Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 185(4): 585-602.e29, 2022 02 17.
Article in English | MEDLINE | ID: mdl-35051368

ABSTRACT

The relevance of extracellular magnesium in cellular immunity remains largely unknown. Here, we show that the co-stimulatory cell-surface molecule LFA-1 requires magnesium to adopt its active conformation on CD8+ T cells, thereby augmenting calcium flux, signal transduction, metabolic reprogramming, immune synapse formation, and, as a consequence, specific cytotoxicity. Accordingly, magnesium-sufficiency sensed via LFA-1 translated to the superior performance of pathogen- and tumor-specific T cells, enhanced effectiveness of bi-specific T cell engaging antibodies, and improved CAR T cell function. Clinically, low serum magnesium levels were associated with more rapid disease progression and shorter overall survival in CAR T cell and immune checkpoint antibody-treated patients. LFA-1 thus directly incorporates information on the composition of the microenvironment as a determinant of outside-in signaling activity. These findings conceptually link co-stimulation and nutrient sensing and point to the magnesium-LFA-1 axis as a therapeutically amenable biologic system.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Lymphocyte Function-Associated Antigen-1/metabolism , Magnesium/metabolism , Animals , Bacterial Infections/immunology , Caloric Restriction , Cell Line, Tumor , Cytotoxicity, Immunologic , HEK293 Cells , Humans , Immunologic Memory , Immunological Synapses/metabolism , Immunotherapy , Lymphocyte Activation/immunology , MAP Kinase Signaling System , Magnesium/administration & dosage , Male , Mice, Inbred C57BL , Neoplasms/immunology , Neoplasms/pathology , Neoplasms/therapy , Phenotype , Phosphorylation , Proto-Oncogene Proteins c-jun/metabolism
2.
Appl Microbiol Biotechnol ; 108(1): 295, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38598118

ABSTRACT

A "redox-stat" RMnR bioreactor was employed to simulate moderately reducing conditions (+ 420 mV) in Sb-contaminated shooting range soils for approximately 3 months, thermodynamically favoring Mn(IV) reduction. The impact of moderately reducing conditions on elemental mobilization (Mn, Sb, Fe) and speciation [Sb(III) versus Sb(V); Fe2+/Fe3+] was compared to a control bioreactor RCTRL without a fixed redox potential. In both bioreactors, reducing conditions were accompanied by an increase in effluent Sb(V) and Mn(II) concentrations, suggesting that Sb(V) was released through microbial reduction of Mn oxyhydroxide minerals. This was underlined by multiple linear regression analysis showing a significant (p < 0.05) relationship between Mn and Sb effluent concentrations. Mn concentration was the sole variable exhibiting a statistically significant effect on Sb in RMnR, while under the more reducing conditions in RCTRL, pH and redox potential were also significant. Analysis of the bacterial community composition revealed an increase in the genera Azoarcus, Flavisolibacter, Luteimonas, and Mesorhizobium concerning the initial soil, some of which are possible key players in the process of Sb mobilization. The overall amount of Sb released in the RMnR (10.40%) was virtually the same as in the RCTRL (10.37%), which underlines a subordinate role of anoxic processes, such as Fe-reductive dissolution, in Sb mobilization. This research underscores the central role of relatively low concentrations of Mn oxyhydroxides in influencing the fate of trace elements. Our study also demonstrates that bioreactors operated as redox-stats represent versatile tools that allow quantifying the contribution of specific mechanisms determining the fate of trace elements in contaminated soils. KEY POINTS: • "Redox-stat" reactors elucidate Sb mobilization mechanisms • Mn oxyhydroxides microbial reductive dissolution has a major role in Sb mobilization in soils under moderately reducing conditions • Despite aging the soil exhibited significant Sb mobilization potential, emphasizing persistent environmental effects.


Subject(s)
Manganese , Trace Elements , Bacteroidetes , Soil
3.
Appl Environ Microbiol ; 87(12): e0010421, 2021 05 26.
Article in English | MEDLINE | ID: mdl-33811024

ABSTRACT

Selenium (Se) deficiency affects many millions of people worldwide, and the volatilization of methylated Se species to the atmosphere may prevent Se from entering the food chain. Despite the extent of Se deficiency, little is known about fluxes in volatile Se species and their temporal and spatial variation in the environment, giving rise to uncertainty in atmospheric transport models. To systematically determine fluxes, one can rely on laboratory microcosm experiments to quantify Se volatilization in different conditions. Here, it is demonstrated that the sulfur (S) status of bacteria crucially determines the amount of Se volatilized. Solid-phase microextraction gas chromatography mass spectrometry showed that Pseudomonas tolaasii efficiently and rapidly (92% in 18 h) volatilized Se to dimethyl diselenide and dimethyl selenyl sulfide through promiscuous enzymatic reactions with the S metabolism. However, when the cells were supplemented with cystine (but not methionine), a major proportion of the Se (∼48%) was channeled to thus-far-unknown, nonvolatile Se compounds at the expense of the previously formed dimethyl diselenide and dimethyl selenyl sulfide (accounting for <4% of total Se). Ion chromatography and solid-phase extraction were used to isolate unknowns, and electrospray ionization ion trap mass spectrometry, electrospray ionization quadrupole time-of-flight mass spectrometry, and microprobe nuclear magnetic resonance spectrometry were used to identify the major unknown as a novel Se metabolite, 2-hydroxy-3-(methylselanyl)propanoic acid. Environmental S concentrations often exceed Se concentrations by orders of magnitude. This suggests that in fact S status may be a major control of selenium fluxes to the atmosphere. IMPORTANCE Volatilization from soil to the atmosphere is a major driver for Se deficiency. "Bottom-up" models for atmospheric Se transport are based on laboratory experiments quantifying volatile Se compounds. The high Se and low S concentrations in such studies poorly represent the environment. Here, we show that S amino acid status has in fact a decisive effect on the production of volatile Se species in Pseudomonas tolaasii. When the strain was supplemented with S amino acids, a major proportion of the Se was channeled to thus-far-unknown, nonvolatile Se compounds at the expense of volatile compounds. This hierarchical control of the microbial S amino acid status on Se cycling has been thus far neglected. Understanding these interactions-if they occur in the environment-will help to improve atmospheric Se models and thus predict drivers of Se deficiency.


Subject(s)
Amino Acids, Sulfur/metabolism , Pseudomonas/metabolism , Selenium/metabolism , Methylation , Propionates/metabolism , Selenious Acid/metabolism , Soil Microbiology , Volatilization
4.
Chimia (Aarau) ; 73(11): 874-879, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31753068

ABSTRACT

Renewable energies, such as sunlight, wind and geothermal heat, are resources that are replaced rapidly by natural processes. However, wind, hydro and solar installations strictly require raw materials that are, in fact, not renewable. Many raw materials are already facing a supply shortage which cannot be easily overcome. This work reviews the problem of critical raw material (CRM) use in photovoltaics (PV) as an example and explains why supply cannot be easily increased to meet demand. We discuss whether there is indeed a 'struggle for elements' in a Darwinian sense, which ultimately leads to a 'survival of the fittest' race in renewable energy technology. In the case of PV, the perception of the definition of 'fittest' needs to change from that considering energy conversion efficiency alone to that which holistically considers net energy produced per emission under the premise that sufficient environmentally and socially acceptable raw material supply exists for renewable energies and all other sectors.

5.
Appl Microbiol Biotechnol ; 102(17): 7635-7641, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29931602

ABSTRACT

The environmental fate of major (e.g. C, N, S, Fe and Mn) and trace (e.g. As, Cr, Sb, Se and U) elements is governed by microbially catalysed reduction-oxidation (redox) reactions. Mesocosms are routinely used to elucidate trace metal fate on the basis of correlations between biogeochemical proxies such as dissolved element concentrations, trace element speciation and dissolved organic matter. However, several redox processes may proceed simultaneously in natural soils and sediments (particularly, reductive Mn and Fe dissolution and metal/metalloid reduction), having a contrasting effect on element mobility. Here, a novel redox-stat (Rcont) bioreactor allowed precise control of the redox potential (159 ± 11 mV, ~ 2 months), suppressing redox reactions thermodynamically favoured at lower redox potential (i.e. reductive mobilisation of Fe and As). For a historically contaminated mining soil, As release could be attributed to desorption of arsenite [As(III)] and Mn reductive dissolution. By contrast, the control bioreactor (Rnat, with naturally developing redox potential) showed almost double As release (337 vs. 181 µg g-1) due to reductive dissolution of Fe (1363 µg g-1 Fe2+ released; no Fe2+ detected in Rcont) and microbial arsenate [As(V)] reduction (189 µg g-1 released vs. 46 µg g-1 As(III) in Rcont). A redox-stat bioreactor thus represents a versatile tool to study processes underlying mobilisation and sequestration of other trace elements as well.


Subject(s)
Arsenic/isolation & purification , Bioreactors , Environmental Restoration and Remediation/methods , Mining , Soil Pollutants/isolation & purification , Trace Elements/isolation & purification , Arsenic/chemistry , Metals, Heavy/chemistry , Metals, Heavy/isolation & purification , Oxidation-Reduction , Soil/chemistry , Soil Pollutants/chemistry , Trace Elements/chemistry
6.
Appl Microbiol Biotechnol ; 102(23): 10299-10314, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30294753

ABSTRACT

In the last decade, biological degradation and mineralization of antibiotics have been increasingly reported feats of environmental bacteria. The most extensively described example is that of sulfonamides that can be degraded by several members of Actinobacteria and Proteobacteria. Previously, we reported sulfamethoxazole (SMX) degradation and partial mineralization by Achromobacter denitrificans strain PR1, isolated from activated sludge. However, further studies revealed an apparent instability of this metabolic trait in this strain. Here, we investigated this instability and describe the finding of a low-abundance and slow-growing actinobacterium, thriving only in co-culture with strain PR1. This organism, named GP, shared highest 16S rRNA gene sequence similarity (94.6-96.9%) with the type strains of validly described species of the genus Leucobacter. This microbial consortium was found to harbor a homolog to the sulfonamide monooxygenase gene (sadA) also found in other sulfonamide-degrading bacteria. This gene is overexpressed in the presence of the antibiotic, and evidence suggests that it codes for a group D flavin monooxygenase responsible for the ipso-hydroxylation of SMX. Additional side reactions were also detected comprising an NIH shift and a Baeyer-Villiger rearrangement, which indicate an inefficient biological transformation of these antibiotics in the environment. This work contributes to further our knowledge in the degradation of this ubiquitous micropollutant by environmental bacteria.


Subject(s)
Achromobacter denitrificans/metabolism , Actinobacteria/metabolism , Biodegradation, Environmental , Sulfamethoxazole/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cloning, Molecular , Gene Expression Regulation, Bacterial , Gene Library , Metagenomics , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Sewage/microbiology
7.
J Chem Technol Biotechnol ; 93(9): 2498-2510, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30158737

ABSTRACT

Since the world economy has been confronted with an increasing risk of supply shortages of critical raw materials (CRMs), there has been a major interest in identifying alternative secondary sources of CRMs. Bauxite residues from alumina production are available at a multi-million tonnes scale worldwide. So far, attempts have been made to find alternative re-use applications for bauxite residues, for instance in cement / pig iron production. However, bauxite residues also constitute an untapped secondary source of CRMs. Depending on their geological origin and processing protocol, bauxite residues can contain considerable amounts of valuable elements. The obvious primary consideration for CRM recovery from such residues is the economic value of the materials contained. However, there are further benefits from re-use of bauxite residues in general, and from CRM recovery in particular. These go beyond monetary values (e.g. reduced investment / operational costs resulting from savings in disposal). For instance, benefits for the environment and health can be achieved by abatement of tailing storage as well as by reduction of emissions from conventional primary mining. Whereas certain tools (e.g. life-cycle analysis) can be used to quantify the latter, other benefits (in particular sustained social and technological development) are harder to quantify. This review evaluates strategies of bauxite residue re-use / recycling and identifies associated benefits beyond elemental recovery. Furthermore, methodologies to translate risks and benefits into quantifiable data are discussed. Ultimately, such quantitative data are a prerequisite for facilitating decision-making regarding bauxite residue re-use / recycling and a stepping stone towards developing a zero-waste alumina production process. © 2018 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

8.
Environ Sci Technol ; 50(17): 9124-32, 2016 09 06.
Article in English | MEDLINE | ID: mdl-27454004

ABSTRACT

Concentrations of soil arsenic (As) in the vicinity of the former Zloty Stok gold mine (Lower Silesia, southwest Poland) exceed 1000 µg g(-1) in the area, posing an inherent threat to neighboring bodies of water. This study investigated continuous As mobilization under reducing conditions for more than 3 months. In particular, the capacity of autochthonic microflora that live on natural organic matter as the sole carbon/electron source for mobilizing As was assessed. A biphasic mobilization of As was observed. In the first two months, As mobilization was mainly conferred by Mn dissolution despite the prevalence of Fe (0.1 wt % vs 5.4 for Mn and Fe, respectively) as indicated by multiple regression analysis. Thereafter, the sudden increase in aqueous As[III] (up to 2400 µg L(-1)) was attributed to an almost quintupling of the autochthonic dissimilatory As-reducing community (quantitative polymerase chain reaction). The aqueous speciation influenced by microbial activity led to a reduction of solid phase As species (X-ray absorption fine structure spectroscopy) and a change in the elemental composition of As hotspots (micro X-ray fluorescence mapping). The depletion of most natural dissolved organic matter and the fact that an extensive mobilization of As[III] occurred after two months raises concerns about the long-term stability of historically As-contaminated sites.


Subject(s)
Arsenic , Soil/chemistry , Bioreactors , Mining , Risk Assessment , Soil Pollutants
9.
Environ Sci Technol ; 48(22): 13412-8, 2014 Nov 18.
Article in English | MEDLINE | ID: mdl-25310266

ABSTRACT

Electronic consumer products such as smartphones, TV, computers, light-emitting diodes, and photovoltaic cells crucially depend on metals and metalloids. So-called "urban mining" considers them as secondary resources since they may contain precious elements at concentrations many times higher than their primary ores. Indium is of foremost interest being widely used, expensive, scarce and prone to supply risk. This study first investigated the capability of different nanofiltration membranes of extracting indium from copper-indium-gallium- selenide photovoltaic cell (CIGS) leachates under low pH conditions and low transmembrane pressure differences (<3 bar). Retentates were then subjected to a further selective liquid-liquid extraction (LLE). Even at very acidic pH indium was retained to >98% by nanofiltration, separating it from parts of the Ag, Sb, Se, and Zn present. LLE using di-(2-ethylhexyl)phosphoric acid (D2EHPA) extracted 97% of the indium from the retentates, separating it from all other elements except for Mo, Al, and Sn. Overall, 95% (2.4 g m(-2) CIGS) of the indium could be extracted to the D2EHPA phase. Simultaneously, by nanofiltration the consumption of D2EHPA was reduced by >60% due to the metal concentration in the reduced retentate volume. These results show clearly the potential for efficient scarce metal recovery from secondary resources. Furthermore, since nanofiltration was applicable at very low pH (≥ 0.6), it may be applied in hydrometallurgy typically using acidic conditions.


Subject(s)
Acids/chemistry , Filtration/methods , Gallium/chemistry , Indium/chemistry , Liquid-Liquid Extraction/methods , Nanotechnology/methods , Photochemistry , Recycling , Selenium/chemistry , Hydrogen-Ion Concentration , Industry/economics , Ions , Membranes, Artificial , Metalloids/analysis , Metalloids/economics , Pressure , Solvents/chemistry
10.
J Manipulative Physiol Ther ; 37(2): 116-23, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24387886

ABSTRACT

OBJECTIVE: The main objective of this pilot study was to explore the effect of chiropractic high-velocity, low-amplitude (HVLA) manipulation on vertical jump height in young female athletes with talocrural joint dysfunction. METHODS: This was a randomized assessor-blind clinical pilot trial. Twenty-two female handball players with talocrural joint dysfunction were randomized to receive either HVLA manipulation (n = 11) or sham treatment (n = 11) once a week during a 3-week period. The main outcome was change in vertical jump height from baseline to follow-up within and between groups after 3 weeks. RESULTS: Nineteen athletes completed the study. After 3 weeks, the group receiving HVLA manipulation (n = 11) had a statistically significant mean (SD) improvement in vertical jump height of 1.07 (1.23) cm (P = .017). The sham treatment group (n = 8) improved their vertical jump height by 0.59 (2.03) cm (P = .436). The between groups' change was 0.47 cm (95% confidence interval, -1.31 to 2.26; P = .571) in favor of the group receiving HVLA manipulation. Blinding and sham procedures were feasible, and there were no reported adverse events. CONCLUSION: The results of this pilot study show that a larger-scale study is feasible. Preliminary results suggest that chiropractic HVLA manipulation may increase vertical jump height in young female athletes with talocrural joint dysfunction. However, the clinical result in favor of HVLA manipulation compared with sham treatment needs statistical confirmation in a larger randomized clinical trial.


Subject(s)
Ankle Joint/physiopathology , Athletes , Manipulation, Chiropractic , Movement/physiology , Adolescent , Arthralgia/physiopathology , Arthralgia/therapy , Feasibility Studies , Female , Humans , Pilot Projects , Single-Blind Method , Young Adult
11.
Appl Environ Microbiol ; 79(18): 5550-8, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23835177

ABSTRACT

Sulfonamide antibiotics have a wide application range in human and veterinary medicine. Because they tend to persist in the environment, they pose potential problems with regard to the propagation of antibiotic resistance. Here, we identified metabolites formed during the degradation of sulfamethoxazole and other sulfonamides in Microbacterium sp. strain BR1. Our experiments showed that the degradation proceeded along an unusual pathway initiated by ipso-hydroxylation with subsequent fragmentation of the parent compound. The NADH-dependent hydroxylation of the carbon atom attached to the sulfonyl group resulted in the release of sulfite, 3-amino-5-methylisoxazole, and benzoquinone-imine. The latter was concomitantly transformed to 4-aminophenol. Sulfadiazine, sulfamethizole, sulfamethazine, sulfadimethoxine, 4-amino-N-phenylbenzenesulfonamide, and N-(4-aminophenyl)sulfonylcarbamic acid methyl ester (asulam) were transformed accordingly. Therefore, ipso-hydroxylation with subsequent fragmentation must be considered the underlying mechanism; this could also occur in the same or in a similar way in other studies, where biotransformation of sulfonamides bearing an amino group in the para-position to the sulfonyl substituent was observed to yield products corresponding to the stable metabolites observed by us.


Subject(s)
Actinomycetales/metabolism , Anti-Bacterial Agents/metabolism , Sulfonamides/metabolism , Biotransformation , Environmental Pollutants/metabolism , Hydroxylation , Metabolic Networks and Pathways , NAD/metabolism
12.
Environ Sci Technol ; 47(5): 2401-7, 2013 Mar 05.
Article in English | MEDLINE | ID: mdl-23363320

ABSTRACT

Microbial selenium (Se) bioremediation is based on conversion of water soluble, toxic Se oxyanions to water insoluble, elemental Se. Formed biogenic elemental Se is of nanometer size, hampering straightforward separation from the aqueous phase. This study represents the first systematic investigation on colloidal properties of pure biogenic Se suspensions, linking electrophoretic mobility (ζ-potential) to column settling behavior. It was demonstrated that circumneutral pH, commonly applied in bioremediation, is not appropriate for gravitational separation due to the negative ζ-potential preventing agglomeration. Mono/di/trivalent counter cations and acidity (protons) were used to screen efficiently the intrinsic negative charge of biogenic Se suspensions at circumneutral pH. Fast settling was induced by La(3+) addition in the micromolar range (86.2 ± 3.5% within 0.5 h), whereas considerably higher concentrations were needed when Ca(2+) or Na(+) was used. Colloidal stability was furthermore studied in different model waters. It was demonstrated that surface waters as such represent a fragile system regarding colloidal stability of biogenic Se suspensions (ζ-potential ∼ -30 mV), whereas dissolved organic matter increases colloidal stability. In marine waters, biogenic Se is colloidally destabilized and is thus expected to settle, representing a potential sink for Se during transport in the aquatic environment.


Subject(s)
Nanoparticles/chemistry , Selenium/chemistry , Water Pollutants, Chemical/chemistry , Biodegradation, Environmental , Colloids/chemistry , Selenium/metabolism , Water/chemistry , Water Pollutants, Chemical/metabolism
13.
Environ Sci Technol ; 47(22): 13151-9, 2013 Nov 19.
Article in English | MEDLINE | ID: mdl-24134490

ABSTRACT

The photovoltaic effect of thin-film copper indium gallium selenide cells (CIGS) is conferred by the latter elements. Organic photovoltaic cells (OPV), relying on organic light-absorbing molecules, also contain a variety of metals (e.g., Zn, Al, In, Sn, Ag). The environmental impact of such technologies is largely unknown, in particular when the physical integrity deteriorates upon end-of-life, possibly facilitating cell constituent leaching. This study analyzed long-term inorganic leaching from damaged OPV and CIGS into different model waters. Leachate concentrations were put into perspective by calculating the predicted environmental concentrations (PEC) for several scenarios. Roof-top acidic rain runoff from CIGS was found to be the predominant emission source for metals and metalloids, with Cd released to such extents that PEC (173.4 µg Cd L(-1)) would considerably exceed acute toxicity concentrations for Daphnia magna . Other PEC for CIGS (9.9 mg Mo L(-1) and 9.4 µg Se L(-1)) were in the range of teratogenic effects. In contrast, OPV released little metals with calculated PEC being below even conservative drinking water guidelines. Time-resolved single-particle ICP-MS indicated that some metals (Zn, Mo, Ag) were in nanoparticulate form, raising nanotoxicity concerns. Leaching kinetics called for revision of existing standardized (accelerated) leaching protocols because long-term release was most relevant.


Subject(s)
Metalloids/analysis , Photochemistry/instrumentation , Water Pollutants, Chemical/analysis , Acid Rain , Animals , Daphnia/drug effects , Gallium/chemistry , Kinetics , Lakes/chemistry , Metalloids/toxicity , Particulate Matter/analysis , Seawater/chemistry , Selenium/chemistry , Water Pollutants, Chemical/toxicity
14.
Chemosphere ; 345: 140548, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37890793

ABSTRACT

Selenium deficiency affects many million people worldwide and volatilization of biogenically methylated selenium species to the atmosphere may limit Se entering the food chain. However, there is very little systematic data on volatilization at nanomolar concentrations prevalent in pristine natural environments. Pseudomonas tolaasii cultures efficiently methylated Se at these concentrations. Nearly perfect linear correlations between the spiked Se concentrations and Dimethylselenide, Dimethyldiselenide, Dimethylselenylsulfide and 2-hydroxy-3-(methylselanyl)propanoic acid were observed up to 80 nM. The efficiency of methylation increased linearly with increasing initial Se concentration, arguing that the enzymes involved are not constitutive, but methylation proceeds promiscuously via pathways of S methylation. From the ratio of all methylated Se and S species, one can conclude that between 0.30% and 3.48% of atoms were Se promiscuously methylated at such low concentrations. At concentrations higher than 640 nM (∼50 µg/L) a steep increase in methylation and volatilization was observed, which suggested the induction of specific enzymes. Promiscuous methylation at low environmental concentrations calls into question that view that methylated Se in the atmosphere is a result of a purposeful Se metabolism serving detoxification. Rather, the concentrations of methylated Se in the atmosphere may be "coincidental" i.e., determined by the activity of S cycling microorganisms. Further, a steep increase in methylation efficiency when surpassing a certain threshold concentration (here ∼50 µg/L) calls into question that natural methylation can be estimated from high Se spikes in laboratory systems, yet highlights the possibility of using bacterial methylation as an effective remediation strategy for media higher concentrated in Se.


Subject(s)
Selenium , Humans , Selenium/metabolism , Volatilization , Methylation , Food Chain , Sulfur
15.
ACS Sustain Chem Eng ; 11(15): 5883-5894, 2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37091124

ABSTRACT

Scandium (Sc), declared a critical raw material in the European Union (EU), could face further supply issues as the EU depends almost entirely on imports from China, Russia, and Ukraine. In this study, a tandem nanofiltration-solvent extraction procedure for Sc recovery from titania (TiO2) acid waste was piloted and then augmented by antisolvent crystallization. The new process, comprising advanced filtration (hydroxide precipitation, micro-, ultra-, and nanofiltration), solvent extraction, and antisolvent crystallization, was assessed in relation to material and energy inputs and benchmarked on ScF3 production. From ∼1 m3 of European acid waste containing traces of Sc (81 mg L-1), ∼13 g of Sc (43% yield, nine stages) was recovered as (NH4)3ScF6 with a purity of approximately 95%, demonstrating the technical feasibility of the approach. The production costs per kilogram of ScF3 were lower than reported market prices, which underscores a competitive process at scale. Although a few technical bottlenecks (e.g., S/L separation and electricity consumption) need to be overcome, combining advanced filtration with solvent extraction and antisolvent crystallization promises a future supply of this critical raw material from European secondary sources.

16.
Heliyon ; 9(4): e15512, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37128350

ABSTRACT

The lack of high-grade scandium (Sc) ores and recovery strategies has stimulated research on the exploitation of non-ore-related secondary sources that have great potential to safeguard the critical raw materials supply of the EU's economy. Waste materials may satisfy the growing global Sc demand, specifically residues from titanium dioxide (TiO2) production. New technologies are being developed for the recovery of Sc from such residues; however, the possible environmental impacts of intermediary products and residues are usually not considered. In order to provide a comprehensive ecotoxicity characterisation of the wastes and intermediate residues resulting from one promising new technology, acid-resistant nanofiltration (arNF), a waste-specific ecotoxicity toolkit was established. Three ecotoxicity assays were selected with specific test parameters providing the most diverse outcome for toxicity characterisation at different trophic levels: Aliivibrio fischeri (bacteria) bioluminescence inhibition (30 min exposure), Daphnia magna (crustacean) lethality and immobilisation (24 h exposure) and Lemna minor (plant) growth inhibition with determination of the frond number (7 d exposure). According to our results, the environmental impact of the generated intermediate and final residues on the aquatic ecosystem was mitigated by the consecutive steps of the filtration methods applied. High and statistically significant toxicity attenuation was achieved according to each test organism: toxicity was lowered based on EC20 values, according to the A. fischeri bioluminescence inhibition assay (by 97%), D. magna lethality (by 99%) and L. minor frond number (by 100%), respectively, after the final filtration step, nanofiltration, in comparison to the original waste. Our results underline the importance of assessing chemical technologies' ecotoxicological and environmental impacts with easy-to-apply and cost-effective test methods to showcase the best available technologies.

17.
J Hazard Mater ; 447: 130829, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-36682249

ABSTRACT

Perovskite solar cells represent an emerging and highly promising renewable energy technology. However, the most efficient perovskite solar cells critically depend on the use of lead. This represents a possible environmental concern potentially limiting the technologies' commercialization. Here, we demonstrate a facile recycling process for PbI2, the most common lead-based precursor in perovskite absorber material. The process uses only hot water to effectively extract lead from synthetic precursor mixes, plastic- and glass-based perovskites (92.6 - 100% efficiency after two extractions). When the hot extractant is cooled, crystalline PbI2 in high purity (> 95.9%) precipitated with a high yield: from glass-based perovskites, the first cycle of extraction / precipitation was sufficient to recover 94.4 ± 5.6% of Pb, whereas a second cycle yielded another 10.0 ± 5.2% Pb, making the recovery quantitative. The solid extraction residue remaining is consequently deprived of metals and may thus be disposed as non-hazardous waste. Therefore, exploiting the highly temperature-dependent solubility of PbI2 in water provides a straightforward, easy to implement way to efficiently extract lead from PSC at the end-of-life and deposit the extraction residues in a cost-effective manner, mitigating the potential risk of lead leaching at the perovskites' end-of-life.

18.
Environ Sci Technol ; 46(21): 11988-94, 2012 Nov 06.
Article in English | MEDLINE | ID: mdl-23020752

ABSTRACT

Selenium (Se) is of key importance to human health with a very narrow concentration range of optimal dietary intake. Due to the inherent analytical challenge linked with the low natural abundance, information on precise and accurate Se speciation in deficient environments is hardly existent. This study presents a novel approach to determine Se species-specifically at ultratraces, by online coupling of a preconcentration (trap) column to an ion chromatography inductively coupled plasma mass spectrometry (IC-ICP-MS) system. It is demonstrated that with this robust and work/time efficient method, the predominant selenium oxyanions, selenite (Se(IV)) and selenate (Se(VI)), can be quantified down to 7.3 and 8.3 picogram total Se, respectively, in an overall analytical time of 420 s, only. The applicability for environmental samples was proven on pristine volcanic ashes collected from seven different volcanoes. The high sensitivity of the novel approach allowed to determine speciation in samples that were strongly depleted in total selenium (<0.05 mg kg(-1) Se) with only minor fractions of Se mobilized (i.e., less than 10% of the total selenium was leached in 10 out of 12 samples). The studied samples showed considerate differences in selenium speciation, with selenite and selenate co-occurring in most samples. The fact that the studied sample leachates had a wide range of pH (3.78-9.55) and major anion/cation composition underlines the versatility and wide potential application range of the method presented.


Subject(s)
Environmental Monitoring/methods , Mass Spectrometry/methods , Online Systems , Selenium/analysis , Selenic Acid , Selenium Compounds/analysis , Sodium Selenite/analysis
19.
Environ Sci Technol ; 46(2): 571-9, 2012 Jan 17.
Article in English | MEDLINE | ID: mdl-22129299

ABSTRACT

Selenium is a natural trace element that is of fundamental importance to human health. The extreme geographical variation in selenium concentrations in soils and food crops has resulted in significant health problems related to deficient or excess levels of selenium in the environment. To deal with these kinds of problems in the future it is essential to get a better understanding of the processes that control the global distribution of selenium. The recent development of analytical techniques and methods enables accurate selenium measurements of environmental concentrations, which will lead to a better understanding of biogeochemical processes. This improved understanding may enable us to predict the distribution of selenium in areas where this is currently unknown. These predictions are essential to prevent future Se health hazards in a world that is increasingly affected by human activities.


Subject(s)
Environmental Health , Environmental Monitoring/methods , Selenium/chemistry , Soil/chemistry , Biological Availability , Crops, Agricultural/chemistry , Food Analysis , Geological Phenomena , Humans , Nanoparticles , Selenium/deficiency , Trace Elements/analysis , Water/chemistry
20.
J Hazard Mater ; 436: 128995, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35525217

ABSTRACT

Efficient and stable perovskite solar cells rely on the use of Pb species potentially challenging the technologies' commercialisation. In this study, the fate of Pb derived from two common perovskite precursors is compared to cationic lead in soil-water microcosm experiments under various biogeochemical conditions. The rapid and efficient removal of Pb from the aqueous phase is demonstrated by inductively coupled plasma mass spectrometry. Sequential soil extraction results reveal that a substantial amount of Pb is associated with immobile fractions, whereas a minor proportion of Pb may become available again in the long term, when oxygen is depleted (e.g. during water logging). X-ray absorption spectroscopy results reveal that the sorption of Pb on mineral phases represents the most likely sequestration mechanism. The obtained results suggest that the availability of leached Pb from perovskite solar cells is naturally limited in soils and that its adverse effects on soil biota are possibly negligible in oxic soils. All three Pb sources used behaved very similar in the experiments, wherefore we conclude that perovskite derived Pb will have a similar fate compared to cationic Pb, so that established risk assessment considerations for Pb remain legitimate.


Subject(s)
Soil Pollutants , Soil , Calcium Compounds , Lead/analysis , Oxides , Soil/chemistry , Soil Pollutants/analysis , Titanium , Water/analysis
SELECTION OF CITATIONS
SEARCH DETAIL