Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters

Publication year range
1.
BMC Med ; 22(1): 31, 2024 01 23.
Article in English | MEDLINE | ID: mdl-38254075

ABSTRACT

BACKGROUND: Due to low numbers of active infections and persons presenting to health facilities for malaria treatment, case-based surveillance is inefficient for understanding the remaining disease burden in low malaria transmission settings. Serological data through the detection of IgG antibodies from previous malaria parasite exposure can fill this gap by providing a nuanced picture of where sustained transmission remains. Study enrollment at sites of gathering provides a potential approach to spatially estimate malaria exposure and could preclude the need for more intensive community-based sampling. METHODS: This study compared spatial estimates of malaria exposure from cross-sectional school- and community-based sampling in Haiti. A total of 52,405 blood samples were collected from 2012 to 2017. Multiplex bead assays (MBAs) tested IgG against P. falciparum liver stage antigen-1 (LSA-1), apical membrane antigen 1 (AMA1), and merozoite surface protein 1 (MSP1). Predictive geospatial models of seropositivity adjusted for environmental covariates, and results were compared using correlations by coordinate points and communes across Haiti. RESULTS: Consistent directional associations were observed between seroprevalence and environmental covariates for elevation (negative), air temperature (negative), and travel time to urban centers (positive). Spearman's rank correlation for predicted seroprevalence at coordinate points was lowest for LSA-1 (ρ = 0.10, 95% CI: 0.09-0.11), but improved for AMA1 (ρ = 0.36, 95% CI: 0.35-0.37) and MSP1 (ρ = 0.48, 95% CI: 0.47-0.49). CONCLUSIONS: In settings approaching P. falciparum elimination, case-based prevalence data does not provide a resolution of ongoing malaria transmission in the population. Immunogenic antigen targets (e.g., AMA1, MSP1) that give higher population rates of seropositivity provide moderate correlation to gold standard community sampling designs and are a feasible approach to discern foci of residual P. falciparum transmission in an area.


Subject(s)
Malaria, Falciparum , Malaria , Humans , Plasmodium falciparum , Cross-Sectional Studies , Merozoite Surface Protein 1 , Seroepidemiologic Studies , Malaria, Falciparum/epidemiology , Immunoglobulin G
2.
Emerg Infect Dis ; 26(5): 902-909, 2020 05.
Article in English | MEDLINE | ID: mdl-32310062

ABSTRACT

Haiti is striving for zero local malaria transmission by the year 2025. Chloroquine remains the first-line treatment, and sulfadoxine/pyrimethamine (SP) has been used for mass drug-administration pilot programs. In March 2016, nationwide molecular surveillance was initiated to assess molecular resistance signatures for chloroquine and SP. For 778 samples collected through December 2017, we used Sanger sequencing to investigate putative resistance markers to chloroquine (Pfcrt codons 72, 74, 75, and 76), sulfadoxine (Pfdhps codons 436, 437, 540, 581, 613), and pyrimethamine (Pfdhfr codons 50, 51, 59, 108, 164). No parasites harbored Pfcrt point mutations. Prevalence of the Pfdhfr S108N single mutation was 47%, and we found the triple mutant Pfdhfr haplotype (108N, 51I, and 59R) in a single isolate. We observed no Pfdhps variants except in 1 isolate (A437G mutation). These data confirm the lack of highly resistant chloroquine and SP alleles in Haiti and support the continued use of chloroquine and SP.


Subject(s)
Antimalarials , Malaria, Falciparum , Alleles , Antimalarials/pharmacology , Antimalarials/therapeutic use , Chloroquine/pharmacology , Chloroquine/therapeutic use , Drug Resistance/genetics , Haiti/epidemiology , Humans , Malaria, Falciparum/drug therapy , Malaria, Falciparum/epidemiology , Mutation , Plasmodium falciparum/genetics , Pyrimethamine/pharmacology , Pyrimethamine/therapeutic use , Sulfadoxine/pharmacology , Sulfadoxine/therapeutic use
3.
BMC Med ; 18(1): 141, 2020 06 23.
Article in English | MEDLINE | ID: mdl-32571323

ABSTRACT

BACKGROUND: As in most eliminating countries, malaria transmission is highly focal in Haiti. More granular information, including identifying asymptomatic infections, is needed to inform programmatic efforts, monitor intervention effectiveness, and identify remaining foci. Easy access group (EAG) surveys can supplement routine surveillance with more granular information on malaria in a programmatically tractable way. This study assessed how and which type of venue for EAG surveys can improve understanding malaria epidemiology in two regions with different transmission profiles. METHODS: EAG surveys were conducted within the departments of Artibonite and Grand'Anse (Haiti), in regions with different levels of transmission intensity. Surveys were conducted in three venue types: primary schools, health facilities, and churches. The sampling approach varied accordingly. Individuals present at the venues at the time of the survey were eligible whether they presented malaria symptoms or not. The participants completed a questionnaire and were tested for Plasmodium falciparum by a highly sensitive rapid diagnostic test (hsRDT). Factors associated with hsRDT positivity were assessed by negative binomial random-effects regression models. RESULTS: Overall, 11,029 individuals were sampled across 39 venues in Artibonite and 41 in Grand'Anse. The targeted sample size per venue type (2100 in Artibonite and 2500 in Grand'Anse) was reached except for the churches in Artibonite, where some attendees left the venue before they could be approached or enrolled. Refusal rate and drop-out rate were < 1%. In total, 50/6003 (0.8%) and 355/5026 (7.1%) sampled individuals were hsRDT positive in Artibonite and Grand'Anse, respectively. Over half of all infections in both regions were identified at health facilities. Being male and having a current or reported fever in the previous 2 weeks were consistently identified with increased odds of being hsRDT positive. CONCLUSIONS: Surveys in churches were problematic because of logistical and recruitment issues. However, EAG surveys in health facilities and primary schools provided granular information about malaria burden within two departments in Haiti. The EAG surveys were able to identify residual foci of transmission that were missed by recent national surveys. Non-care seeking and/or asymptomatic malaria infections can be identified in this alternative surveillance tool, facilitating data-driven decision-making for improved targeting of interventions.


Subject(s)
Disease Outbreaks/statistics & numerical data , Epidemiological Monitoring , Malaria, Falciparum/epidemiology , Plasmodium falciparum/pathogenicity , Adolescent , Adult , Child , Female , Haiti/epidemiology , Humans , Male , Young Adult
4.
Malar J ; 18(1): 380, 2019 Nov 27.
Article in English | MEDLINE | ID: mdl-31775743

ABSTRACT

BACKGROUND: The Plasmodium falciparum parasite is the only human malaria that produces the histidine-rich protein 2 and 3 (HRP2/3) antigens. Currently, HRP2/3 are widely used in malaria rapid diagnostic tests (RDTs), but several global reports have recently emerged showing genetic deletion of one or both of these antigens in parasites. Deletion of these antigens could pose a major concern for P. falciparum diagnosis in Haiti which currently uses RDTs based solely on the detection of the HRP2/3 antigens. METHODS: From September 2012 through February 2014, dried blood spots (DBS) were collected in Haiti from 9317 febrile patients presenting to 17 health facilities in 5 departments throughout the country as part of a bed net intervention study. All DBS from RDT positive persons and a random sampling of DBS from RDT negative persons were assayed for P. falciparum DNA by nested and PET-PCR (n = 2695 total). All PCR positive samples (n = 331) and a subset of PCR negative samples (n = 95) were assayed for three malaria antigens by a multiplex bead assay: pan-Plasmodium aldolase (pAldo), pan-Plasmodium lactate dehydrogenase (pLDH), and HRP2/3. Any samples positive for P. falciparum DNA, but negative for HRP2/3 antigens were tested by nested PCR for Pfhrp2 and Pfhrp3 gene deletions. RESULTS: Of 2695 DBS tested for Plasmodium DNA, 345 (12.8%) were originally found to be positive for P. falciparum DNA; 331 of these had DBS available for antigen detection. Of these, 266 (80.4%) were positive for pAldo, 221 (66.8%) positive for pLDH, and 324 (97.9%) were positive for HRP2/3 antigens. Seven samples (2.1%) positive for P. falciparum DNA were not positive for any of the three antigens by the bead assay, and were investigated for potential Pfhrp2/3 gene deletion by PCR. These samples either successfully amplified Pfhrp2/3 genes or were at an estimated parasite density too low for sufficient DNA to perform successful genotyping. CONCLUSIONS: Malaria positive samples in multiple Haitian sites were found to contain the HRP2/3 antigens, and no evidence was found of Pfhrp2/3 deletions. Malaria RDTs based on the detection of the HRP2/3 antigens remain a reliable P. falciparum diagnostic tool as Haiti works towards malaria elimination.


Subject(s)
Antigens, Protozoan/genetics , Base Sequence , Diagnostic Tests, Routine/methods , Polymerase Chain Reaction/methods , Protozoan Proteins/genetics , Sequence Deletion , Adolescent , Adult , Child , Diagnostic Tests, Routine/instrumentation , Haiti , Humans , Middle Aged , Plasmodium falciparum/genetics , Young Adult
5.
Malar J ; 18(1): 402, 2019 Dec 04.
Article in English | MEDLINE | ID: mdl-31801556

ABSTRACT

BACKGROUND: Serological data indicating the presence and level of antibodies against infectious disease antigens provides indicators of exposure and transmission patterns in a population. Laboratory testing for large-scale serosurveys is often hindered by time-consuming immunoassays that employ multiple tandem steps. Some nations have recently begun using malaria serosurveillance data to make inferences about the malaria exposure in their populations, and serosurveys have grown increasingly larger as more accurate estimates are desired. Presented here is a novel approach of antibody detection using bead-based immunoassay that involves incubating all assay reagents concurrently overnight. RESULTS: A serosurvey in was performed in Haiti in early 2017 with both sera (n = 712) and dried blood spots (DBS, n = 796) collected for the same participants. The Luminex® multiplex bead-based assay (MBA) was used to detect total IgG against 8 malaria antigens: PfMSP1, PvMSP1, PmMSP1, PfCSP, PfAMA1, PfLSA1, PfGLURP-R0, PfHRP2. All sera and DBS samples were assayed by MBA using a standard immunoassay protocol with multiple steps, as well a protocol where sample and all reagents were incubated together overnight-termed here the OneStep assay. When compared to a standard multi-step assay, this OneStep assay amplified the assay signal for IgG detection for all 8 malaria antigens. The greatest increases in assay signal were seen at the low- and mid-range IgG titers and were indicative of an enhancement in the analyte detection, not simply an increase in the background signal of the assay. Seroprevalence estimates were generally similar for this sample Haitian population for all antigens regardless of serum or DBS sample type or assay protocol used. CONCLUSIONS: When using the MBA for IgG detection, overnight incubation for the test sample and all assay reagents greatly minimized hands-on time for laboratory staff. Enhanced IgG signal was observed with the OneStep assay for all 8 malaria antigens employed in this study, and seroprevalence estimates for this sample population were similar regardless of assay protocol used. This overnight incubation protocol has the potential to be deployed for large-scale malaria serosurveys for the high-throughput and timely collection of antibody data, particularly for malaria seroprevalence estimates.


Subject(s)
Immunoassay/methods , Malaria/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Dried Blood Spot Testing , Female , Haiti/epidemiology , Humans , Infant , Infant, Newborn , Male , Middle Aged , Prevalence , Seroepidemiologic Studies , Young Adult
6.
Trop Med Int Health ; 22(8): 1030-1036, 2017 08.
Article in English | MEDLINE | ID: mdl-28609010

ABSTRACT

OBJECTIVES: To describe the epidemiology of malaria in pregnancy in Haiti. METHODS: Cross-sectional study among pregnant women in six departments of Haiti. After obtaining informed consent, whole blood samples and demographic surveys were collected to investigate malaria prevalence, anaemia and socio-behavioural risk factors for infection, respectively. A total of 311 pregnant women were screened for Plasmodium falciparum infection using a rapid diagnostic test (RDT), microscopy and a novel, quantitative reverse transcriptase polymerase chain reaction method (qRT-PCR). RESULTS: Overall, 1.2% (4/311) of pregnant women were tested positive for malaria infection by both microscopy and RDT. However, using the qRT-PCR, 16.4% (51/311) of pregnant women were positive. The prevalence of malaria infection varied with geographical locations ranging between 0% and 46.4%. Additionally, 53% of pregnant women had some form of anaemia; however, no significant association was found between anaemia and submicroscopic malaria infection. The socio-behavioural risk factors identified to be protective of malaria infection were marital status (P < 0.05) and travel within one month prior to screening (P < 0.05). CONCLUSION: This study is the first to document the high prevalence of submicroscopic malaria infections among pregnant women in Haiti and identify social and behavioural risk factors for disease transmission.


Subject(s)
Malaria, Falciparum/epidemiology , Plasmodium falciparum , Pregnancy Complications, Infectious/epidemiology , Adolescent , Adult , Anemia/complications , Cross-Sectional Studies , Female , Haiti/epidemiology , Humans , Malaria, Falciparum/parasitology , Malaria, Falciparum/transmission , Marital Status , Microscopy , Pregnancy , Pregnancy Complications, Infectious/parasitology , Prevalence , Reverse Transcriptase Polymerase Chain Reaction , Risk Factors , Travel , Young Adult
7.
Malar J ; 16(1): 451, 2017 11 07.
Article in English | MEDLINE | ID: mdl-29115966

ABSTRACT

BACKGROUND: Rapid diagnostic test (RDT) positivity is supplanting microscopy as the standard measure of malaria burden at the population level. However, there is currently no standard for externally validating RDT results from field surveys. METHODS: Individuals' blood concentration of the Plasmodium falciparum histidine rich protein 2 (HRP2) protein were compared to results of HRP2-detecting RDTs in participants from field surveys in Angola, Mozambique, Haiti, and Senegal. A logistic regression model was used to estimate the HRP2 concentrations corresponding to the 50 and 90% level of detection (LOD) specific for each survey. RESULTS: There was a sigmoidal dose-response relationship between HRP2 concentration and RDT positivity for all surveys. Variation was noted in estimates for field RDT sensitivity, with the 50% LOD ranging between 0.076 and 6.1 ng/mL and the 90% LOD ranging between 1.1 and 53 ng/mL. Surveys conducted in two different provinces of Angola using the same brand of RDT and same study methodology showed a threefold difference in LOD. CONCLUSIONS: Measures of malaria prevalence estimated using population RDT positivity should be interpreted in the context of potentially large variation in RDT LODs between, and even within, surveys. Surveys based on RDT positivity would benefit from external validation of field RDT results by comparing RDT positivity and antigen concentration.


Subject(s)
Antigens, Protozoan/analysis , Diagnostic Tests, Routine/methods , Malaria, Falciparum/diagnosis , Plasmodium falciparum/isolation & purification , Protozoan Proteins/analysis , Adolescent , Adult , Africa South of the Sahara/epidemiology , Aged , Aged, 80 and over , Child , Child, Preschool , Female , Haiti/epidemiology , Humans , Infant , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Male , Middle Aged , Prevalence , Sensitivity and Specificity , Young Adult
8.
Malar J ; 14: 510, 2015 Dec 21.
Article in English | MEDLINE | ID: mdl-26689195

ABSTRACT

BACKGROUND: Public health measures are poised for transition from malaria control to malaria elimination on the island of Hispaniola. Assessment of the reservoir of asymptomatic infections from which acute malaria cases may derive is critical to plan and evaluate elimination efforts. Current field technology is ill suited for detecting sub-microscopic infections, thus highly sensitive survey methods capable of detecting virtually all infections are needed. In this study the prevalence of infection with Plasmodium falciparum was determined in patients seeking medical care primarily for non-febrile conditions in six departments in Haiti using a newly designed qRT-PCR-based assay. METHODS: Three different methods of parasite detection were compared to assess their utility in approximating the prevalence of P. falciparum infections in the population: malaria rapid diagnostic test (RDT) designed to detect histidine-rich protein 2 (HRP2), thick smear microscopy, and a quantitative reverse transcription polymerase chain reaction (qRT-PCR) assay based upon the small sub-unit ribosomal RNA. The limit of detection of the qRT-PCR assay utilized was 0.0003 parasite/µL of blood. Venous blood was obtained from a total of 563 subjects from six departments in Haiti, all of whom were seeking medical attention without complaints consistent with malaria. Each subject was questioned for knowledge and behaviour using demographic and epidemiological survey to identify risk factors for disease transmission. RESULTS: Among the 563 samples tested, ten and 16 were found positive for malaria by RDT and microscopy, respectively. Using the qRT-PCR test to assess the infection status of these subjects, an additional 92 were identified for a total of 108. Based upon the qRT-PCR assay results, a wide variation in prevalence of infection in asymptomatic subjects was seen between geographic locations ranging from 4-41%. The prevalence of infection was highest in the Grand Anse, Nord and Sud-Est Departments, and demographic data from questionnaires provide evidence for focal disease transmission. CONCLUSIONS: The qRT-PCR assay is sufficiently sensitive to identify an unexpectedly large number of asymptomatic, submicroscopic infections. Identifying and clearing these infections presents a significant challenge to both control and elimination efforts, but the qRT-PCR assay offers a reliable method to identify them.


Subject(s)
Asymptomatic Infections/epidemiology , Diagnostic Tests, Routine/methods , Malaria, Falciparum/diagnosis , Malaria, Falciparum/epidemiology , Plasmodium falciparum/isolation & purification , Adult , Cross-Sectional Studies , Female , Haiti/epidemiology , Humans , Immunoassay , Microscopy , Prevalence , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Rural Population , Young Adult
9.
Am J Trop Med Hyg ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38917782

ABSTRACT

Haiti is endemic for lymphatic filariasis (LF) and malaria, two mosquito-transmitted parasitic diseases targeted for elimination. The World Health Organization recommends a transmission assessment survey (TAS-1) to determine if LF prevalence is significantly beneath putative transmission thresholds (<2% antigen prevalence in Haiti, where Culex is the primary vector for Wuchereria bancrofti) to stop mass drug administration (MDA). Repeated TASs (TAS-2 and TAS-3) are recommended at 2-3-year intervals during post-treatment surveillance. From 2017 to 2022, The Carter Center assisted the Haitian Ministry of Public Health and Population in conducting 15 TASs in 11 evaluation units (EUs) encompassing 54 of the country's 146 districts. Children 6-7 years old were assessed for circulating filarial antigen (CFA) by Filariasis Test Strip: n = 5,239 in TAS-1; n = 11,866 in TAS-2; and n = 1,842 in TAS-3, of whom eight (0.15%), 20 (0.17%), and eight (0.43%) tested positive, respectively. The number of positive results in children was less than the threshold in each EU. When available, participants (n = 16,663) were also tested for malaria by rapid diagnostic test, with 31 (0.19%) children testing positive for Plasmodium falciparum. Integrated TASs provided an efficient means to collect epidemiological data for LF and malaria in Haiti. Results indicated thresholds for stopping and maintaining the halt of MDA for LF have been achieved in all EUs, with the halt of MDA for 571,358 people in four districts and the first TAS-3 surveys conducted in Haiti. Investigations are needed to assess the potential of ongoing LF transmission, especially in areas where CFA-positive samples were detected in TAS-3.

10.
PLoS One ; 17(9): e0275096, 2022.
Article in English | MEDLINE | ID: mdl-36174056

ABSTRACT

BACKGROUND: Plasmodium blood-stage infections can be identified by assaying for protein products expressed by the parasites. While the binary result of an antigen test is sufficient for a clinical result, greater nuance can be gathered for malaria infection status based on quantitative and sensitive detection of Plasmodium antigens and machine learning analytical approaches. METHODS: Three independent malaria studies performed in Angola and Haiti enrolled persons at health facilities and collected a blood sample. Presence and parasite density of P. falciparum infection was determined by microscopy for a study in Angola in 2015 (n = 193), by qRT-PCR for a 2016 study in Angola (n = 208), and by qPCR for a 2012-2013 Haiti study (n = 425). All samples also had bead-based detection and quantification of three Plasmodium antigens: pAldolase, pLDH, and HRP2. Decision trees and principal component analysis (PCA) were conducted in attempt to categorize P. falciparum parasitemia density status based on continuous antigen concentrations. RESULTS: Conditional inference trees were trained using the known P. falciparum infection status and corresponding antigen concentrations, and PCR infection status was predicted with accuracies ranging from 73-96%, while level of parasite density was predicted with accuracies ranging from 59-72%. Multiple decision nodes were created for both pAldolase and HRP2 antigens. For all datasets, dichotomous infectious status was more accurately predicted when compared to categorization of different levels of parasite densities. PCA was able to account for a high level of variance (>80%), and distinct clustering was found in both dichotomous and categorical infection status. CONCLUSIONS: This pilot study offers a proof-of-principle of the utility of machine learning approaches to assess P. falciparum infection status based on continuous concentrations of multiple Plasmodium antigens.


Subject(s)
Malaria, Falciparum , Plasmodium falciparum , Antigens, Protozoan , Humans , Machine Learning , Malaria, Falciparum/diagnosis , Malaria, Falciparum/epidemiology , Pilot Projects , Real-Time Polymerase Chain Reaction
11.
Front Public Health ; 10: 897013, 2022.
Article in English | MEDLINE | ID: mdl-35757611

ABSTRACT

Background: Integrated surveillance for multiple diseases can be an efficient use of resources and advantageous for national public health programs. Detection of IgG antibodies typically indicates previous exposure to a pathogen but can potentially also serve to assess active infection status. Serological multiplex bead assays have recently been developed to simultaneously evaluate exposure to multiple antigenic targets. Haiti is an island nation in the Caribbean region with multiple endemic infectious diseases, many of which have a paucity of data for population-level prevalence or exposure. Methods: A nationwide serosurvey occurred in Haiti from December 2014 to February 2015. Filter paper blood samples (n = 4,438) were collected from participants in 117 locations and assayed for IgG antibodies on a multiplex bead assay containing 15 different antigens from 11 pathogens: Plasmodium falciparum, Toxoplasma gondii, lymphatic filariasis roundworms, Strongyloides stercoralis, chikungunya virus, dengue virus, Chlamydia trachomatis, Treponema pallidum, enterotoxigenic Escherichia coli, Entamoeba histolytica, and Cryptosporidium parvum. Results: Different proportions of the Haiti study population were IgG seropositive to the different targets, with antigens from T. gondii, C. parvum, dengue virus, chikungunya virus, and C. trachomatis showing the highest rates of seroprevalence. Antibody responses to T. pallidum and lymphatic filariasis were the lowest, with <5% of all samples IgG seropositive to antigens from these pathogens. Clear trends of increasing seropositivity and IgG levels with age were seen for all antigens except those from chikungunya virus and E. histolytica. Parametric models were able to estimate the rate of seroconversion and IgG acquisition per year for residents of Haiti. Conclusions: Multiplex serological assays can provide a wealth of information about population exposure to different infectious diseases. This current Haitian study included IgG targets for arboviral, parasitic, and bacterial infectious diseases representing multiple different modes of host transmission. Some of these infectious diseases had a paucity or complete absence of published serological studies in Haiti. Clear trends of disease burden with respect to age and location in Haiti can be used by national programs and partners for follow-up studies, resource allocation, and intervention planning.


Subject(s)
Communicable Diseases , Cryptosporidiosis , Cryptosporidium , Elephantiasis, Filarial , Haiti/epidemiology , Humans , Immunoglobulin G , Seroepidemiologic Studies
12.
PLoS One ; 17(1): e0262616, 2022.
Article in English | MEDLINE | ID: mdl-35030215

ABSTRACT

Sequencing large numbers of individual samples is often needed for countrywide antimalarial drug resistance surveillance. Pooling DNA from several individual samples is an alternative cost and time saving approach for providing allele frequency (AF) estimates at a population level. Using 100 individual patient DNA samples of dried blood spots from a 2017 nationwide drug resistance surveillance study in Haiti, we compared codon coverage of drug resistance-conferring mutations in four Plasmodium falciparum genes (crt, dhps, dhfr, and mdr1), for the same deep sequenced samples run individually and pooled. Samples with similar real-time PCR cycle threshold (Ct) values (+/- 1.0 Ct value) were combined with ten samples per pool. The sequencing success for samples in pools were higher at a lower parasite density than the individual samples sequence method. The median codon coverage for drug resistance-associated mutations in all four genes were greater than 3-fold higher in the pooled samples than in individual samples. The overall codon coverage distribution for pooled samples was wider than the individual samples. The sample pools with < 40 parasites/µL blood showed more discordance in AF calls for dhfr and mdr1 between the individual and pooled samples. This discordance in AF estimation may be due to low amounts of parasite DNA, which could lead to variable PCR amplification efficiencies. Grouping samples with an estimated ≥ 40 parasites/µL blood prior to pooling and deep sequencing yielded the expected population level AF. Pooling DNA samples based on estimates of > 40 parasites/µL prior to deep sequencing can be used for rapid genotyping of a large number of samples for these four genes and possibly other drug resistant markers in population-based studies. As Haiti is a low malaria transmission country with very few mixed infections and continued chloroquine sensitivity, the pooled sequencing approach can be used for routine national molecular surveillance of resistant parasites.


Subject(s)
Drug Resistance/genetics , High-Throughput Screening Assays/methods , Plasmodium falciparum/genetics , Animals , Antimalarials/pharmacology , Dried Blood Spot Testing/methods , Epidemiological Monitoring , Haiti , High-Throughput Nucleotide Sequencing/methods , Humans , Malaria/epidemiology , Malaria, Falciparum/parasitology , Nucleic Acid Amplification Techniques/methods , Parasites/genetics , Plasmodium falciparum/drug effects , Plasmodium falciparum/pathogenicity , Polymerase Chain Reaction/methods , Sequence Analysis, DNA
13.
PLoS Negl Trop Dis ; 16(1): e0010049, 2022 01.
Article in English | MEDLINE | ID: mdl-34986142

ABSTRACT

BACKGROUND: Estimation of malaria prevalence in very low transmission settings is difficult by even the most advanced diagnostic tests. Antibodies against malaria antigens provide an indicator of active or past exposure to these parasites. The prominent malaria species within Haiti is Plasmodium falciparum, but P. vivax and P. malariae infections are also known to be endemic. METHODOLOGY/PRINCIPAL FINDINGS: From 2014-2016, 28,681 Haitian children were enrolled in school-based serosurveys and were asked to provide a blood sample for detection of antibodies against multiple infectious diseases. IgG against the P. falciparum, P. vivax, and P. malariae merozoite surface protein 19kD subunit (MSP119) antigens was detected by a multiplex bead assay (MBA). A subset of samples was also tested for Plasmodium DNA by PCR assays, and for Plasmodium antigens by a multiplex antigen detection assay. Geospatial clustering of high seroprevalence areas for P. vivax and P. malariae antigens was assessed by both Ripley's K-function and Kulldorff's spatial scan statistic. Of 21,719 children enrolled in 680 schools in Haiti who provided samples to assay for IgG against PmMSP119, 278 (1.27%) were seropositive. Of 24,559 children enrolled in 788 schools providing samples for PvMSP119 serology, 113 (0.46%) were seropositive. Two significant clusters of seropositivity were identified throughout the country for P. malariae exposure, and two identified for P. vivax. No samples were found to be positive for Plasmodium DNA or antigens. CONCLUSIONS/SIGNIFICANCE: From school-based surveys conducted from 2014 to 2016, very few Haitian children had evidence of exposure to P. vivax or P. malariae, with no children testing positive for active infection. Spatial scan statistics identified non-overlapping areas of the country with higher seroprevalence for these two malarias. Serological data provides useful information of exposure to very low endemic malaria species in a population that is unlikely to present to clinics with symptomatic infections.


Subject(s)
Malaria/blood , Malaria/parasitology , Plasmodium malariae , Plasmodium vivax , Antibodies, Protozoan/blood , Antigens, Protozoan , Child , Cluster Analysis , DNA, Protozoan/genetics , Female , Haiti/epidemiology , Humans , Immunoglobulin G/blood , Malaria/epidemiology , Male , Seroepidemiologic Studies , Species Specificity , Time Factors
14.
Front Cell Infect Microbiol ; 12: 1033917, 2022.
Article in English | MEDLINE | ID: mdl-36425785

ABSTRACT

IgG serology can be utilized to estimate exposure to Anopheline malaria vectors and the Plasmodium species they transmit. A multiplex bead-based assay simultaneously detected IgG to Anopheles albimanus salivary gland extract (SGE) and four Plasmodium falciparum antigens (CSP, LSA-1, PfAMA1, and PfMSP1) in 11,541 children enrolled at 350 schools across Haiti in 2016. Logistic regression estimated odds of an above-median anti-SGE IgG response adjusting for individual- and environmental-level covariates. Spatial analysis detected statistically significant clusters of schools with students having high anti-SGE IgG levels, and spatial interpolation estimated anti-SGE IgG levels in unsampled locations. Boys had 11% (95% CI: 0.81, 0.98) lower odds of high anti-SGE IgG compared to girls, and children seropositive for PfMSP1 had 53% (95% CI: 1.17, 2.00) higher odds compared to PfMSP1 seronegatives. Compared to the lowest elevation, quartiles 2-4 of higher elevation were associated with successively lower odds (0.81, 0.43, and 0.34, respectively) of high anti-SGE IgG. Seven significant clusters of schools were detected in Haiti, while spatially interpolated results provided a comprehensive picture of anti-SGE IgG levels in the study area. Exposure to malaria vectors by IgG serology with SGE is a proxy to approximate vector biting in children and identify risk factors for vector exposure.


Subject(s)
Anopheles , Male , Child , Female , Animals , Humans , Haiti , Mosquito Vectors , Black People , Immunoglobulin G
15.
Am J Trop Med Hyg ; 104(6): 2139-2145, 2021 04 05.
Article in English | MEDLINE | ID: mdl-33819177

ABSTRACT

Haiti is targeting malaria elimination by 2025. The Grand'Anse department in southwestern Haiti experiences one-third to half of all nationally reported Plasmodium falciparum cases. Although there are historical reports of Plasmodium vivax and Plasmodium malariae, today, non-falciparum infections would remain undetected because of extensive use of falciparum-specific histidine-rich protein 2 (HRP2) rapid diagnostic tests (RDT) at health facilities. A recent case-control study was conducted in Grand'Anse to identify risk factors for P. falciparum infection using HRP2-based RDTs (n = 1,107). Post hoc multiplex Plasmodium antigenemia and antibody (IgG) detection by multiplex bead assay revealed one blood sample positive for pan-Plasmodium aldolase, negative for P. falciparum HRP2, and positive for IgG antibodies to P. malariae. Based on this finding, we selected 52 samples with possible P. malariae infection using IgG and antigenemia data and confirmed infection status by species-specific PCR. We confirmed one P. malariae infection in a 6-month-old infant without travel history. Congenital P. malariae could not be excluded. However, our finding-in combination with historical reports of P. malariae-warrants further investigation into the presence and possible extent of non-falciparum malaria in Haiti. Furthermore, we showed the use of multiplex Plasmodium antigen and IgG detection in selecting samples of interest for subsequent PCR analysis, thereby reducing costs as opposed to testing all available samples by PCR. This is of specific use in low-transmission or eliminating settings where infections are rare.


Subject(s)
Antibodies, Protozoan/blood , Antigens, Protozoan/blood , Disease Eradication/methods , Malaria/diagnosis , Malaria/prevention & control , Mass Screening/methods , Plasmodium malariae/immunology , Protozoan Proteins/blood , Adolescent , Antigens, Protozoan/immunology , Case-Control Studies , Child , Child, Preschool , Disease Eradication/standards , Haiti/epidemiology , Humans , Immunoglobulin G/blood , Infant , Malaria/epidemiology , Malaria/immunology , Mass Screening/statistics & numerical data , Plasmodium malariae/chemistry , Plasmodium malariae/genetics , Protozoan Proteins/immunology
16.
Sci Rep ; 10(1): 8443, 2020 05 21.
Article in English | MEDLINE | ID: mdl-32439948

ABSTRACT

Microscopy is the gold standard for malaria epidemiology, but laboratory and point-of-care (POC) tests detecting parasite antigen, DNA, and human antibodies against malaria have expanded this capacity. The island nation of Haiti is endemic for Plasmodium falciparum (Pf) malaria, though at a low national prevalence and heterogenous geospatial distribution. In 2015 and 2016, serosurveys were performed of children (ages 6-7 years) sampled in schools in Saut d'Eau commune (n = 1,230) and Grand Anse department (n = 1,664) of Haiti. Children received malaria antigen rapid diagnostic test and provided a filter paper blood sample for further laboratory analysis of the Pf histidine-rich protein 2 (HRP2) antigen, Pf DNA, and anti-Pf IgG antibodies. Prevalence of Pf infection ranged from 0.0-16.7% in 53 Saut d'Eau schools, and 0.0-23.8% in 56 Grand Anse schools. Anti-Pf antibody carriage exceeded 80% of students in some schools from both study sites. Geospatial prediction ellipses were created to indicate clustering of positive tests within the survey areas and overlay of all prediction ellipses for the different types of data revealed regions with high likelihood of active and ongoing Pf malaria transmission. The geospatial utilization of different types of Pf data can provide high confidence for spatial epidemiology of the parasite.


Subject(s)
Antibodies, Protozoan/immunology , Antigens, Protozoan/immunology , DNA, Protozoan/genetics , Diagnostic Tests, Routine/methods , Malaria, Falciparum/diagnosis , Plasmodium falciparum/isolation & purification , Protozoan Proteins/immunology , Child , DNA, Protozoan/analysis , Female , Geography , Haiti/epidemiology , Humans , Immunologic Tests , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Malaria, Falciparum/transmission , Male , Plasmodium falciparum/genetics , Plasmodium falciparum/immunology , Spatial Analysis
17.
Front Immunol ; 11: 928, 2020.
Article in English | MEDLINE | ID: mdl-32499783

ABSTRACT

In our aim to eliminate malaria, more sensitive tools to detect residual transmission are quickly becoming essential. Antimalarial antibody responses persist in the blood after a malaria infection and provide a wider window to detect exposure to infection compared to parasite detection metrics. Here, we aimed to select antibody responses associated with recent and cumulative exposure to malaria using cross-sectional survey data from Haiti, an elimination setting. Using a multiplex bead assay, we generated data for antibody responses (immunoglobulin G) to 23 Plasmodium falciparum targets in 29,481 participants across three surveys. This included one community-based survey in which participants were enrolled during household visits and two sentinel group surveys in which participants were enrolled at schools and health facilities. First, we correlated continuous antibody responses with age (Spearman) to determine which showed strong age-related associations indicating accumulation over time with limited loss. AMA-1 and MSP-119 antibody levels showed the strongest correlation with age (0.47 and 0.43, p < 0.001) in the community-based survey, which was most representative of the underlying age structure of the population, thus seropositivity to either of these antibodies was considered representative of cumulative exposure to malaria. Next, in the absence of a gold standard for recent exposure, we included antibody responses to the remaining targets to predict highly sensitive rapid diagnostic test (hsRDT) status using receiver operating characteristic curves. For this, only data from the survey with the highest hsRDT prevalence was used (7.2%; 348/4,849). The performance of the top two antigens in the training dataset (two-thirds of the dataset; n = 3,204)-Etramp 5 ag 1 and GLURP-R0 (area-under-the-curve, AUC, 0.892 and 0.825, respectively)-was confirmed in the test dataset (remaining one-third of the dataset; n = 1,652, AUC 0.903 and 0.848, respectively). As no further improvement was seen by combining seropositivity to GLURP-R0 and Etramp 5 ag 1 (p = 0.266), seropositivity to Etramp 5 ag 1 alone was selected as representative of current or recent exposure to malaria. The validation of antibody responses associated with these exposure histories simplifies analyses and interpretation of antibody data and facilitates the application of results to evaluate programs.


Subject(s)
Antibodies, Protozoan/blood , Antibody Formation , Malaria, Falciparum/immunology , Plasmodium falciparum/immunology , Adolescent , Adult , Age Factors , Antibodies, Protozoan/immunology , Child , Cross-Sectional Studies , Disease Eradication , Haiti , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Prevalence , Young Adult
18.
Sci Rep ; 10(1): 1135, 2020 01 24.
Article in English | MEDLINE | ID: mdl-31980693

ABSTRACT

Measuring antimalarial antibodies can estimate transmission in a population. To compare outputs, standardized laboratory testing is required. Here we describe the in-country establishment and quality control (QC) of a multiplex bead assay (MBA) for three sero-surveys in Haiti. Total IgG data against 21 antigens were collected for 32,758 participants. Titration curves of hyperimmune sera were included on assay plates, assay signals underwent 5-parameter regression, and inspection of the median and interquartile range (IQR) for the y-inflection point was used to determine assay precision. The medians and IQRs were similar for Surveys 1 and 2 for most antigens, while the IQRs increased for some antigens in Survey 3. Levey-Jennings charts for selected antigens provided a pass/fail criterion for each assay plate and, of 387 assay plates, 13 (3.4%) were repeated. Individual samples failed if IgG binding to the generic glutathione-S-transferase protein was observed, with 659 (2.0%) samples failing. An additional 455 (1.4%) observations failed due to low bead numbers (<20/analyte). The final dataset included 609,438 anti-malaria IgG data points from 32,099 participants; 96.6% of all potential data points if no QC failures had occurred. The MBA can be deployed with high-throughput data collection and low inter-plate variability while ensuring data quality.


Subject(s)
Antibodies, Protozoan/blood , Antigens, Protozoan/immunology , Immunoglobulin G/blood , Immunomagnetic Separation/methods , Malaria, Falciparum/diagnosis , Plasmodium falciparum/immunology , Quality Control , Serologic Tests/methods , Antibodies, Protozoan/immunology , Antibody Specificity , Cross-Sectional Studies , Datasets as Topic , Haiti/epidemiology , Humans , Immunoglobulin G/immunology , Immunomagnetic Separation/instrumentation , Malaria, Falciparum/blood , Malaria, Falciparum/epidemiology , Malaria, Falciparum/immunology , Recombinant Proteins/immunology , Reference Standards , Reproducibility of Results
19.
Acta Trop ; 162: 27-34, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27230796

ABSTRACT

BACKGROUND: Plasmodium vivax infections, while quite prevalent throughout South and Central America, are virtually non-existent in Haiti, where P. falciparum infections are detected in over 99% of malaria cases. Historically, few cases of P. vivax have been reported in Haiti; all of which were identified by microscopy and none were confirmed by molecular diagnostics. To further examine the transmission of P. vivax in Haiti, a cross-sectional seroepidemiological study was conducted. METHODS: Whole blood was collected from 814 community members and school children ranging in age between 2 and 80 years-of-age from four locations in the Ouest and Sud-Est Departments of Haiti. After separation of serum, samples were screened for antibodies toward P. vivax apical membrane antigen (AMA-1) and merozoite surface protein-119 (MSP-1) using an indirect enzyme-linked immunosorbent assay (ELISA). RESULTS: Of all participants screened, 4.42% (36/814) were seropositive for AMA-1, 4.55% (37/814) were seropositive for MSP-1, 7.99% (65/814) were seropositive to either antigen, and only 0.98% (7/814) were seropositive for both antigens. Seroconversion rates (SCR) for AMA-1, MSP-1, either AMA-1 or MSP-1, and for both AMA-1 and MSP-1 estimated from the cross-sectional seroprevalence indicated rates of P. vivax transmission of less than 1% per year. CONCLUSION: Given the lack of historical evidence of P. vivax infections on the island of Hispaniola, the sparse serological evidence of antibodies toward P. vivax identified in the current study further support the notion that the transmission of P. vivax malaria might be extremely low or even completely absent in Haiti.


Subject(s)
Antibodies, Protozoan/blood , Antigens, Protozoan/blood , Immunoglobulin G/blood , Malaria, Vivax/immunology , Malaria, Vivax/transmission , Plasmodium vivax/immunology , Plasmodium vivax/isolation & purification , Adolescent , Adult , Aged , Aged, 80 and over , Antibodies, Protozoan/immunology , Antigens, Protozoan/immunology , Cell Membrane , Child , Child, Preschool , Cross-Sectional Studies , Enzyme-Linked Immunosorbent Assay , Female , Haiti/epidemiology , Humans , Immunoglobulin G/immunology , Malaria, Vivax/epidemiology , Male , Membrane Proteins/blood , Membrane Proteins/immunology , Merozoite Surface Protein 1/blood , Merozoite Surface Protein 1/immunology , Middle Aged , Prevalence , Seroepidemiologic Studies , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL