Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
Pflugers Arch ; 476(9): 1411-1421, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39101996

ABSTRACT

Hypoxia is relevant to several physiological and pathological processes and this also applies for the tooth. The adaptive response to lowering oxygen concentration is mediated by hypoxia-inducible factors (HIFs). Since HIFs were shown to participate in the promotion of angiogenesis, stem cell survival, odontoblast differentiation and dentin formation, they may play a beneficial role in the tooth reparative processes. Although some data were generated in vitro, little is known about the in vivo context of HIFs in tooth development. In order to contribute to this field, the mouse mandibular first molar was used as a model.The expression and in situ localisation of HIFs were examined at postnatal (P) days P0, P7, P14, using RT-PCR and immunostaining. The expression pattern of a broad spectrum of hypoxia-related genes was monitored by customised PCR Arrays. Metabolic aspects were evaluated by determination of the lactate level and mRNA expression of the mitochondrial marker Nd1.The results show constant high mRNA expression of Hif1a, increasing expression of Hif2a, and very low expression of Hif3a during early postnatal molar development. In the examined period the localisation of HIFs in the nuclei of odontoblasts and the subodontoblastic layer identified their presence during odontoblastic differentiation. Additionally, the lower lactate level and higher expression of mitochondrial Nd1 in advanced development points to decreasing glycolysis during differentiation. Postnatal nuclear localisation of HIFs indicates a hypoxic state in specific areas of dental pulp as oxygen demands depend on physiological events such as crown and root dentin mineralization.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Dental Pulp , Hypoxia-Inducible Factor 1, alpha Subunit , Molar , Animals , Dental Pulp/metabolism , Mice , Molar/metabolism , Molar/growth & development , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Odontoblasts/metabolism , Metabolic Networks and Pathways , Gene Expression Regulation, Developmental , Repressor Proteins , Apoptosis Regulatory Proteins
2.
Dev Dyn ; 250(7): 1021-1035, 2021 07.
Article in English | MEDLINE | ID: mdl-33452709

ABSTRACT

BACKGROUND: Organs that develop early in life, and are replaced by a larger version as the animal grows, often represent a miniature version of the adult organ. Teeth constituting the first functional dentition in small-sized teleost fish, such as medaka (Oryzias latipes), are examples of such miniature organs. With a dentin cone as small as the size of one human cell, or even smaller, these teeth raise the question how many dentin-producing cells (odontoblasts) are required to build such a tooth, and whether this number can be as little as one. RESULTS: Based on detailed observations with transmission electron microscopy (TEM) and TEM-based 3D-reconstructions, we show that only one mesenchymal cell qualifies as a true odontoblast. A second mesenchymal cell potentially participates in dentin formation, but only at a late stage of tooth development. Moreover, the fate of these cells appears to be specified very early during tooth development. CONCLUSIONS: Our observations indicate that in this system, one single odontoblast fulfills roles normally exerted by a large and communicating cell population. First-generation teeth in medaka thus provide an exciting model to study integration of multiple functions into a single cell.


Subject(s)
Mesenchymal Stem Cells/cytology , Odontogenesis/physiology , Tooth/embryology , Animals , Cell Count , Cell Differentiation , Cell Lineage , Computer Simulation , Embryo, Nonmammalian , Imaging, Three-Dimensional , Mesenchymal Stem Cells/physiology , Mesenchymal Stem Cells/ultrastructure , Miniaturization , Morphogenesis/physiology , Odontoblasts/cytology , Odontoblasts/physiology , Odontoblasts/ultrastructure , Oryzias/embryology , Tooth/growth & development , Tooth/ultrastructure , Tooth Eruption/physiology
3.
Int J Mol Sci ; 22(17)2021 Sep 03.
Article in English | MEDLINE | ID: mdl-34502478

ABSTRACT

Caspase-1, as the main pro-inflammatory cysteine protease, was investigated mostly with respect to inflammation-related processes. Interestingly, caspase-1 was identified as being involved in lipid metabolism, which is extremely important for the proper differentiation of chondrocytes. Based on a screening investigation, general caspase inhibition impacts the expression of Cd36 in chondrocytes, the fatty acid translocase with a significant impact on lipid metabolism. However, the engagement of individual caspases in the effect has not yet been identified. Therefore, the hypothesis that caspase-1 might be a candidate here appears challenging. The primary aim of this study thus was to find out whether the inhibition of caspase-1 activity would affect Cd36 expression in a chondrogenic micromass model. The expression of Pparg, a regulator Cd36, was examined as well. In the caspase-1 inhibited samples, both molecules were significantly downregulated. Notably, in the treated group, the formation of the chondrogenic nodules was apparently disrupted, and the subcellular deposition of lipids and polysaccharides showed an abnormal pattern. To further investigate this observation, the samples were subjected to an osteogenic PCR array containing selected markers related to cartilage/bone cell differentiation. Among affected molecules, Bmp7 and Gdf10 showed a significantly increased expression, while Itgam, Mmp9, Vdr, and Rankl decreased. Notably, Rankl is a key marker in bone remodeling/homeostasis and thus is a target in several treatment strategies, including a variety of fatty acids, and is balanced by its decoy receptor Opg (osteoprotegerin). To evaluate the effect of Cd36 downregulation on Rankl and Opg, Cd36 silencing was performed using micromass cultures. After Cd36 silencing, the expression of Rankl was downregulated and Opg upregulated, which was an inverse effect to caspase-1 inhibition (and Cd36 upregulation). These results demonstrate new functions of caspase-1 in chondrocyte differentiation and lipid metabolism-related pathways. The effect on the Rankl/Opg ratio, critical for bone maintenance and pathology, including osteoarthritis, is particularly important here as well.


Subject(s)
Antigens, Differentiation/biosynthesis , Caspase 1/metabolism , Caspase Inhibitors/pharmacology , Cell Differentiation/drug effects , Chondrocytes/metabolism , Lipid Metabolism/drug effects , Osteogenesis/drug effects , Animals , Chondrogenesis/drug effects , Mice
4.
Histochem Cell Biol ; 152(5): 355-363, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31520138

ABSTRACT

Tuftelin was originally discovered and mostly studied in the tooth, but later found also in other organs. Despite its wide distribution among tissues, tuftelin's function has so far been specified only in the formation of enamel crystals. Nevertheless, in many cases, tuftelin was suggested to be associated with cellular adaptation to hypoxia and recently even with cell differentiation. Therefore, we aimed to investigate tuftelin expression along with hypoxia-inducible factors (HIFs) during the early development of the mandibular/alveolar (m/a) bone, when osteoblasts started to differentiate in vivo and to compare their expression levels in undifferentiated versus differentiated osteoblastic cells in vitro. Immunohistochemistry demonstrated the presence of tuftelin already in osteoblastic precursors which were also HIF1-positive, but HIF2-negative. Nevertheless, HIF2 protein appeared when osteoblasts differentiated, one day later. This is in agreement with observations made with MC3T3-E1 cells, where there was no significant difference in tuftelin and Hif1 expression in undifferentiated vs. differentiated cells, although Hif2 increased upon differentiation induction. In differentiated osteoblasts of the m/a bone, all three proteins accumulated, first, prenatally, in the cytoplasm and later, particularly at postnatal stages, they displayed also peri/nuclear localization. Such a dynamic time-space pattern of tuftelin expression has recently been reported in neurons, which, as the m/a bone, differentiate under less hypoxic conditions as indicated also by a prevalent cytoplasmic expression of HIF1 in osteoblasts. However, unlike what was shown in cultured neurons, tuftelin does not seem to participate in final osteoblastic differentiation and its functions, thus, appears to be tissue specific.


Subject(s)
Dental Enamel Proteins/analysis , Hypoxia-Inducible Factor 1/analysis , Osteogenesis/genetics , Transcription Factors/analysis , 3T3 Cells , Animals , Cells, Cultured , Dental Enamel Proteins/genetics , Hypoxia-Inducible Factor 1/genetics , Immunohistochemistry , Mice , Transcription Factors/genetics
5.
J Anat ; 235(2): 256-261, 2019 08.
Article in English | MEDLINE | ID: mdl-31148178

ABSTRACT

FASL (CD178) is known for its role in triggering apoptosis, mostly in relation with immune cells but additional functions have been reported more recently, including those in bone development. Examination of postnatal FasL-deficient mice (gld) showed an increased bone deposition in adult mice when compared with wild types. However, a different phenotype was observed prenatally, when the gld bone was underdeveloped. The aim of the following investigation was to evaluate this indication for an growth-dependent bone phenotype of gld mice and to search for the 'switch point'. This study focused on the mandibular/alveolar bone as an important structure for tooth anchorage. In vivo micro-computed tomography (CT) analysis was performed at different stages during the first month (6, 12 and 24 days) of postnatal bone development. In 6-day-old gld mice, a decrease in bone volume/tissue volume (BV/TV), trabecular thickness and trabecular number was revealed. In contrast, the 12-day-old gld mice showed an increased BV/TV and trabecular thickness in the alveolar bone. The same observation applied for bone status in 24-day-old gld mice. Therefore, changes in the bone phenotype occurred between day 6 and 12 of the postnatal development. The switch point is likely related to the changing proportion of bone cells at these stages of development, when the number of osteocytes increases. Indeed, the immunohistochemical analysis of FASL localized this protein in osteoblasts, whereas osteocytes were mostly negative at examined stages. The impact of FASL particularly on osteoblasts would agree with an earlier in vivo observed effect of FASL deficiency on expression of Mmp2, typical for osteoblasts, in the gld mandibular/alveolar bone. Notably, an age-dependent bone phenotype was reported in Mmp2-deficient mice.


Subject(s)
Alveolar Process/growth & development , Fas Ligand Protein/physiology , Mandible/growth & development , Alveolar Process/anatomy & histology , Alveolar Process/diagnostic imaging , Animals , Mandible/anatomy & histology , Mandible/diagnostic imaging , Matrix Metalloproteinase 2/metabolism , Mice, Inbred ICR , X-Ray Microtomography
6.
J Anat ; 233(2): 135-145, 2018 08.
Article in English | MEDLINE | ID: mdl-29745448

ABSTRACT

In this review, classical data on the early steps in human odontogenesis are summarized and updated with specific insights into the development of the upper and lower embryonic jaws to help in understanding some oral pathologies. The initial step of human odontogenesis is classically characterized by two parallel horseshoe-shaped epithelial laminae. These originate from the oral epithelium and an ingrowth into the jaw mesenchyme: the internal dental lamina gives rise to deciduous tooth primordia, while the external vestibular lamina represents the developmental base of the oral vestibule. However, a more complex situation was revealed by recent studies combining analyses of the dental and adjacent oral epithelia on histological sections and computer-aided three-dimensional (3D) reconstructions during the 2nd month of human embryonic development. The dental epithelium forms a mound, where swellings appear later, corresponding to the individual primordia of deciduous teeth. External to the developing deciduous dentition, the 3D reconstructions do not show any continuous vestibular lamina but instead a complex of discontinuous epithelial bulges and ridges. The patterns of these epithelial structures and their relationship to the dental epithelium differ not only between the upper and lower jaws but also between the lip and cheek segments in each jaw. Knowledge of early odontogenesis may help in understanding some oral pathologies. For example, the human lateral incisor has a dual origin: it arises in the area of fusion between the medial nasal and maxillary facial processes and involves material from these two regions. Such a dual origin at the site of fusion of facial processes represents a predisposition to developmental vulnerability for the upper lateral incisor, resulting in its frequent anomalies (absence, hypoplasia, duplication), especially in patients with a cleft lip and/or jaw. Other pathologies, such as a minute supernumerary tooth, desmoplastic ameloblastoma or extraosseous odontogenic cysts are located external to the upper or lower dentition, and might be derived from structures that transiently appear during early development of the oral vestibule in humans.


Subject(s)
Jaw/embryology , Tooth/embryology , Dentition , Humans
7.
Cell Tissue Res ; 366(3): 601-615, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27599480

ABSTRACT

We present an experimental method allowing the production of three-dimensional organ-like structures, namely microtissues (MTs), in vitro without the need for exogenous extracellular matrix (ECM) or growth factors. Submandibular salivary glands (embryonic day ED14), kidneys (ED13) and lungs (ED13) were harvested from mouse embryos and dissociated into single cells by enzyme treatment. Single cells were seeded into special hanging drop culture plates (InSphero) and cultured for up to 14 days to obtain MTs. This strategy permitted full control of the quantity of seeded cells. The development of the MTs into organs was followed histologically and immunohistochemically. Well-organized epithelial structures surrounded by a basal lamina were formed, as confirmed by transmission electron microscopy. Expression of E-cadherin, vimentin, fibronectin and α-SMA was compared in organs and corresponding MTs by real-time quantitative polymerase chain reaction. Branching morphogenesis was induced in MTs (as shown by histology and immunostaining for fibronectin and perlecan) and was conserved even after 14 days of culture. MTs continued their development and their epithelial structures were comparable with those of the physiological organ at postnatal day 2 (PN2). Expression of aquaporins was investigated to obtain better support for the functional differentiation of epithelial cells. Histogenesis proceeded and led to the start of organogenesis. This experimental model might improve our knowledge of epithelial-mesenchymal histogenesis and can be employed to study development or cellular organization during the embryonic formation of organs.


Subject(s)
Cell Communication , Organogenesis , Spheroids, Cellular/cytology , Spheroids, Cellular/metabolism , Animals , Cadherins/metabolism , Cells, Cultured , Epithelium/metabolism , Fluorescent Antibody Technique , Gene Expression Regulation , Mesoderm/metabolism , Mice, Inbred ICR , Salivary Glands/metabolism , Salivary Glands/ultrastructure
8.
J Anat ; 229(3): 356-68, 2016 09.
Article in English | MEDLINE | ID: mdl-27173578

ABSTRACT

Chameleon teeth develop as individual structures at a distance from the developing jaw bone during the pre-hatching period and also partially during the post-hatching period. However, in the adult, all teeth are fused together and tightly attached to the jaw bone by mineralized attachment tissue to form one functional unit. Tooth to bone as well as tooth to tooth attachments are so firm that if injury to the oral cavity occurs, several neighbouring teeth and pieces of jaw can be broken off. We analysed age-related changes in chameleon acrodont dentition, where ankylosis represents a physiological condition, whereas in mammals, ankylosis only occurs in a pathological context. The changes in hard-tissue morphology and mineral composition leading to this fusion were analysed. For this purpose, the lower jaws of chameleons were investigated using X-ray micro-computed tomography, laser-induced breakdown spectroscopy and microprobe analysis. For a long time, the dental pulp cavity remained connected with neighbouring teeth and also to the underlying bone marrow cavity. Then, a progressive filling of the dental pulp cavity by a mineralized matrix occurred, and a complex network of non-mineralized channels remained. The size of these unmineralized channels progressively decreased until they completely disappeared, and the dental pulp cavity was filled by a mineralized matrix over time. Moreover, the distribution of calcium, phosphorus and magnesium showed distinct patterns in the different regions of the tooth-bone interface, with a significant progression of mineralization in dentin as well as in the supporting bone. In conclusion, tooth-bone fusion in chameleons results from an enhanced production of mineralized tissue during post-hatching development. Uncovering the developmental processes underlying these outcomes and performing comparative studies is necessary to better understand physiological ankylosis; for that purpose, the chameleon can serve as a useful model species.


Subject(s)
Dentition , Jaw/anatomy & histology , Tooth Calcification/physiology , Tooth/anatomy & histology , Tooth/physiology , Aging , Animals , Lizards , X-Ray Microtomography
9.
Development ; 138(18): 4063-73, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21862563

ABSTRACT

Much of our knowledge about mammalian evolution comes from examination of dental fossils, because the highly calcified enamel that covers teeth causes them to be among the best-preserved organs. As mammals entered new ecological niches, many changes in tooth number occurred, presumably as adaptations to new diets. For example, in contrast to humans, who have two incisors in each dental quadrant, rodents only have one incisor per quadrant. The rodent incisor, because of its unusual morphogenesis and remarkable stem cell-based continuous growth, presents a quandary for evolutionary biologists, as its origin in the fossil record is difficult to trace, and the genetic regulation of incisor number remains a largely open question. Here, we studied a series of mice carrying mutations in sprouty genes, the protein products of which are antagonists of receptor-tyrosine kinase signaling. In sprouty loss-of-function mutants, splitting of gene expression domains and reduced apoptosis was associated with subdivision of the incisor primordium and a multiplication of its stem cell-containing regions. Interestingly, changes in sprouty gene dosage led to a graded change in incisor number, with progressive decreases in sprouty dosage leading to increasing numbers of teeth. Moreover, the independent development of two incisors in mutants with large decreases in sprouty dosage mimicked the likely condition of rodent ancestors. Together, our findings indicate that altering genetic dosage of an antagonist can recapitulate ancestral dental characters, and that tooth number can be progressively regulated by changing levels of activity of a single signal transduction pathway.


Subject(s)
Receptor Protein-Tyrosine Kinases/physiology , Tooth/embryology , Adaptor Proteins, Signal Transducing , Animals , Embryo, Mammalian , Female , Gene Dosage/physiology , Intracellular Signaling Peptides and Proteins , Membrane Proteins/genetics , Membrane Proteins/metabolism , Membrane Proteins/physiology , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Mice, Transgenic , Models, Biological , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/physiology , Odontogenesis/genetics , Odontogenesis/physiology , Pregnancy , Protein Serine-Threonine Kinases , Receptor Protein-Tyrosine Kinases/genetics , Receptor Protein-Tyrosine Kinases/metabolism , Signal Transduction/genetics , Signal Transduction/physiology , Tooth/anatomy & histology , Tooth/metabolism , Tooth, Supernumerary/genetics
10.
J Exp Zool B Mol Dev Evol ; 320(7): 455-64, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23913503

ABSTRACT

The mouse incisor is a frequently used model in studies of the molecular control of organ development. The appropriate interpretation of data on normogenesis is essential for understanding the data obtained in mutant mice. For this reason, we performed a very detailed investigation of the development of the upper incisor in wild-type mice from embryonic day (ED) 11.5 till 14.5. A combination of histology, whole mount in situ hybridization, computer-aided three-dimensional reconstructions, and fluorescent microscopy, has been used. Several sonic hedgehog (Shh) expression domains have been detected in the upper incisor region during early prenatal development. At ED11.5-13.5, there was a single Shh positive domain present in the anterior part of left or right upper jaw arches, corresponding to the epithelial thickening. More posteriorly, a new Shh expression domain appeared in the incisor bud in the developmentally more advanced ED13.5 embryos. At ED14.5, only this posterior Shh expression in the incisor germ remained detectable. This study brings new insights into the early development of the upper incisor in mice and completes the data on normal mouse incisor development. The temporal-spatial pattern of Shh expression reflects the development of two tooth generations, being detectable in two successive, antero-posteriorly located areas in the prospective incisor region in the upper jaw. The first, anterior and superficial Shh expression domain reflects the rudimentary tooth development suppressed during evolution. Only the subsequent, posterior and deeper Shh expression region, appearing at ED13.5, correlates with the prospective upper functional incisor in wild-type mice.


Subject(s)
Gene Expression Regulation, Developmental , Hedgehog Proteins/genetics , Incisor/embryology , Animals , Hedgehog Proteins/metabolism , In Situ Hybridization , Incisor/metabolism , Maxilla/embryology , Maxilla/metabolism , Mice , Mice, Transgenic , Microscopy, Fluorescence , Odontogenesis , Phylogeny
11.
J Exp Zool B Mol Dev Evol ; 320(5): 307-20, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23606267

ABSTRACT

In mice, a toothless diastema separates the single incisor from the three molars in each dental quadrant. In the prospective diastema of the embryo, small rudimentary buds are found that are presumed to be rudiments of suppressed teeth. A supernumerary tooth occurs in the diastema of adult mice carrying mutations in either Spry2 or Spry4. In the case of Spry2 mutants, the origin of the supernumerary tooth involves the revitalization of a rudimentary tooth bud (called R2), whereas its origin in the Spry4 mutants is not known. In addition to R2, another rudimentary primordium (called MS) arises more anteriorly in the prospective diastema. We investigated the participation of both rudiments (MS and R2) in supernumerary tooth development in Spry2 and Spry4 mutants by comparing morphogenesis, proliferation, apoptosis, size and Shh expression in the dental epithelium of MS and R2 rudiments. Increased proliferation and decreased apoptosis were found in MS and R2 at embryonic day (ED) 12.5 and 13.5 in Spry2(-/-) embryos. Apoptosis was also decreased in both rudiments in Spry4(-/-) embryos, but the proliferation was lower (similar to WT mice), and supernumerary tooth development was accelerated, exhibiting a cap stage by ED13.5. Compared to Spry2(-/-) mice, a high number of Spry4(-/-) supernumerary tooth primordia degenerated after ED13.5, resulting in a low percentage of supernumerary teeth in adults. We propose that Sprouty genes were implicated during evolution in reduction of the cheek teeth in Muridae, and their deletion can reveal ancestral stages of murine dental evolution.


Subject(s)
Biological Evolution , Epithelium/growth & development , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/metabolism , Nerve Tissue Proteins/metabolism , Tooth/growth & development , Animals , Apoptosis/genetics , Incisor/growth & development , Incisor/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Membrane Proteins/genetics , Mice , Molar/growth & development , Molar/metabolism , Mutation , Nerve Tissue Proteins/genetics , Odontogenesis , Protein Serine-Threonine Kinases , Signal Transduction , Tooth, Supernumerary/pathology
12.
Dev Growth Differ ; 55(5): 615-21, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23713787

ABSTRACT

Apoptosis during tooth development appears dependent on the apoptotic executioner caspase-3, but not caspase-7. Instead, activated caspase-7 has been found in differentiated odontoblasts and ameloblasts, where it does not correlate with apoptosis. To further investigate these findings, the mouse incisor was used as a model. Analysis of caspase-7-deficient mice revealed a significant thinner layer of hard tissue in the adult incisor. Micro computed tomography scan confirmed this decrease in mineralized tissues. These data strongly suggest that caspase-7 might be directly involved in functional cell differentiation and regulation of the mineralization of dental matrices.


Subject(s)
Ameloblasts/enzymology , Caspase 7/metabolism , Cell Differentiation , Odontoblasts/enzymology , Ameloblasts/cytology , Ameloblasts/metabolism , Animals , Caspase 7/genetics , Cell Proliferation , Dental Enamel/embryology , Dental Enamel/growth & development , Dental Enamel/metabolism , Immunohistochemistry , Incisor/embryology , Incisor/growth & development , Incisor/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Odontoblasts/cytology , Odontoblasts/metabolism , Odontogenesis , Time Factors , X-Ray Microtomography
13.
Proc Natl Acad Sci U S A ; 107(35): 15497-502, 2010 Aug 31.
Article in English | MEDLINE | ID: mdl-20709958

ABSTRACT

It is known from paleontology studies that two premolars have been lost during mouse evolution. During mouse mandible development, two bud-like structures transiently form that may represent rudimentary precursors of the lost premolars. However, the interpretation of these structures and their significance for mouse molar development are highly controversial because of a lack of molecular data. Here, we searched for typical tooth signaling centers in these two bud-like structures, and followed their fate using molecular markers, 3D reconstructions, and lineage tracing in vitro. Transient signaling centers were indeed found to be located at the tips of both the anterior and posterior rudimentary buds. These centers expressed a similar set of molecular markers as the "primary enamel knot" (pEK), the signaling center of the first molar (M1). These two transient signaling centers were sequentially patterned before and anterior to the M1 pEK. We also determined the dynamics of the M1 pEK, which, slightly later during development, spread up to the field formerly occupied by the posterior transient signaling center. It can be concluded that two rudimentary tooth buds initiate the sequential development of the mouse molars and these have previously been mistaken for early stages of M1 development. Although neither rudiment progresses to form an adult tooth, the posterior one merges with the adjacent M1, which may explain the anterior enlargement of the M1 during mouse family evolution. This study highlights how rudiments of lost structures can stay integrated and participate in morphogenesis of functional organs and help in understanding their evolution, as Darwin suspected long ago.


Subject(s)
Imaging, Three-Dimensional/methods , Molar/embryology , Molar/growth & development , Odontogenesis , Animals , Female , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , In Situ Hybridization , Male , Mandible/embryology , Mandible/growth & development , Mandible/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microscopy, Fluorescence/methods , Models, Biological , Time Factors , Tissue Culture Techniques
14.
Ann Anat ; 250: 152149, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37574172

ABSTRACT

Teeth and their associated tissues contain several populations of mesenchymal stem cells, one of which is represented by dental pulp stem cells (DPSCs). These cells have mainly been characterised in vitro and numerous positive and negati ve markers for these cells have been suggested. To investigate the presence and localization of these molecules during development, forming dental pulp was examined using the mouse first mandibular molar as a model. The stages corresponding to postnatal (P) days 0, 7, 14, and 21 were investigated. The expression was monitored using customised PCR Arrays. Additionally, in situ localization of the key trio of markers (Cd73, Cd90, Cd105 coded by genes Nt5e, Thy1, Eng) was performed at prenatal and postnatal stages using immunohistochemistry. The expression panel of 24 genes assigned as in vitro markers of DPSCs or mesenchymal stem cells (MSCs) revealed their developmental dynamics during formation of dental pulp mesenchyme. Among the positive markers, Vcam1, Fgf2, Nes were identified as increasing and Cd44, Cd59b, Mcam, Alcam as decreasing between perinatal vs. postnatal stages towards adulthood. Within the panel of negative DPSC markers, Cd14, Itgb2, Ptprc displayed increased and Cd24a decreased levels at later stages of pulp formation. Within the key trio of markers, Nt5e did not show any significant expression difference within the investigated period. Thy1 displayed a strong decrease between P0 and P7 while Eng increased between these stages. In situ localization of Cd73, Cd90 and Cd105 showed them overlap in differentiated odontoblasts and in the sub-odontoblastic layer that is speculated to host odontoblast progenitors. The highly prevalent expression of particularly Cd73 and Cd90 opens the question of potential multiple functions of these molecules. The results from this study add to the in vitro based knowledge by showing dynamics in the expression of DPSC/MSC markers during dental pulp formation in an in vivo context and thus with respect to the natural environment important for commitment of stem cells.


Subject(s)
Dental Pulp , Mesenchymal Stem Cells , Mice , Animals , Cell Proliferation , Stem Cells/metabolism , Mesenchymal Stem Cells/metabolism , Cell Differentiation , Cells, Cultured
15.
Front Cell Dev Biol ; 10: 1075751, 2022.
Article in English | MEDLINE | ID: mdl-36712975

ABSTRACT

The term apoptosis, as a way of programmed cell death, was coined a half century ago and since its discovery the process has been extensively investigated. The anatomy and physiology of the head are complex and thus apoptosis has mostly been followed in separate structures, tissues or cell types. This review aims to provide a comprehensive overview of recent knowledge concerning apoptosis-related molecules involved in the development of structures of head with a particular focus on caspases, cysteine proteases having a key position in apoptotic pathways. Since many classical apoptosis-related molecules, including caspases, are emerging in several non-apoptotic processes, these were also considered. The largest organ of the head region is the brain and its development has been extensively investigated, including the roles of apoptosis and related molecules. Neurogenesis research also includes sensory organs such as the eye and ear, efferent nervous system and associated muscles and glands. Caspases have been also associated with normal function of the skin and hair follicles. Regarding mineralised tissues within craniofacial morphogenesis, apoptosis in bones has been of interest along with palate fusion and tooth development. Finally, the role of apoptosis and caspases in angiogenesis, necessary for any tissue/organ development and maintenance/homeostasis, are discussed. Additionally, this review points to abnormalities of development resulting from improper expression/activation of apoptosis-related molecules.

16.
Ann Anat ; 239: 151781, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34144159

ABSTRACT

BACKGROUND: Autophagy is classified as a form of programmed cell death. Nevertheless, besides the death-inducing function, autophagy enables removal of damaged organelles, energy savings, and thus cell survival. This applies in particular to cells with poor renewal capabilities, such as chondroblasts. Autophagy is regulated by a complex molecular network, including proteases and their substrates. In autopodium, autophagy-related proteases have been examined particularly within the context of the elimination of the interdigital tissue. However, the death-inducing effects of their expression/activation have not been specified yet. This work focuses on autophagy-associated proteases (cathepsins, matrix metalloproteinases, and caspases) in development of phalangeal cartilage of the mouse autopodium. METHODS: PCR Array, Real-time PCR, and immunohistochemistry were used to follow the expression of autophagy-associated genes in vivo at two developmental stages prenatal/embryonic (E)12 vs. E14. Real-time PCR was then applied to investigate the influence of rapamycin (an inducer of autophagy) on the expression of autophagy-associated proteases in chondroblasts in vitro using micromass culture. RESULTS: Several proteases showed increased expression levels during the transition of pre-chondrogenic cells into chondroblasts in vivo. The most significant increases were observed for Ctsb (fold regulation 2.22), Ctsd (fold regulation 2.37), Ctss (fold regulation 2.92), Mmp9 (up to 445%), and Casp8 (up to 250%). The transition was associated also with the high expression of crucial autophagic inducers, such as Atgs. The in vitro treatment of chondroblasts by rapamycin showed significantly decreased expression of cathepsins, a mild increase in expression of metalloproteinases, and no effect in caspase expression. CONCLUSIONS: The present data provide a screening of autophagy-associated proteases accompanying the formation of cartilage in vivo and specify their expression under rapamycin treatment in vitro. Notably, the selected proteases are assigned to osteoarthritis, therefore their regulation might be used in clinically oriented studies.


Subject(s)
Chondrocytes , Peptide Hydrolases , Animals , Apoptosis , Autophagy , Chondrogenesis , Mice
17.
Front Physiol ; 13: 1033130, 2022.
Article in English | MEDLINE | ID: mdl-36699680

ABSTRACT

Ectodysplasin (Eda) plays important roles in both shaping the developing tooth and establishing the number of teeth within the tooth row. Sonic hedgehog (Shh) has been shown to act downstream of Eda and is involved in the initiation of tooth development. Eda-/- mice possess hypoplastic and hypomineralized incisors and show changes in tooth number in the molar region. In the present study we used 3D reconstruction combined with expression analysis, cell lineage tracing experiments, and western blot analysis in order to investigate the formation of the incisor germs in Eda-/- mice. We show that a lack of functional Eda protein during early stages of incisor tooth germ development had minimal impact on development of the early expression of Shh in the incisor, a region proposed to mark formation of a rudimental incisor placode and act as an initiating signalling centre. In contrast, deficiency of Eda protein had a later impact on expression of Shh in the primary enamel knot of the functional tooth. Eda-/- mice had a smaller region where Shh was expressed, and a reduced contribution from Shh descendant cells. The reduction in the enamel knot led to the formation of an abnormal enamel organ creating a hypoplastic functional incisor. Eda therefore appears to influence the spatial formation of the successional signalling centres during odontogenesis.

18.
Dev Cell ; 11(2): 181-90, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16890158

ABSTRACT

Unlike humans, who have a continuous row of teeth, mice have only molars and incisors separated by a toothless region called a diastema. Although tooth buds form in the embryonic diastema, they regress and do not develop into teeth. Here, we identify members of the Sprouty (Spry) family, which encode negative feedback regulators of fibroblast growth factor (FGF) and other receptor tyrosine kinase signaling, as genes that repress diastema tooth development. We show that different Sprouty genes are deployed in different tissue compartments--Spry2 in epithelium and Spry4 in mesenchyme--to prevent diastema tooth formation. We provide genetic evidence that they function to ensure that diastema tooth buds are refractory to signaling via FGF ligands that are present in the region and thus prevent these buds from engaging in the FGF-mediated bidirectional signaling between epithelium and mesenchyme that normally sustains tooth development.


Subject(s)
Diastema/embryology , Fibroblast Growth Factors/antagonists & inhibitors , Nerve Tissue Proteins/physiology , Proteins/physiology , Signal Transduction/drug effects , Tooth/embryology , Adaptor Proteins, Signal Transducing , Animals , Epithelium/drug effects , Epithelium/physiology , Fibroblast Growth Factors/physiology , Intracellular Signaling Peptides and Proteins , Membrane Proteins , Mesoderm/drug effects , Mesoderm/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/pharmacology , Protein Serine-Threonine Kinases , Proteins/genetics , Proteins/pharmacology , Signal Transduction/physiology , Tooth/growth & development
19.
J Exp Zool B Mol Dev Evol ; 316(5): 347-58, 2011 Jul 15.
Article in English | MEDLINE | ID: mdl-21455944

ABSTRACT

For teeth as for any organ, knowledge of normal development is essential for the proper interpretation of developmental anomalies in mutant mice. It is generally accepted that tooth formation is initiated with a single signaling center that, in the incisor region, is exclusively related to the development of the functional adult incisor. Here, using a unique combination of computer-aided three-dimensional reconstructions and whole mount in situ hybridization of mandibles from finely staged wild-type mouse embryos, we demonstrate that several Sonic hedgehog (Shh) expression domains sequentially appear in the lower incisor region during early development. In contrast to the single Shh expression domain that is widely assumed to be present in each lower incisor area at ED12.5-13.5, we identified two spatially distinct regions of Shh expression that appear in an anterior-posterior sequence during this period. The initial anterior, more superficially located Shh expression region represented the rudimentary (so-called deciduous) incisor, whereas only the later posterior deeper situated region corresponded to the prospective functional incisor. In the more advanced embryos, only this posterior Shh expression in the incisor bud was detectable as a precursor of the enamel knot. This study offers a new interpretation of published molecular data on the mouse incisor from initiation through ED13.5. We suggest that, as with Shh expression, other molecular data that have been ascribed to the progressive development of the mouse functional incisor at early stages, in fact, correspond to a rudimentary incisor whose development is aborted.


Subject(s)
Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Incisor/embryology , Incisor/metabolism , Animals , Embryonic Development , Epithelium/metabolism , Gene Expression Regulation, Developmental , Jaw/embryology , Jaw/metabolism , Mice , Mice, Transgenic , Trans-Activators/genetics , Trans-Activators/metabolism
20.
Biology (Basel) ; 10(8)2021 Aug 07.
Article in English | MEDLINE | ID: mdl-34439989

ABSTRACT

The Fas ligand (FasL) is known from programmed cell death, the immune system, and recently also from bone homeostasis. As such, Fas signalling is a potential target of anti-osteoporotic treatment based on the induction of osteoclastic cell death. Less attention has been paid to osteocytes, although they represent the majority of cells within the mature bone and are the key regulators. To determine the impact of FasL stimulation on osteocytes, differentiated IDG-SW3 cells were challenged by FasL, and their osteogenic expression profiles were evaluated by a pre-designed PCR array. Notably, the most downregulated gene was the one for sclerostin, which is the major marker of osteocytes and a negative regulator of bone formation. FasL stimulation also led to significant changes (over 10-fold) in the expression of other osteogenic markers: Gdf10, Gli1, Ihh, Mmp10, and Phex. To determine whether these alterations involved caspase-dependent or caspase-independent mechanisms, the IDG-SW3 cells were stimulated by FasL with and without a caspase inhibitor: Q-VD-OPh. The alterations were also detected in the samples treated by FasL along with Q-VD-OPh, pointing to the caspase-independent impact of FasL stimulation. These results contribute to an understanding of the recently emerging pleiotropic effects of Fas/FasL signalling and specify its functions in bone cells.

SELECTION OF CITATIONS
SEARCH DETAIL