyzed for knowledge extraction. We argue that, by integrating the data acquired from hemodialysis treatments with the powerful conversational capabilities of LLMs, nephrologists could personalize treatments adapted to patients' lifestyles and preferences. We also argue that this new conversational AI integrated with a personalized patient-computer interface will enhance patients' engagement and self-care by providing them with a more personalized experience. However, generative AI models require continuous and accurate updates of data, and expert supervision and must address potential biases and limitations. Dialysis patients can also benefit from other new emerging technologies such as Digital Twins with which patients' care can also be addressed from a personalized medicine perspective. In this paper, we will revise LLMs potential strengths in terms of their contribution to personalized medicine, and, in particular, their potential impact, and limitations in nephrology. Nephrologists' collaboration with AI academia and companies, to develop algorithms and models that are more transparent, understandable, and trustworthy, will be crucial for the next generation of dialysis patients. The combination of technology, patient-specific data, and AI should contribute to create a more personalized and interactive dialysis process, improving patients' quality of life.


Subject(s)
Artificial Intelligence , Quality of Life , Humans , Algorithms , Software , Renal Dialysis
7.
MAGMA ; 29(2): 155-95, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26811173

ABSTRACT

Cardiovascular magnetic resonance (CMR) has become a key imaging modality in clinical cardiology practice due to its unique capabilities for non-invasive imaging of the cardiac chambers and great vessels. A wide range of CMR sequences have been developed to assess various aspects of cardiac structure and function, and significant advances have also been made in terms of imaging quality and acquisition times. A lot of research has been dedicated to the development of global and regional quantitative CMR indices that help the distinction between health and pathology. The goal of this review paper is to discuss the structural and functional CMR indices that have been proposed thus far for clinical assessment of the cardiac chambers. We include indices definitions, the requirements for the calculations, exemplar applications in cardiovascular diseases, and the corresponding normal ranges. Furthermore, we review the most recent state-of-the art techniques for the automatic segmentation of the cardiac boundaries, which are necessary for the calculation of the CMR indices. Finally, we provide a detailed discussion of the existing literature and of the future challenges that need to be addressed to enable a more robust and comprehensive assessment of the cardiac chambers in clinical practice.


Subject(s)
Heart Diseases/diagnostic imaging , Heart Diseases/pathology , Heart Function Tests/methods , Heart/diagnostic imaging , Magnetic Resonance Imaging, Cine/methods , Myocardium/pathology , Humans , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Machine Learning , Pattern Recognition, Automated/methods , Reproducibility of Results , Sensitivity and Specificity
8.
Magn Reson Med ; 72(6): 1775-84, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24347347

ABSTRACT

PURPOSE: Magnetic resonance imaging (MRI), specifically late-enhanced MRI, is the standard clinical imaging protocol to assess cardiac viability. Segmentation of myocardial walls is a prerequisite for this assessment. Automatic and robust multisequence segmentation is required to support processing massive quantities of data. METHODS: A generic rule-based framework to automatically segment the left ventricle myocardium is presented here. We use intensity information, and include shape and interslice smoothness constraints, providing robustness to subject- and study-specific changes. Our automatic initialization considers the geometrical and appearance properties of the left ventricle, as well as interslice information. The segmentation algorithm uses a decoupled, modified graph cut approach with control points, providing a good balance between flexibility and robustness. RESULTS: The method was evaluated on late-enhanced MRI images from a 20-patient in-house database, and on cine-MRI images from a 15-patient open access database, both using as reference manually delineated contours. Segmentation agreement, measured using the Dice coefficient, was 0.81±0.05 and 0.92±0.04 for late-enhanced MRI and cine-MRI, respectively. The method was also compared favorably to a three-dimensional Active Shape Model approach. CONCLUSION: The experimental validation with two magnetic resonance sequences demonstrates increased accuracy and versatility.


Subject(s)
Algorithms , Heart Ventricles/pathology , Image Interpretation, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging, Cine/methods , Pattern Recognition, Automated/methods , Ventricular Dysfunction, Left/pathology , Artificial Intelligence , Humans , Image Enhancement/methods , Reproducibility of Results , Sensitivity and Specificity
9.
Hellenic J Cardiol ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38852883

ABSTRACT

The rapid evolution of highly adaptable and reusable artificial intelligence models facilitates the implementation of digital twinning and has the potential to redefine cardiovascular risk prevention. Digital twinning combines vast amounts of data from diverse sources to construct virtual models of an individual. Emerging artificial intelligence models, called generalist AI, enable the processing of different types of data, including data from electronic health records, laboratory results, medical texts, imaging, genomics, or graphs. Among their unprecedented capabilities are an easy adaptation of a model to previously unseen medical tasks and the ability to reason and explain output using precise medical language derived from scientific literature, medical guidelines, or knowledge graphs. The proposed combination of a digital twinning approach with generalist AI is a path to accelerate the implementation of precision medicine and enhance early recognition and prevention of cardiovascular disease. This proposed strategy may extend to other domains to advance predictive, preventive, and precision medicine and also boost health research discoveries.

10.
Article in English | MEDLINE | ID: mdl-38739504

ABSTRACT

Accurate segmentation of the fetal head and pubic symphysis in intrapartum ultrasound images and measurement of fetal angle of progression (AoP) are critical to both outcome prediction and complication prevention in delivery. However, due to poor quality of perinatal ultrasound imaging with blurred target boundaries and the relatively small target of the public symphysis, fully automated and accurate segmentation remains challenging. In this paper, we propse a dual-path boundary-guided residual network (DBRN), which is a novel approach to tackle these challenges. The model contains a multi-scale weighted module (MWM) to gather global context information, and enhance the feature response within the target region by weighting the feature map. The model also incorporates an enhanced boundary module (EBM) to obtain more precise boundary information. Furthermore, the model introduces a boundary-guided dual-attention residual module (BDRM) for residual learning. BDRM leverages boundary information as prior knowledge and employs spatial attention to simultaneously focus on background and foreground information, in order to capture concealed details and improve segmentation accuracy. Extensive comparative experiments have been conducted on three datasets. The proposed method achieves average Dice score of 0.908 ±0.05 and average Hausdorff distance of 3.396 ±0.66 mm. Compared with state-of-the-art competitors, the proposed DBRN achieves better results. In addition, the average difference between the automatic measurement of AoPs based on this model and the manual measurement results is 6.157 °, which has good consistency and has broad application prospects in clinical practice.

11.
J Imaging ; 10(5)2024 May 09.
Article in English | MEDLINE | ID: mdl-38786569

ABSTRACT

Image quality assessment of magnetic resonance imaging (MRI) data is an important factor not only for conventional diagnosis and protocol optimization but also for fairness, trustworthiness, and robustness of artificial intelligence (AI) applications, especially on large heterogeneous datasets. Information on image quality in multi-centric studies is important to complement the contribution profile from each data node along with quantity information, especially when large variability is expected, and certain acceptance criteria apply. The main goal of this work was to present a tool enabling users to assess image quality based on both subjective criteria as well as objective image quality metrics used to support the decision on image quality based on evidence. The evaluation can be performed on both conventional and dynamic MRI acquisition protocols, while the latter is also checked longitudinally across dynamic series. The assessment provides an overall image quality score and information on the types of artifacts and degrading factors as well as a number of objective metrics for automated evaluation across series (BRISQUE score, Total Variation, PSNR, SSIM, FSIM, MS-SSIM). Moreover, the user can define specific regions of interest (ROIs) to calculate the regional signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR), thus individualizing the quality output to specific use cases, such as tissue-specific contrast or regional noise quantification.

12.
Eur Radiol Exp ; 8(1): 42, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38589742

ABSTRACT

BACKGROUND: Developing trustworthy artificial intelligence (AI) models for clinical applications requires access to clinical and imaging data cohorts. Reusing of publicly available datasets has the potential to fill this gap. Specifically in the domain of breast cancer, a large archive of publicly accessible medical images along with the corresponding clinical data is available at The Cancer Imaging Archive (TCIA). However, existing datasets cannot be directly used as they are heterogeneous and cannot be effectively filtered for selecting specific image types required to develop AI models. This work focuses on the development of a homogenized dataset in the domain of breast cancer including clinical and imaging data. METHODS: Five datasets were acquired from the TCIA and were harmonized. For the clinical data harmonization, a common data model was developed and a repeatable, documented "extract-transform-load" process was defined and executed for their homogenization. Further, Digital Imaging and COmmunications in Medicine (DICOM) information was extracted from magnetic resonance imaging (MRI) data and made accessible and searchable. RESULTS: The resulting harmonized dataset includes information about 2,035 subjects with breast cancer. Further, a platform named RV-Cherry-Picker enables search over both the clinical and diagnostic imaging datasets, providing unified access, facilitating the downloading of all study imaging that correspond to specific series' characteristics (e.g., dynamic contrast-enhanced series), and reducing the burden of acquiring the appropriate set of images for the respective AI model scenario. CONCLUSIONS: RV-Cherry-Picker provides access to the largest, publicly available, homogenized, imaging/clinical dataset for breast cancer to develop AI models on top. RELEVANCE STATEMENT: We present a solution for creating merged public datasets supporting AI model development, using as an example the breast cancer domain and magnetic resonance imaging images. KEY POINTS: • The proposed platform allows unified access to the largest, homogenized public imaging dataset for breast cancer. • A methodology for the semantically enriched homogenization of public clinical data is presented. • The platform is able to make a detailed selection of breast MRI data for the development of AI models.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/diagnostic imaging , Artificial Intelligence , Breast
13.
Sci Rep ; 14(1): 7848, 2024 04 03.
Article in English | MEDLINE | ID: mdl-38570587

ABSTRACT

A significant level of stigma and inequality exists in mental healthcare, especially in under-served populations. Inequalities are reflected in the data collected for scientific purposes. When not properly accounted for, machine learning (ML) models learned from data can reinforce these structural inequalities or biases. Here, we present a systematic study of bias in ML models designed to predict depression in four different case studies covering different countries and populations. We find that standard ML approaches regularly present biased behaviors. We also show that mitigation techniques, both standard and our own post-hoc method, can be effective in reducing the level of unfair bias. There is no one best ML model for depression prediction that provides equality of outcomes. This emphasizes the importance of analyzing fairness during model selection and transparent reporting about the impact of debiasing interventions. Finally, we also identify positive habits and open challenges that practitioners could follow to enhance fairness in their models.


Subject(s)
Depression , Habits , Humans , Depression/diagnosis , Bias , Health Facilities , Machine Learning
14.
J Am Acad Child Adolesc Psychiatry ; 63(2): 255-265, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37453606

ABSTRACT

OBJECTIVE: Depression and obesity are 2 highly prevalent and often comorbid conditions. Exposure to early-life stress (ELS) has been associated with both depression and obesity in adulthood, as well as their preclinical manifestations during development. However, it remains unclear whether (1) associations differ depending on the timing of stress exposure (prenatal vs postnatal), and whether (2) ELS is a shared risk factor underlying the comorbidity between the 2 conditions. METHOD: Leveraging data from 2 large population-based birth cohorts (ALSPAC: n = 8,428 [52% male participants]; Generation R: n = 4,268 [48% male participants]), we constructed comprehensive cumulative measures of prenatal (in utero) and postnatal (from birth to 10 years) ELS. At age 13.5 years, we assessed the following: internalizing symptoms (using maternal reports); fat mass percentage (using dual-energy X-ray absorptiometry); and their comorbidity, defined as the co-occurrence of high internalizing and high adiposity. RESULTS: Both prenatal (total effect [95% CI] = 0.20 [0.16; 0.22]) and postnatal stress (ß [95%CI] = 0.22 [0.17; 0.25]) were associated with higher internalizing symptoms, with evidence of a more prominent role of postnatal stress. A weaker association (driven primarily by prenatal stress) was observed between stress and adiposity (prenatal: 0.07 [0.05; 0.09]; postnatal: 0.04 [0.01; 0.07]). Both prenatal (odds ratio [95%CI] = 1.70 [1.47; 1.97]) and postnatal (1.87 [1.61; 2.17]) stress were associated with an increased risk of developing comorbidity. CONCLUSION: We found evidence of timing and shared causal effects of ELS on psycho-cardiometabolic health in adolescence; however, future research is warranted to clarify how these associations may unfold over time. DIVERSITY & INCLUSION STATEMENT: We worked to ensure sex and gender balance in the recruitment of human participants. We worked to ensure race, ethnic, and/or other types of diversity in the recruitment of human participants. We worked to ensure that the study questionnaires were prepared in an inclusive way. One or more of the authors of this paper self-identifies as a member of one or more historically underrepresented racial and/or ethnic groups in science. One or more of the authors of this paper self-identifies as a member of one or more historically underrepresented sexual and/or gender groups in science. We actively worked to promote sex and gender balance in our author group.


Subject(s)
Adiposity , Adverse Childhood Experiences , Female , Pregnancy , Adolescent , Humans , Male , Obesity , Risk Factors , Comorbidity
15.
Heliyon ; 10(1): e23914, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38234913

ABSTRACT

Next-generation sequencing (NGS) and liquid biopsy (LB) showed positive results in the fight against different cancer types. This paper aims to assess the uptake of advanced molecular diagnostics/NGS for quick and efficient genetic profiles of tumour cells. For that purpose, the European Alliance for Personalised Medicine conducted a series of expert interviews to ascertain the current status across member states. One stakeholder meeting was additionally conducted to prioritize relevant factors by stakeholders. Seven common pillars were identified, and twenty-five measures were defined based on these pillars. Results showed that a multi-faceted approach is necessary for successful NGS implementation and that regional differences may be influenced by healthcare policies, resources, and infrastructure. It is important to consider different correlations when interpreting the results and to use them as a starting point for further discussion.

16.
Curr Oncol ; 31(4): 1839-1864, 2024 03 29.
Article in English | MEDLINE | ID: mdl-38668042

ABSTRACT

Understanding the diversity in cancer research priorities and the correlations among different treatment modalities is essential to address the evolving landscape of oncology. This study, conducted in collaboration with the European Cancer Patient Coalition (ECPC) and Childhood Cancer International-Europe (CCI-E) as part of the "UNCAN.eu" initiative, analyzed data from a comprehensive survey to explore the complex interplay of demographics, time since cancer diagnosis, and types of treatments received. Demographic analysis revealed intriguing trends, highlighting the importance of tailoring cancer research efforts to specific age groups and genders. Individuals aged 45-69 exhibited highly aligned research priorities, emphasizing the need to address the unique concerns of middle-aged and older populations. In contrast, patients over 70 years demonstrated a divergence in research priorities, underscoring the importance of recognising the distinct needs of older individuals in cancer research. The analysis of correlations among different types of cancer treatments underscored the multidisciplinary approach to cancer care, with surgery, radiotherapy, chemotherapy, precision therapy, and biological therapies playing integral roles. These findings support the need for personalized and combined treatment strategies to achieve optimal outcomes. In conclusion, this study provides valuable insights into the complexity of cancer research priorities and treatment correlations in a European context. It emphasizes the importance of a multifaceted, patient-centred approach to cancer research and treatment, highlighting the need for ongoing support, adaptation, and collaboration to address the ever-changing landscape of oncology.


Subject(s)
Neoplasms , Humans , Neoplasms/therapy , Male , Aged , Middle Aged , Female , Biomedical Research , Adult , Demography , Research , Europe
17.
Insights Imaging ; 15(1): 130, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38816658

ABSTRACT

Artificial intelligence (AI) is revolutionizing the field of medical imaging, holding the potential to shift medicine from a reactive "sick-care" approach to a proactive focus on healthcare and prevention. The successful development of AI in this domain relies on access to large, comprehensive, and standardized real-world datasets that accurately represent diverse populations and diseases. However, images and data are sensitive, and as such, before using them in any way the data needs to be modified to protect the privacy of the patients. This paper explores the approaches in the domain of five EU projects working on the creation of ethically compliant and GDPR-regulated European medical imaging platforms, focused on cancer-related data. It presents the individual approaches to the de-identification of imaging data, and describes the problems and the solutions adopted in each case. Further, lessons learned are provided, enabling future projects to optimally handle the problem of data de-identification. CRITICAL RELEVANCE STATEMENT: This paper presents key approaches from five flagship EU projects for the de-identification of imaging and clinical data offering valuable insights and guidelines in the domain. KEY POINTS: ΑΙ models for health imaging require access to large amounts of data. Access to large imaging datasets requires an appropriate de-identification process. This paper provides de-identification guidelines from the AI for health imaging (AI4HI) projects.

18.
Healthcare (Basel) ; 12(2)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38275541

ABSTRACT

Improvements in cancer care require a new degree of collaboration beyond the purely medical sphere, extending deeply into the world of other stakeholders-preeminently patients but also the other stakeholders in the hardware and software of care. Cancer remains a global health challenge, necessitating collaborative efforts to understand, prevent, and treat this complex disease. To achieve this goal, a comprehensive analysis was conducted, aligning the prioritization of cancer research measures in 13 European countries with 13 key recommendations for conquering cancer in the region. The study utilized a survey involving both patients and citizens, alongside data from IQVIA, a global healthcare data provider, to assess the availability and access to single-biomarker tests in multiple European countries. The results revealed a focused approach toward understanding, preventing, and treating cancer, with each country emphasizing specific research measures tailored to its strengths and healthcare objectives. This analysis highlights the intricate relationship between research priorities, access to biomarker tests, and financial support. Timely access to tests and increased availability positively influence research areas such as cancer prevention, early detection, ageing, and data utilization. The alignment of these country-specific measures with 13 recommendations for conquering cancer in Europe underscores the importance of tailored strategies for understanding, preventing, and treating cancer.

19.
Eur J Prev Cardiol ; 31(5): 569-577, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-37976098

ABSTRACT

AIMS: The regional and temporal differences in the associations between cardiovascular disease (CVD) and its classic risk factors are unknown. The current study examined these associations in different European regions over a 30-year period. METHODS AND RESULTS: The study sample comprised 553 818 individuals from 49 cohorts in 11 European countries (baseline: 1982-2012) who were followed up for a maximum of 10 years. Risk factors [sex, smoking, diabetes, non-HDL cholesterol, systolic blood pressure (BP), and body mass index (BMI)] and CVD events (coronary heart disease or stroke) were harmonized across cohorts. Risk factor-outcome associations were analysed using multivariable-adjusted Cox regression models, and differences in associations were assessed using meta-regression. The differences in the risk factor-CVD associations between central Europe, northern Europe, southern Europe, and the UK were generally small. Men had a slightly higher hazard ratio (HR) in southern Europe (P = 0.043 for overall difference), and those with diabetes had a slightly lower HR in central Europe (P = 0.022 for overall difference) compared with the other regions. Of the six CVD risk factors, minor HR decreases per decade were observed for non-HDL cholesterol [7% per mmol/L; 95% confidence interval (CI), 3-10%] and systolic BP (4% per 20 mmHg; 95% CI, 1-8%), while a minor HR increase per decade was observed for BMI (7% per 10 kg/m2; 95% CI, 1-13%). CONCLUSION: The results demonstrate that all classic CVD risk factors are still relevant in Europe, irrespective of regional area. Preventive strategies should focus on risk factors with the greatest population attributable risk.


All classic cardiovascular disease (CVD) risk factors are still relevant in Europe, irrespective of regional area. The differences in the associations of CVD risk factors with overt CVD between regions of Europe are generally small. Minor temporal hazard decreases were observed for non-HDL cholesterol and systolic blood pressure, while a minor hazard increase was observed for body mass index.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus , Male , Humans , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/etiology , Risk Factors , Cholesterol , Europe/epidemiology , Diabetes Mellitus/diagnosis , Diabetes Mellitus/epidemiology
20.
Med Image Anal ; 84: 102704, 2023 02.
Article in English | MEDLINE | ID: mdl-36473414

ABSTRACT

Despite technological and medical advances, the detection, interpretation, and treatment of cancer based on imaging data continue to pose significant challenges. These include inter-observer variability, class imbalance, dataset shifts, inter- and intra-tumour heterogeneity, malignancy determination, and treatment effect uncertainty. Given the recent advancements in image synthesis, Generative Adversarial Networks (GANs), and adversarial training, we assess the potential of these technologies to address a number of key challenges of cancer imaging. We categorise these challenges into (a) data scarcity and imbalance, (b) data access and privacy, (c) data annotation and segmentation, (d) cancer detection and diagnosis, and (e) tumour profiling, treatment planning and monitoring. Based on our analysis of 164 publications that apply adversarial training techniques in the context of cancer imaging, we highlight multiple underexplored solutions with research potential. We further contribute the Synthesis Study Trustworthiness Test (SynTRUST), a meta-analysis framework for assessing the validation rigour of medical image synthesis studies. SynTRUST is based on 26 concrete measures of thoroughness, reproducibility, usefulness, scalability, and tenability. Based on SynTRUST, we analyse 16 of the most promising cancer imaging challenge solutions and observe a high validation rigour in general, but also several desirable improvements. With this work, we strive to bridge the gap between the needs of the clinical cancer imaging community and the current and prospective research on data synthesis and adversarial networks in the artificial intelligence community.


Subject(s)
Image Processing, Computer-Assisted , Neoplasms , Humans , Image Processing, Computer-Assisted/methods , Artificial Intelligence , Reproducibility of Results , Prospective Studies , Neoplasms/diagnostic imaging , Magnetic Resonance Imaging/methods
SELECTION OF CITATIONS
SEARCH DETAIL