Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Publication year range
1.
Chemistry ; 22(26): 8791-5, 2016 06 20.
Article in English | MEDLINE | ID: mdl-27166930

ABSTRACT

Calix[4]arenes (C[4]s) are versatile platforms for the construction of polymetallic clusters containing paramagnetic metal ions. Synthetic modification at the C[4] methylene bridge allows for the design of bis-C[4]s that, depending on the linker employed, can be used to either dictate which clusters can be formed or direct the assembly of a new metal-organic polyhedron (MOP). The assembly resulting from the latter approach displays thermal stability and uptake of N2 or H2 gas, confirming that this is a viable route to the synthesis of new, functional supramolecular architectures.

2.
Chem Mater ; 34(9): 4073-4087, 2022 May 10.
Article in English | MEDLINE | ID: mdl-35573111

ABSTRACT

A tetragonal argyrodite with >7 mobile cations, Li7Zn0.5SiS6, is experimentally realized for the first time through solid state synthesis and exploration of the Li-Zn-Si-S phase diagram. The crystal structure of Li7Zn0.5SiS6 was solved ab initio from high-resolution X-ray and neutron powder diffraction data and supported by solid-state NMR. Li7Zn0.5SiS6 adopts a tetragonal I4 structure at room temperature with ordered Li and Zn positions and undergoes a transition above 411.1 K to a higher symmetry disordered F43m structure more typical of Li-containing argyrodites. Simultaneous occupation of four types of Li site (T5, T5a, T2, T4) at high temperature and five types of Li site (T5, T2, T4, T1, and a new trigonal planar T2a position) at room temperature is observed. This combination of sites forms interconnected Li pathways driven by the incorporation of Zn2+ into the Li sublattice and enables a range of possible jump processes. Zn2+ occupies the 48h T5 site in the high-temperature F43m structure, and a unique ordering pattern emerges in which only a subset of these T5 sites are occupied at room temperature in I4 Li7Zn0.5SiS6. The ionic conductivity, examined via AC impedance spectroscopy and VT-NMR, is 1.0(2) × 10-7 S cm-1 at room temperature and 4.3(4) × 10-4 S cm-1 at 503 K. The transition between the ordered I4 and disordered F43m structures is associated with a dramatic decrease in activation energy to 0.34(1) eV above 411 K. The incorporation of a small amount of Zn2+ exercises dramatic control of Li order in Li7Zn0.5SiS6 yielding a previously unseen distribution of Li sites, expanding our understanding of structure-property relationships in argyrodite materials.

3.
Nat Commun ; 12(1): 5485, 2021 Sep 16.
Article in English | MEDLINE | ID: mdl-34531403

ABSTRACT

Expanding the chemical space for designing novel anionic redox materials from oxides to sulfides has enabled to better apprehend fundamental aspects dealing with cationic-anionic relative band positioning. Pursuing with chalcogenides, but deviating from cationic substitution, we here present another twist to our band positioning strategy that relies on mixed ligands with the synthesis of the Li2TiS3-xSex solid solution series. Through the series the electrochemical activity displays a bell shape variation that peaks at 260 mAh/g for the composition x = 0.6 with barely no capacity for the x = 0 and x = 3 end members. We show that this capacity results from cumulated anionic (Se2-/Sen-) and (S2-/Sn-) and cationic Ti3+/Ti4+ redox processes and provide evidence for a metal-ligand charge transfer by temperature-driven electron localization. Moreover, DFT calculations reveal that an anionic redox process cannot take place without the dynamic involvement of the transition metal electronic states. These insights can guide the rational synthesis of other Li-rich chalcogenides that are of interest for the development of solid-state batteries.

4.
Dalton Trans ; 44(12): 5628-37, 2015 Mar 28.
Article in English | MEDLINE | ID: mdl-25702632

ABSTRACT

Examples of singly-metallated derivatives of 1,1'-bis(o-carborane) have been prepared and spectroscopically and structurally characterised. Metallation of [7-(1'-1',2'-closo-C2B10H11)-7,8-nido-C2B9H10](2-) with a {Ru(p-cymene)}(2+) fragment affords both the unisomerised species [1-(1'-1',2'-closo-C2B10H11)-3-(p-cymene)-3,1,2-closo-RuC2B9H10] (2) and the isomerised [8-(1'-1',2'-closo-C2B10H11)-2-(p-cymene)-2,1,8-closo-RuC2B9H10] (3), and 2 is easily transformed into 3 with mild heating. Metallation with a preformed {CoCp}(2+) fragment also affords a 3,1,2-MC2B9-1',2'-C2B10 product [1-(1'-1',2'-closo-C2B10H11)-3-Cp-3,1,2-closo-CoC2B9H10] (4), but if CoCl2/NaCp is used followed by oxidation the result is the 2,1,8-CoC2B9-1',2'-C2B10 species [8-(1'-1',2'-closo-C2B10H11)-2-Cp-2,1,8-closo-CoC2B9H10] (5). Compound 4 does not convert into 5 in refluxing toluene, but does do so if it is reduced and then reoxidised, perhaps highlighting the importance of the basicity of the metal fragment in the isomerisation of metallacarboranes. A computational study of 1,1'-bis(o-carborane) is in excellent agreement with a recently-determined precise crystallographic study and establishes that the {1',2'-closo-C2B10H11} fragment is electron-withdrawing compared to H.

SELECTION OF CITATIONS
SEARCH DETAIL