Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
1.
Physiol Plant ; 176(3): e14334, 2024.
Article in English | MEDLINE | ID: mdl-38705836

ABSTRACT

European beech is negatively affected by climate change and a further growth decline is predicted for large parts of its distribution range. Despite the importance of this species, little is known about its genetic adaptation and especially the genetic basis of its physiological traits. Here, we used genotyping by sequencing to identify SNPs in 43 German European beech populations growing under different environmental conditions. In total, 28 of these populations were located along a precipitation and temperature gradient in northern Germany, and single tree-based hydraulic and morphological traits were available. We obtained a set of 13,493 high-quality SNPs that were used for environmental and SNP-trait association analysis. In total, 22 SNPs were identified that were significantly associated with environmental variables or specific leaf area (SLA). Several SNPs were located in genes related to stress response. The majority of the significant SNPs were located in non-coding (intergenic and intronic) regions. These may be in linkage disequilibrium with the causative coding or regulatory regions. Our study gives insights into the genetic basis of abiotic adaptation in European beech, and provides genetic resources that can be used in future studies on this species. Besides clear patterns of local adaptation to environmental conditions of the investigated populations, the analyzed morphological and hydraulic traits explained most of the explainable genetic variation. Thus, they could successfully be altered in tree breeding programs, which may help to increase the adaptation of European beech to changing environmental conditions in the future.


Subject(s)
Fagus , Genome-Wide Association Study , Plant Leaves , Polymorphism, Single Nucleotide , Fagus/genetics , Fagus/physiology , Polymorphism, Single Nucleotide/genetics , Plant Leaves/genetics , Plant Leaves/anatomy & histology , Plant Leaves/physiology , Linkage Disequilibrium/genetics , Environment , Phenotype , Genotype , Germany
2.
Oecologia ; 205(1): 121-133, 2024 May.
Article in English | MEDLINE | ID: mdl-38698245

ABSTRACT

Fine roots are multifunctional organs that may change function with ageing or root branching events from primarily absorptive to resource transport and storage functions. It is not well understood, how fine root branching patterns and related root functional differentiation along the longitudinal root axis change with soil chemical and physical conditions. We examined the variation in fine root branching patterns (the relative frequency of 1st to 4th root orders) and root morphological and chemical traits of European beech trees with soil depth (topsoil vs. subsoil) and soil chemistry (five sites with acid to neutral/alkaline bedrock). Bedrock type and related soil chemistry had an only minor influence on branching patterns: base-poor, infertile sites showed no higher fine root branching than base-rich sites. The contribution of 1st-order root segments to total fine root length decreased at all sites from about 60% in the topsoil (including organic layer) to 45% in the lower subsoil. This change was associated with a decrease in specific root area and root N content and an increase in mean root diameter with soil depth, while root tissue density did not change consistently. We conclude that soil depth (which acts through soil physical and chemical drivers) influences the fine root branching patterns of beech much more than soil chemical variation across soil types. To examine whether changes in root function are indeed triggered by branching events or result from root ageing and diameter growth, spatially explicit root physiological and anatomical studies across root orders are needed.


Subject(s)
Fagus , Plant Roots , Soil , Plant Roots/anatomy & histology , Fagus/anatomy & histology , Phenotype
3.
Glob Chang Biol ; 29(3): 763-779, 2023 02.
Article in English | MEDLINE | ID: mdl-36426513

ABSTRACT

Increasing exposure to climate warming-related drought and heat threatens forest vitality in many regions on earth, with the trees' vulnerability likely depending on local climatic aridity, recent climate trends, edaphic conditions, and the drought acclimatization and adaptation of populations. Studies exploring tree species' vulnerability to climate change often have a local focus or model the species' entire distribution range, which hampers the separation of climatic and edaphic drivers of drought and heat vulnerability. We compared recent radial growth trends and the sensitivity of growth to drought and heat in central populations of a widespread and naturally dominant tree species in Europe, European beech (Fagus sylvatica), at 30 forest sites across a steep precipitation gradient (500-850 mm year-1 ) of short length to assess the species' adaptive potential. Size-standardized basal area increment remained more constant during the period of accelerated warming since the early 1980s in populations with >360 mm growing season precipitation (April-September), while growth trends were negative at sites with <360 mm. Climatic drought in June appeared as the most influential climatic factor affecting radial growth, with a stronger effect at drier sites. A decadal decrease in the climatic water balance of the summer was identified as the most important factor leading to growth decline, which is amplified by higher stem densities. Inter-annual growth variability has increased since the early 1980s, and variability is generally higher at drier and sandier sites. Similarly, within-population growth synchrony is higher at sandier sites and has increased with a decrease in the June climatic water balance. Our results caution against predicting the drought vulnerability of trees solely from climate projections, as soil properties emerged as an important modulating factor. We conclude that beech is facing recent growth decline at drier sites in the centre of its distribution range, driven by climate change-related climate aridification.


Subject(s)
Fagus , Soil , Soil/chemistry , Droughts , Seasons , Forests , Trees , Germany , Water , Climate Change
4.
Oecologia ; 198(3): 629-644, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35212818

ABSTRACT

Xylem embolism resistance has been identified as a key trait with a causal relation to drought-induced tree mortality, but not much is known about its intra-specific trait variability (ITV) in dependence on environmental variation. We measured xylem safety and efficiency in 300 European beech (Fagus sylvatica L.) trees across 30 sites in Central Europe, covering a precipitation reduction from 886 to 522 mm year-1. A broad range of variables that might affect embolism resistance in mature trees, including climatic and soil water availability, competition, and branch age, were examined. The average P50 value varied by up to 1 MPa between sites. Neither climatic aridity nor structural variables had a significant influence on P50. However, P50 was less negative for trees with a higher soil water storage capacity, and positively related to branch age, while specific conductivity (Ks) was not significantly associated with either of these variables. The greatest part of the ITV for xylem safety and efficiency was attributed to random variability within populations. We conclude that the influence of site water availability on P50 and Ks is low in European beech, and that the high degree of within-population variability for P50, partly due to variation in branch age, hampers the identification of a clear environmental signal.


Subject(s)
Fagus , Droughts , Europe , Soil , Trees , Water , Xylem
5.
New Phytol ; 230(1): 129-138, 2021 04.
Article in English | MEDLINE | ID: mdl-33278844

ABSTRACT

We investigated the variation in tree fine root traits and their functional diversity along a local topographic gradient in a Neotropical montane forest to test if fine root trait variation along the gradient is consistent with the predictions of the root economics spectrum on a shift from acquisitive to conservative traits with decreasing resource supply. We measured five fine root functional traits in 179 randomly selected tree individuals of 100 species and analysed the variation of single traits (using Bayesian phylogenetic multilevel models) and of functional trait diversity with small-scale topography. Fine roots exhibited more conservative traits (thicker diameters, lower specific root length and nitrogen concentration) at upper slope compared with lower slope positions, but the largest proportion of variation (40-80%) was explained by species identity and phylogeny. Fine root functional diversity decreased towards the upper slopes. Our results suggest that local topography and the related soil fertility and moisture gradients cause considerable small-scale variation in fine root traits and functional diversity along tropical mountain slopes, with conservative root traits and greater trait convergence being associated with less favourable soil conditions due to environmental filtering. We provide evidence of a high degree of phylogenetic conservation in fine root traits.


Subject(s)
Forests , Soil , Bayes Theorem , Phenotype , Phylogeny
6.
New Phytol ; 231(4): 1387-1400, 2021 08.
Article in English | MEDLINE | ID: mdl-33964029

ABSTRACT

Plant hydraulic traits are key for understanding and predicting tree drought responses. Information about the degree of the traits' intra-specific variability may guide the selection of drought-resistant genotypes and is crucial for trait-based modelling approaches. For the three temperate minor broadleaf tree species Acer platanoides, Carpinus betulus and Tilia cordata, we measured xylem embolism resistance (P50 ), leaf turgor loss point (PTLP ), specific hydraulic conductivity (KS ), Huber values (HVs), and hydraulic safety margins in adult trees across a precipitation gradient. We further quantified trait variability on different organizational levels (inter-specific to within-canopy variation), and analysed its relationship to climatic and soil water availability. Although we observed a certain intra-specific trait variability (ITV) in safety-related traits (P50 , PTLP ) with higher within-tree and between-tree than between populations variability, the magnitude was small compared to inter-specific differences, which explained 78.4% and 58.3% of the variance in P50 and PTLP , respectively. In contrast, efficiency-related traits (KS , HV) showed a high ITV both within populations and within the crowns of single trees. Surprisingly, the observed ITV of all traits was neither driven by climatic nor soil water availability. In conclusion, the high degree of conservatism in safety-related traits highlights their potential for trait-based modelling approaches.


Subject(s)
Trees , Water , Droughts , Europe , Plant Leaves , Xylem
7.
Oecologia ; 195(3): 797-812, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33630169

ABSTRACT

Tropical forests represent the largest store of terrestrial biomass carbon (C) on earth and contribute over-proportionally to global terrestrial net primary productivity (NPP). How climate change is affecting NPP and C allocation to tree components in forests is not well understood. This is true for tropical forests, but particularly for African tropical forests. Studying forest ecosystems along elevation and related temperature and moisture gradients is one possible approach to address this question. However, the inclusion of belowground productivity data in such studies is scarce. On Mt. Kilimanjaro (Tanzania), we studied aboveground (wood increment, litter fall) and belowground (fine and coarse root) NPP along three elevation transects (c. 1800-3900 m a.s.l.) across four tropical montane forest types to derive C allocation to the major tree components. Total NPP declined continuously with elevation from 8.5 to 2.8 Mg C ha-1 year-1 due to significant decline in aboveground NPP, while fine root productivity (sequential coring approach) remained unvaried with around 2 Mg C ha-1 year-1, indicating a marked shift in C allocation to belowground components with elevation. The C and N fluxes to the soil via root litter were far more important than leaf litter inputs in the subalpine Erica forest. Thus, the shift of C allocation to belowground organs with elevation at Mt. Kilimanjaro and other tropical forests suggests increasing nitrogen limitation of aboveground tree growth at higher elevations. Our results show that studying fine root productivity is crucial to understand climate effects on the carbon cycle in tropical forests.


Subject(s)
Carbon , Ecosystem , Biomass , Carbon Cycle , Forests , Soil , Tanzania , Trees , Tropical Climate
8.
Oecologia ; 195(3): 589-600, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33515062

ABSTRACT

Tropical mountain ecosystems are threatened by climate and land-use changes. Their diversity and complexity make projections how they respond to environmental changes challenging. A suitable way are trait-based approaches, by distinguishing between response traits that determine the resistance of species to environmental changes and effect traits that are relevant for species' interactions, biotic processes, and ecosystem functions. The combination of those approaches with land surface models (LSM) linking the functional community composition to ecosystem functions provides new ways to project the response of ecosystems to environmental changes. With the interdisciplinary project RESPECT, we propose a research framework that uses a trait-based response-effect-framework (REF) to quantify relationships between abiotic conditions, the diversity of functional traits in communities, and associated biotic processes, informing a biodiversity-LSM. We apply the framework to a megadiverse tropical mountain forest. We use a plot design along an elevation and a land-use gradient to collect data on abiotic drivers, functional traits, and biotic processes. We integrate these data to build the biodiversity-LSM and illustrate how to test the model. REF results show that aboveground biomass production is not directly related to changing climatic conditions, but indirectly through associated changes in functional traits. Herbivory is directly related to changing abiotic conditions. The biodiversity-LSM informed by local functional trait and soil data improved the simulation of biomass production substantially. We conclude that local data, also derived from previous projects (platform Ecuador), are key elements of the research framework. We specify essential datasets to apply this framework to other mountain ecosystems.


Subject(s)
Biodiversity , Ecosystem , Biomass , Ecuador , Forests
9.
New Phytol ; 226(2): 583-594, 2020 04.
Article in English | MEDLINE | ID: mdl-31868933

ABSTRACT

Root exudation is a key plant function with a large influence on soil organic matter dynamics and plant-soil feedbacks in forest ecosystems. Yet despite its importance, the main ecological drivers of root exudation in mature forest trees remain to be identified. During two growing seasons, we analyzed the dependence of in situ collected root exudates on root morphology, soil chemistry and nutrient availability in six mature European beech (Fagus sylvatica L.) forests on a broad range of bedrock types. Root morphology was a major driver of root exudation across the nutrient availability gradient. A doubling of specific root length exponentially increased exudation rates of mature trees by c. 5-fold. Root exudation was also closely negatively related to soil pH and nitrogen (N) availability. At acidic and N-poor sites, where fungal biomass was reduced, exudation rates were c. 3-fold higher than at N- and base-richer sites and correlated negatively with the activity of enzymes degrading less bioavailable carbon (C) and N in the bulk soil. We conclude that root exudation increases on highly acidic, N-poor soils, in which fungal activity is reduced and a greater portion of the assimilated plant C is shifted to the external ecosystem C cycle.


Subject(s)
Fagus , Ecosystem , Forests , Nutrients , Plant Roots , Soil , Trees
10.
Environ Monit Assess ; 192(7): 435, 2020 06 16.
Article in English | MEDLINE | ID: mdl-32548684

ABSTRACT

The authors of the above-mentioned publication noticed that the database for the beta diversity calculation was not correctly chosen.

11.
Environ Monit Assess ; 192(2): 98, 2020 Jan 07.
Article in English | MEDLINE | ID: mdl-31912302

ABSTRACT

Agricultural intensification has led to drastic population declines in Europe's arable plant vegetation, and continuous monitoring is a prerequisite for assessing measures to increase and conserve remnant populations of endangered arable plant species. Unfortunately, strong variation in plot sizes and in-field locations makes comparison of current arable plant monitoring approaches difficult. This study compares different relevé approaches in conventionally managed arable fields in Northwest German farmland with respect to plant species detection success and time expenditure. We compared species detection rate and expenditure of time of six different relevé types in 45 conventionally managed arable fields (each 15 fields of wheat, maize, and rapeseed): field "Interior" plots (50 × 2 m); field edge plots: "Edge_30" (30 × 2 m), "Edge_50" (50 × 2 m), and "Edge_500" (500 × 1 m); "Subplots" (four dispersed plots of 5 × 1 m); and "Corner" plots (50 × 2 m). To determine species detection rate, the species richness recorded with a survey method was related to the field's total plant species number as estimated from a survey of the entire field edge zone. With a species detection rate of 8.3% (median), interior plots were inadequate for characterizing the field's arable plant vegetation. Edge_500 plots yielded the highest proportion of the field's arable plant species pool (75.6%, including taxa of conservation value), followed by "Corner" plots (45.8%) and "Sublots" (32.6%). Edge_50 and Edge_30 plots detected less than 25% of the field's species pool. The average time needed for a relevé was 20 min in Edge500 plots and 5-11 min in the other plot types. We suggest implementing Edge_500 plots as a standard monitoring approach in conventionally managed farmland due to its favorable ratio of detection success to expenditure of time. Our findings should be compared to methodological studies conducted in other regions, in different farmland management systems, and in landscapes of variable complexities.


Subject(s)
Biodiversity , Environmental Monitoring/methods , Poaceae/classification , Agriculture/methods , Ecosystem , Europe , Farms , Surveys and Questionnaires
12.
Mycorrhiza ; 29(2): 85-96, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30547252

ABSTRACT

In forest ecosystems, ectomycorrhizal (ECM) fungi are important for plant growth and soil biogeochemical processes. The biochemical composition of ECM mycelium is an important fungal effect trait with consequences for its decomposition rate, and consequently on soil carbon pools and plant nutrition. Although the link between ECM fungi and leaf litter-released nutrients is well known, the response of ECM fungal biochemical composition to different leaf litter species remains poorly understood. To determine how leaf litter quality influences ECM fungi's biochemical profiles, we planted young beech trees in an oak forest and replaced the natural leaf litter with that of European beech (Fagus sylvatica), ash (Fraxinus excelsior), maple (Acer pseudoplatanus), or lime (Tilia cordata). We assessed the biochemical profiles of ECM root tips colonized by common fungal taxa in temperate forests (i.e., Cenococcum geophilum, Inocybe sp., and Lactarius subdulcis), using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). ECM fungal biochemical composition changed with leaf litter species. Changes were apparent in the infrared absorption bands assigned to functional groups of lipids, amides, and carbohydrates. C. geophilum and L. subdulcis exhibited large spectral differences corresponding to the initial pattern of leaf litter chemical composition between samples collected in the beech and ash leaf litter treatments. In contrast, Inocybe sp. was influenced by lime, but with no differences between samples from ash or beech leaf litter treatments. Although the spectral bands affected by leaf litter type differed among ECM fungi, they were mainly related to amides, indicating a dynamic response of the fungal proteome to soil nutritional changes. Overall, the results indicate that the biochemical response of ECM fungi to leaf litter species varies among ECM fungal species and suggests that the biochemical composition of ECM mycelium is a fungal response trait, sensitive to environmental changes such as shifts in leaf litter species.


Subject(s)
Forests , Mycorrhizae/chemistry , Plant Leaves/microbiology , Soil Microbiology , Trees/microbiology , Acer/microbiology , Biomass , Fagus/microbiology , Fraxinus/microbiology , Germany , Species Specificity , Tilia/microbiology
13.
Oecologia ; 188(2): 607-622, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30051213

ABSTRACT

Salt marsh plants are affected by regular tidal inundation exposing them to saline water as a potential water source. This study aimed at quantifying the water uptake of plants depending on their distance from the sea and exploring plant responses to changing inundation regimes. We used stable isotope ratios (δ18O) to determine the proportions of seawater and precipitation water used by three salt marsh species (Spartina anglica, Atriplex portulacoides and Elytrigia atherica) from a German North Sea coast salt marsh. Additionally, A. portulacoides was transplanted to experimental islands at three elevation levels to investigate its plasticity in water use in the course of future sea level rise. We found a marked gradient in plant seawater use from the lowermost pioneer zone (79-98% seawater uptake by S. anglica) to the lower marsh (61-95% by A. portulacoides) and the upper marsh (25-39% by E. atherica). Seasonal differences in water use were not pronounced, likely due to the absence of longer dry periods during summer in these temperate salt marshes. Contradicting our expectation, roots in deeper soil showed higher water uptake rates per fine root mass than topsoil roots suggesting effective root adaptation to the anoxic subsoil. Transplanted A. portulacoides plants significantly increased the uptake of seawater with increasing inundation indicating flexibility in the use of water sources by this species which may facilitate acclimation to rising sea levels. We conclude that the zonation of salt marsh vegetation reflects the availability of water sources along the inundation gradient.


Subject(s)
Water , Wetlands , Floods , Islands , Seawater
14.
Oecologia ; 187(3): 825-837, 2018 07.
Article in English | MEDLINE | ID: mdl-29748934

ABSTRACT

Climate change can impact forest ecosystem processes via individual tree and community responses. While the importance of land-use legacies in modulating these processes have been increasingly recognised, evidence of former land-use mediated climate-growth relationships remain rare. We analysed how differences in former land-use (i.e. forest continuity) affect the growth response of European beech to climate extremes. Here, using dendrochronological and fine root data, we show that ancient forests (forests with a long forest continuity) and recent forests (forests afforested on former farmland) clearly differ with regard to climate-growth relationships. We found that sensitivity to climatic extremes was lower for trees growing in ancient forests, as reflected by significantly lower growth reductions during adverse climatic conditions. Fine root morphology also differed significantly between the former land-use types: on average, trees with high specific root length (SRL) and specific root area (SRA) and low root tissue density (RTD) were associated with recent forests, whereas the opposite traits were characteristic of ancient forests. Moreover, we found that trees of ancient forests hold a larger fine root system than trees of recent forests. Our results demonstrate that land-use legacy-mediated modifications in the size and morphology of the fine root system act as a mechanism in regulating drought resistance of beech, emphasising the need to consider the 'ecological memory' of forests when assessing or predicting the sensitivity of forest ecosystems to global environmental change.


Subject(s)
Fagus , Trees , Climate Change , Ecosystem , Forests
15.
BMC Ecol ; 18(1): 47, 2018 11 20.
Article in English | MEDLINE | ID: mdl-30458749

ABSTRACT

BACKGROUND: Old-growth and primeval forests are passing through a natural development cycle with recurring stages of forest development. Several methods for assigning patches of different structure and size to forest development stages or phases do exist. All currently existing classification methods have in common that a priori assumptions about the characteristics of certain stand structural attributes such as deadwood amount are made. We tested the hypothesis that multivariate datasets of primeval beech forest stand structure possess an inherent, aggregated configuration of data points with individual clusters representing forest development stages. From two completely mapped primeval beech forests in Albania, seven ecologically important stand structural attributes characterizing stand density, regeneration, stem diameter variation and amount of deadwood are derived at 8216 and 9666 virtual sampling points (moving window, focal filtering). K-means clustering is used to detect clusters in the datasets (number of clusters (k) between 2 and 5). The quality of the single clustering solutions is analyzed with average silhouette width as a measure for clustering quality. In a sensitivity analysis, clustering is done with datasets of four different spatial scales of observation (200, 500, 1000 and 1500 m2, circular virtual plot area around sampling points) and with two different kernels (equal weighting of all objects within a plot vs. weighting by distance to the virtual plot center). RESULTS: The clustering solutions succeeded in detecting and mapping areas with homogeneous stand structure. The areas had extensions of more than 200 m2, but differences between clusters were very small with average silhouette widths of less than 0.28. The obtained datasets had a homogeneous configuration with only very weak trends for clustering. CONCLUSIONS: Our results imply that forest development takes place on a continuous scale and that discrimination between development stages in primeval beech forests is splitting continuous datasets at selected thresholds. For the analysis of the forest development cycle, direct quantification of relevant structural features or processes might be more appropriate than classification. If, however, the study design demands classification, our results can justify the application of conventional forest development stage classification schemes rather than clustering.


Subject(s)
Environmental Monitoring/methods , Forests , Trees/growth & development , Albania , Cluster Analysis , Fagus/growth & development
16.
Glob Chang Biol ; 23(9): 3675-3689, 2017 09.
Article in English | MEDLINE | ID: mdl-28470864

ABSTRACT

Forest fragmentation has been found to affect biodiversity and ecosystem functioning in multiple ways. We asked whether forest size and isolation in fragmented woodlands influences the climate warming sensitivity of tree growth in the southern boreal forest of the Mongolian Larix sibirica forest steppe, a naturally fragmented woodland embedded in grassland, which is highly affected by warming, drought, and increasing anthropogenic forest destruction in recent time. We examined the influence of stand size and stand isolation on the growth performance of larch in forests of four different size classes located in a woodland-dominated forest-steppe area and small forest patches in a grassland-dominated area. We found increasing climate sensitivity and decreasing first-order autocorrelation of annual stemwood increment with decreasing stand size. Stemwood increment increased with previous year's June and August precipitation in the three smallest forest size classes, but not in the largest forests. In the grassland-dominated area, the tree growth dependence on summer rainfall was highest. Missing ring frequency has strongly increased since the 1970s in small, but not in large forests. In the grassland-dominated area, the increase was much greater than in the forest-dominated landscape. Forest regeneration decreased with decreasing stand size and was scarce or absent in the smallest forests. Our results suggest that the larch trees in small and isolated forest patches are far more susceptible to climate warming than in large continuous forests pointing to a grim future for the forests in this strongly warming region of the boreal forest that is also under high land use pressure.


Subject(s)
Global Warming , Larix/growth & development , Climate , Forests , Islands , Trees
17.
New Phytol ; 210(2): 443-58, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26720626

ABSTRACT

Climate warming will increase the drought exposure of many forests world-wide. It is not well understood how trees adapt their hydraulic architecture to a long-term decrease in water availability. We examined 23 traits characterizing the hydraulic architecture and growth rate of branches and the dependent foliage of mature European beech (Fagus sylvatica) trees along a precipitation gradient (855-594 mm yr(-1) ) on uniform soil. A main goal was to identify traits that are associated with xylem efficiency, safety and growth. Our data demonstrate for the first time a linear increase in embolism resistance with climatic aridity (by 10%) across populations within a species. Simultaneously, vessel diameter declined by 7% and pit membrane thickness (Tm ) increased by 15%. Although specific conductivity did not change, leaf-specific conductivity declined by 40% with decreasing precipitation. Of eight plant traits commonly associated with embolism resistance, only vessel density in combination with pathway redundancy and Tm were related. We did not confirm the widely assumed trade-off between xylem safety and efficiency but obtained evidence in support of a positive relationship between hydraulic efficiency and growth. We conclude that the branch hydraulic system of beech has a distinct adaptive potential to respond to a precipitation reduction as a result of the environmental control of embolism resistance.


Subject(s)
Adaptation, Physiological , Climate Change , Fagus/physiology , Rain , Europe , Fagus/anatomy & histology , Fagus/growth & development , Linear Models , Plant Leaves/physiology , Plant Stems/growth & development , Pressure , Principal Component Analysis , Wood/analysis , Wood/physiology , Xylem/physiology
18.
Glob Chang Biol ; 22(2): 830-44, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26463754

ABSTRACT

The boreal forest biome represents one of the most important terrestrial carbon stores, which gave reason to intensive research on carbon stock densities. However, such an analysis does not yet exist for the southernmost Eurosiberian boreal forests in Inner Asia. Most of these forests are located in the Mongolian forest-steppe, which is largely dominated by Larix sibirica. We quantified the carbon stock density and total carbon pool of Mongolia's boreal forests and adjacent grasslands and draw conclusions on possible future change. Mean aboveground carbon stock density in the interior of L. sibirica forests was 66 Mg C ha(-1) , which is in the upper range of values reported from boreal forests and probably due to the comparably long growing season. The density of soil organic carbon (SOC, 108 Mg C ha(-1) ) and total belowground carbon density (149 Mg C ha(-1) ) are at the lower end of the range known from boreal forests, which might be the result of higher soil temperatures and a thinner permafrost layer than in the central and northern boreal forest belt. Land use effects are especially relevant at forest edges, where mean carbon stock density was 188 Mg C ha(-1) , compared with 215 Mg C ha(-1) in the forest interior. Carbon stock density in grasslands was 144 Mg C ha(-1) . Analysis of satellite imagery of the highly fragmented forest area in the forest-steppe zone showed that Mongolia's total boreal forest area is currently 73 818 km(2) , and 22% of this area refers to forest edges (defined as the first 30 m from the edge). The total forest carbon pool of Mongolia was estimated at ~ 1.5-1.7 Pg C, a value which is likely to decrease in future with increasing deforestation and fire frequency, and global warming.


Subject(s)
Carbon/analysis , Forests , Larix/growth & development , Mongolia , Plant Leaves/growth & development , Plant Stems/growth & development , Regression Analysis , Satellite Imagery , Soil/chemistry
19.
Oecologia ; 180(2): 601-18, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26546083

ABSTRACT

Tropical landscapes are not only rapidly transformed by ongoing land-use change, but are additionally confronted by increasing seasonal climate variation. There is an increasing demand for studies analyzing the effects and feedbacks on ecosystem functioning of large-scale conversions of tropical natural forest into intensively managed cash crop agriculture. We analyzed the seasonality of aboveground litterfall, fine root litter production, and aboveground woody biomass production (ANPP(woody)) in natural lowland forests, rubber agroforests under natural tree cover ("jungle rubber"), rubber and oil palm monocultures along a forest-to-agriculture transformation gradient in Sumatra. We hypothesized that the temporal fluctuation of litter production increases with increasing land-use intensity, while the associated nutrient fluxes and nutrient use efficiency (NUE) decrease. Indeed, the seasonal variation of aboveground litter production and ANPP(woody) increased from the natural forest to the plantations, while aboveground litterfall generally decreased. Nutrient return through aboveground litter was mostly highest in the natural forest; however, it was significantly lower only in rubber plantations. NUE of N, P and K was lowest in the oil palm plantations, with natural forest and the rubber systems showing comparably high values. Root litter production was generally lower than leaf litter production in all systems, while the root-to-leaf ratio of litter C flux increased along the land-use intensity gradient. Our results suggest that nutrient and C cycles are more directly affected by climate seasonality in species-poor agricultural systems than in species-rich forests, and therefore might be more susceptible to inter-annual climate fluctuation and climate change.


Subject(s)
Agriculture , Climate Change , Crops, Agricultural , Forests , Plant Leaves/chemistry , Soil/chemistry , Tropical Climate , Biomass , Carbon Cycle , Crops, Agricultural/growth & development , Crops, Agricultural/metabolism , Nitrogen/metabolism , Nitrogen Cycle , Phosphorus/metabolism , Plant Roots , Potassium/metabolism , Seasons , Trees , Wood
SELECTION OF CITATIONS
SEARCH DETAIL