Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Clin Infect Dis ; 76(6): 975-976, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36625163

ABSTRACT

Cytomegalovirus (CMV) viremia in persons with human immunodeficiency virus (HIV) reflects the level of immunodeficiency. In the absence of CMV end-organ disease, early start of effective antiretroviral therapy is the only treatment required and is most often sufficient to control CMV replication.


Subject(s)
Cytomegalovirus Infections , HIV Infections , Humans , Cytomegalovirus , HIV , Viremia/drug therapy , Cytomegalovirus Infections/drug therapy , Cytomegalovirus Infections/epidemiology , HIV Infections/complications , HIV Infections/drug therapy
2.
PLoS Pathog ; 17(2): e1009110, 2021 02.
Article in English | MEDLINE | ID: mdl-33556143

ABSTRACT

Defective viral genomes (DVGs) are truncated and/or rearranged viral genomes produced during virus replication. Described in many RNA virus families, some of them have interfering activity on their parental virus and/or strong immunostimulatory potential, and are being considered in antiviral approaches. Chikungunya virus (CHIKV) is an alphavirus transmitted by Aedes spp. that infected millions of humans in the last 15 years. Here, we describe the DVGs arising during CHIKV infection in vitro in mammalian and mosquito cells, and in vivo in experimentally infected Aedes aegypti mosquitoes. We combined experimental and computational approaches to select DVG candidates most likely to have inhibitory activity and showed that, indeed, they strongly interfere with CHIKV replication both in mammalian and mosquito cells. We further demonstrated that some DVGs present broad-spectrum activity, inhibiting several CHIKV strains and other alphaviruses. Finally, we showed that pre-treating Aedes aegypti with DVGs prevented viral dissemination in vivo.


Subject(s)
Aedes/virology , Antiviral Agents/pharmacology , Chikungunya Fever/transmission , Chikungunya virus/genetics , Defective Viruses/genetics , Genome, Viral , Virus Replication , Animals , Chikungunya Fever/immunology , Chikungunya Fever/virology , Chikungunya virus/growth & development , Chikungunya virus/isolation & purification , Humans , Mosquito Vectors/virology
3.
HIV Med ; 24(11): 1126-1136, 2023 11.
Article in English | MEDLINE | ID: mdl-37849432

ABSTRACT

BACKGROUND: The European AIDS Clinical Society (EACS) guidelines were revised in 2023 for the 19th time, and all aspects of HIV care were updated. KEY POINTS OF THE GUIDELINES UPDATE: Version 12.0 of the guidelines recommend the same six first-line treatment options for antiretroviral treatment (ART)-naïve adults as versions 11.0 and 11.1: tenofovir-based backbone plus an unboosted integrase inhibitor or doravirine; abacavir/lamivudine plus dolutegravir; or dual therapy with lamivudine or emtricitabine plus dolutegravir. The long-acting section has been expanded in the ART and drug-drug interaction (DDI) panels. Tables for preferred and alternative ART in children and adolescents have been updated, as has the section on prevention of vertical transmission, particularly with new guidance for breastfeeding. A new DDI table has been included for the ART and anti-infective drugs used for opportunistic infections, sexually transmitted infections, and other infectious conditions; lenacapavir has been included in all DDI tables. New sections on alcohol use and patient-reported outcome measures (PROMs) have been included in the comorbidity panel, in addition to updates on many relevant topics, such as new resource guidance for deprescribing in people with HIV. Other sections, including travel, cognitive impairment, cancer screening, sexual health, and diabetes have also been revised extensively. The algorithm for the management of acute hepatitis C virus infection has been removed, as current guidelines recommend immediate treatment of all people with recently acquired hepatitis C virus. Updates on vaccination for hepatitis B virus and recommendations for simplification to tenofovir-free two-drug regimens in people with isolated anti-hepatitis B core antibodies are provided. In the opportunistic infections and COVID-19 panel, guidance on the management of COVID-19 in people with HIV has been updated according to the most up-to-date evidence, and a new section on monkeypox has been added. CONCLUSIONS: In 2023, the EACS guidelines were updated extensively and now include several new sections. The recommendations are available as a free app, in interactive web format, and as a pdf online.


Subject(s)
AIDS-Related Opportunistic Infections , Acquired Immunodeficiency Syndrome , Anti-HIV Agents , COVID-19 , HIV Infections , Hepatitis C , Adolescent , Adult , Child , Humans , Acquired Immunodeficiency Syndrome/drug therapy , AIDS-Related Opportunistic Infections/drug therapy , Anti-HIV Agents/therapeutic use , Anti-Retroviral Agents/therapeutic use , Hepatitis C/drug therapy , HIV Infections/drug therapy , HIV Infections/diagnosis , Lamivudine/therapeutic use , Tenofovir/therapeutic use , Practice Guidelines as Topic
4.
Gastroenterology ; 161(6): 1982-1997.e11, 2021 12.
Article in English | MEDLINE | ID: mdl-34425095

ABSTRACT

BACKGROUND AND AIMS: Oxidative stress plays a key role in the development of metabolic complications associated with obesity, including insulin resistance and the most common chronic liver disease worldwide, nonalcoholic fatty liver disease. We have recently discovered that the microRNA miR-144 regulates protein levels of the master mediator of the antioxidant response, nuclear factor erythroid 2-related factor 2 (NRF2). On miR-144 silencing, the expression of NRF2 target genes was significantly upregulated, suggesting that miR-144 controls NRF2 at the level of both protein expression and activity. Here we explored a mechanism whereby hepatic miR-144 inhibited NRF2 activity upon obesity via the regulation of the tricarboxylic acid (TCA) metabolite, fumarate, a potent activator of NRF2. METHODS: We performed transcriptomic analysis in liver macrophages (LMs) of obese mice and identified the immuno-responsive gene 1 (Irg1) as a target of miR-144. IRG1 catalyzes the production of a TCA derivative, itaconate, an inhibitor of succinate dehydrogenase (SDH). TCA enzyme activities and kinetics were analyzed after miR-144 silencing in obese mice and human liver organoids using single-cell activity assays in situ and molecular dynamic simulations. RESULTS: Increased levels of miR-144 in obesity were associated with reduced expression of Irg1, which was restored on miR-144 silencing in vitro and in vivo. Furthermore, miR-144 overexpression reduces Irg1 expression and the production of itaconate in vitro. In alignment with the reduction in IRG1 levels and itaconate production, we observed an upregulation of SDH activity during obesity. Surprisingly, however, fumarate hydratase (FH) activity was also upregulated in obese livers, leading to the depletion of its substrate fumarate. miR-144 silencing selectively reduced the activities of both SDH and FH resulting in the accumulation of their related substrates succinate and fumarate. Moreover, molecular dynamics analyses revealed the potential role of itaconate as a competitive inhibitor of not only SDH but also FH. Combined, these results demonstrate that silencing of miR-144 inhibits the activity of NRF2 through decreased fumarate production in obesity. CONCLUSIONS: Herein we unravel a novel mechanism whereby miR-144 inhibits NRF2 activity through the consumption of fumarate by activation of FH. Our study demonstrates that hepatic miR-144 triggers a hyperactive FH in the TCA cycle leading to an impaired antioxidant response in obesity.


Subject(s)
Fatty Liver/enzymology , Fumarate Hydratase/metabolism , Insulin Resistance , Liver/enzymology , Macrophages/enzymology , MicroRNAs/metabolism , NF-E2-Related Factor 2/metabolism , Obesity/enzymology , Animals , Carboxy-Lyases/genetics , Carboxy-Lyases/metabolism , Citric Acid Cycle , Disease Models, Animal , Fatty Liver/genetics , Fumarate Hydratase/genetics , Fumarates/metabolism , Humans , Hydro-Lyases/genetics , Hydro-Lyases/metabolism , Male , Mice , Mice, Inbred C57BL , MicroRNAs/genetics , NF-E2-Related Factor 2/genetics , Obesity/genetics , Oxidative Stress , RAW 264.7 Cells , Reactive Oxygen Species/metabolism , Signal Transduction , Succinates/metabolism
5.
PLoS Pathog ; 15(11): e1008089, 2019 11.
Article in English | MEDLINE | ID: mdl-31710653

ABSTRACT

Malnourishment, specifically overweight/obesity and undernourishment, affects more than 2.5 billion people worldwide, with the number affected ever-increasing. Concurrently, emerging viral diseases, particularly those that are mosquito-borne, have spread dramatically in the past several decades, culminating in outbreaks of several viruses worldwide. Both forms of malnourishment are known to lead to an aberrant immune response, which can worsen disease outcomes and reduce vaccination efficacy for viral pathogens such as influenza and measles. Given the increasing rates of malnutrition and spread of arthropod-borne viruses (arboviruses), there is an urgent need to understand the role of host nutrition on the infection, virulence, and transmission of these viruses. To address this gap in knowledge, we infected lean, obese, and undernourished mice with arthritogenic arboviruses from the genus Alphavirus and assessed morbidity, virus replication, transmission, and evolution. Obesity and undernourishment did not consistently influence virus replication in the blood of infected animals except for reductions in virus in obese mice late in infection. However, morbidity was increased in obese mice under all conditions. Using Mayaro virus (MAYV) as a model arthritogenic alphavirus, we determined that both obese and undernourished mice transmit virus less efficiently to mosquitoes than control (lean) mice. In addition, viral genetic diversity and replicative fitness were reduced in virus isolated from obese compared to lean controls. Taken together, nutrition appears to alter the course of alphavirus infection and should be considered as a critical environmental factor during outbreaks.


Subject(s)
Aedes/virology , Alphavirus Infections/etiology , Alphavirus Infections/transmission , Alphavirus/pathogenicity , Biological Evolution , Nutritional Status , Obesity/virology , Alphavirus Infections/pathology , Animals , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Mosquito Vectors/virology , Obesity/pathology , Virulence , Virus Replication
6.
J Virol ; 93(18)2019 09 15.
Article in English | MEDLINE | ID: mdl-31270226

ABSTRACT

Chikungunya virus (CHIKV) is a reemerged arbovirus, a member of the Togaviridae family. It circulates through mosquito vectors mainly of the Aedes family and a mammalian host. CHIKV causes chikungunya fever, a mild to severe disease characterized by arthralgia, with some fatal outcomes described. In the past years, several outbreaks mainly caused by enhanced adaptation of the virus to the vector and ineffective control of the contacts between infected mosquito populations and the human host have been reported. Vaccines represent the best solution for the control of insect-borne viruses, including CHIKV, but are often unavailable. We designed live attenuated CHIKVs by applying a rational genomic design based on multiple replacements of synonymous codons. In doing so, the virus mutational robustness (capacity to maintain phenotype despite introduction of mutations to genotype) is decreased, driving the viral population toward deleterious evolutionary trajectories. When the candidate viruses were tested in the insect and mammalian hosts, we observed overall strong attenuation in both and greatly diminished signs of disease. Moreover, we found that the vaccine candidates elicited protective immunity related to the production of neutralizing antibodies after a single dose. During an experimental transmission cycle between mosquitoes and naive mice, vaccine candidates could be transmitted by mosquito bite, leading to asymptomatic infection in mice with compromised dissemination. Using deep-sequencing technology, we observed an increase in detrimental (stop) codons, which confirmed the effectiveness of this genomic design. Because the approach involves hundreds of synonymous modifications to the genome, the reversion risk is significantly reduced, rendering the viruses promising vaccine candidates.IMPORTANCE Chikungunya fever is a debilitating disease that causes severe pain to the joints, which can compromise the patient's lifestyle for several months and even in some grave cases lead to death. The etiological agent is chikungunya virus, an alphavirus transmitted by mosquito bite. Currently, there are no approved vaccines or treatments against the disease. In our research, we developed novel live attenuated vaccine candidates against chikungunya virus by applying an innovative genomic design. When tested in the insect and mammalian host, the vaccine candidates did not cause disease, elicited strong protection against further infection, and had low risk of reversion to pathogenic phenotypes.


Subject(s)
Chikungunya virus/genetics , Vaccines, Attenuated/genetics , Vaccines, Attenuated/immunology , Adaptive Immunity/immunology , Aedes/virology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Cell Line , Chikungunya Fever/genetics , Chikungunya Fever/virology , Chikungunya virus/metabolism , Chlorocebus aethiops , Female , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Mosquito Vectors/virology , Mutation , Vero Cells , Viral Vaccines/genetics , Viral Vaccines/immunology
7.
PLoS Pathog ; 12(4): e1005528, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27055274

ABSTRACT

Bacterial genotoxins, produced by several Gram-negative bacteria, induce DNA damage in the target cells. While the responses induced in the host cells have been extensively studied in vitro, the role of these effectors during the course of infection remains poorly characterized. To address this issue, we assessed the effects of the Salmonella enterica genotoxin, known as typhoid toxin, in in vivo models of murine infection. Immunocompetent mice were infected with isogenic S. enterica, serovar Typhimurium (S. Typhimurium) strains, encoding either a functional or an inactive typhoid toxin. The presence of the genotoxic subunit was detected 10 days post-infection in the liver of infected mice. Unexpectedly, its expression promoted the survival of the host, and was associated with a significant reduction of severe enteritis in the early phases of infection. Immunohistochemical and transcriptomic analysis confirmed the toxin-mediated suppression of the intestinal inflammatory response. The presence of a functional typhoid toxin further induced an increased frequency of asymptomatic carriers. Our data indicate that the typhoid toxin DNA damaging activity increases host survival and favours long-term colonization, highlighting a complex cross-talk between infection, DNA damage response and host immune response. These findings may contribute to understand why such effectors have been evolutionary conserved and horizontally transferred among Gram-negative bacteria.


Subject(s)
Asymptomatic Infections , Communicable Diseases/microbiology , Mutagens/toxicity , Salmonella typhimurium/pathogenicity , Typhoid Fever/microbiology , Animals , Intestines/microbiology , Macrophages/microbiology , Mice , Virulence
8.
Cell Microbiol ; 15(12): 2034-50, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23869968

ABSTRACT

Cytolethal-distending toxins (CDTs) belong to a family of DNA damage inducing exotoxins that are produced by several Gram-negative bacteria. Salmonella enterica serovar Typhi expresses its CDT (named as Typhoid toxin) only in the Salmonella-containing vacuole (SCV) of infected cells, which requires its export for cell intoxication. The mechanisms of secretion, release in the extracellular space and uptake by bystander cells are poorly understood. We have addressed these issues using a recombinant S. Typhimurium strain, MC71-CDT, where the genes encoding for the PltA, PltB and CdtB subunits of the Typhoid toxin are expressed under control of the endogenous promoters. MC71-CDT grown under conditions that mimic the SCV secreted the holotoxin in outer membrane vesicles (OMVs). Epithelial cells infected with MC71-CDT also secreted OMVs-like vesicles. The release of these extracellular vesicles required an intact SCV and relied on anterograde transport towards the cellular cortex on microtubule and actin tracks. Paracrine internalization of Typhoid toxin-loaded OMVs by bystander cells was dependent on dynamin-1, indicating active endocytosis. The subsequent induction of DNA damage required retrograde transport of the toxin through the Golgi complex. These data provide new insights on the mode of secretion of exotoxins by cells infected with intracellular bacteria.


Subject(s)
Bacterial Toxins/metabolism , Salmonella typhi/metabolism , Salmonella typhimurium/metabolism , Secretory Vesicles/metabolism , Amino Acid Sequence , Animals , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Toxins/genetics , Brefeldin A/pharmacology , Caco-2 Cells , Cell Line , DNA Damage , Dynamin I/antagonists & inhibitors , Dynamin I/metabolism , Dynamins/antagonists & inhibitors , Endocytosis , Epithelial Cells/metabolism , Epithelial Cells/microbiology , HeLa Cells , Humans , Hydrazones/pharmacology , Mice , Promoter Regions, Genetic , Salmonella typhi/genetics , Salmonella typhi/pathogenicity , Salmonella typhimurium/genetics , Salmonella typhimurium/pathogenicity
9.
Cell Microbiol ; 15(1): 98-113, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22998585

ABSTRACT

Epidemiological evidence links chronic bacterial infections to the increased incidence of certain types of cancer but the molecular mechanisms by which bacteria contribute to tumour initiation and progression are still poorly characterized. Here we show that chronic exposure to the genotoxin cytolethal distending toxin (CDT) of Gram-negative bacteria promotes genomic instability and acquisition of phenotypic properties of malignancy in fibroblasts and colon epithelial cells. Cells grown for more than 30 weeks in the presence of sublethal doses of CDT showed increased mutation frequency, and accumulation of chromatin and chromosomal aberrations in the absence of significant alterations of cell cycle distribution, decreased viability or senescence. Cell survival was dependent on sustained activity of the p38 MAP kinase. The ongoing genomic instability was associated with impaired activation of the DNA damage response and failure to efficiently activate cell cycle checkpoints upon exposure to genotoxic stress. Independently selected sublines showed enhanced anchorage-independent growth as assessed by the formation of colonies in semisolid agarose. These findings support the notion that chronic infection by CDT-producing bacteria may promote malignant transformation, and point to the impairment of cellular control mechanisms associated with the detection and repair of DNA damage as critical events in the process.


Subject(s)
Bacterial Toxins/metabolism , DNA Damage/drug effects , Genomic Instability/drug effects , Gram-Negative Bacteria/pathogenicity , Mutagens/metabolism , Animals , Cell Line , Cell Survival/drug effects , Epithelial Cells/drug effects , Fibroblasts/drug effects , Humans , Rats
10.
Influenza Other Respir Viruses ; 18(3): e13272, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38501337

ABSTRACT

The emergence of SARS-CoV-2 Omicron variant has led to a complete reconfiguration of the therapeutic landscape, with all monoclonal antibodies having lost any neutralization activity. We report here a case series of 75 immunocompromised patients infected by the Omicron variant who benefited from COVID-19 convalescent plasma (CCP). At Day 28, the overall survival was 76% (95% CI 67-86) with no significant difference in the clinical outcome between patients with hematological malignancies, solid organ transplantation or autoimmune diseases. No safety concern was reported during the course of the study. These results showed that CCP is well tolerated and represents a treatment option for immunocompromised patients who remain highly impacted by the COVID19 epidemic.


Subject(s)
COVID-19 , Humans , COVID-19/therapy , COVID-19 Serotherapy , SARS-CoV-2 , Immunization, Passive , Immunocompromised Host , Antibodies, Viral/therapeutic use , Antibodies, Neutralizing
11.
Infect Control Hosp Epidemiol ; 44(8): 1342-1344, 2023 08.
Article in English | MEDLINE | ID: mdl-36804097

ABSTRACT

We describe a case of healthcare-associated bloodstream infection due to Mycobacterium fortuitum. Whole-genome sequencing showed that the same strain was isolated from the shared shower water of the unit. Nontuberculous mycobacteria frequently contaminate hospital water networks. Preventative actions are needed to reduce the exposure risk for immunocompromised patients.


Subject(s)
Cross Infection , Mycobacterium Infections, Nontuberculous , Mycobacterium fortuitum , Sepsis , Humans , Mycobacterium Infections, Nontuberculous/diagnosis , Mycobacterium Infections, Nontuberculous/microbiology , Nontuberculous Mycobacteria/genetics , Cross Infection/microbiology , Water , Catheters
12.
Nat Metab ; 5(7): 1188-1203, 2023 07.
Article in English | MEDLINE | ID: mdl-37414931

ABSTRACT

Although multiple populations of macrophages have been described in the human liver, their function and turnover in patients with obesity at high risk of developing non-alcoholic fatty liver disease (NAFLD) and cirrhosis are currently unknown. Herein, we identify a specific human population of resident liver myeloid cells that protects against the metabolic impairment associated with obesity. By studying the turnover of liver myeloid cells in individuals undergoing liver transplantation, we find that liver myeloid cell turnover differs between humans and mice. Using single-cell techniques and flow cytometry, we determine that the proportion of the protective resident liver myeloid cells, denoted liver myeloid cells 2 (LM2), decreases during obesity. Functional validation approaches using human 2D and 3D cultures reveal that the presence of LM2 ameliorates the oxidative stress associated with obese conditions. Our study indicates that resident myeloid cells could be a therapeutic target to decrease the oxidative stress associated with NAFLD.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Mice , Animals , Non-alcoholic Fatty Liver Disease/metabolism , Obesity/metabolism , Myeloid Cells/metabolism , Stress, Physiological
13.
PLoS Pathog ; 6(10): e1001163, 2010 Oct 28.
Article in English | MEDLINE | ID: mdl-21060812

ABSTRACT

In a screen for RNA mutagen resistance, we isolated a high fidelity RNA dependent RNA polymerase (RdRp) variant of Coxsackie virus B3 (CVB3). Curiously, this variant A372V is also resistant to amiloride. We hypothesize that amiloride has a previously undescribed mutagenic activity. Indeed, amiloride compounds increase the mutation frequencies of CVB3 and poliovirus and high fidelity variants of both viruses are more resistant to this effect. We hypothesize that this mutagenic activity is mediated through alterations in intracellular ions such as Mg²+ and Mn²+, which in turn increase virus mutation frequency by affecting RdRp fidelity. Furthermore, we show that another amiloride-resistant RdRp variant, S299T, is completely resistant to this mutagenic activity and unaffected by changes in ion concentrations. We show that RdRp variants resist the mutagenic activity of amiloride via two different mechanisms: 1) increased fidelity that generates virus populations presenting lower basal mutation frequencies or 2) resisting changes in divalent cation concentrations that affect polymerase fidelity. Our results uncover a new antiviral approach based on mutagenesis.


Subject(s)
Amiloride/adverse effects , DNA-Directed RNA Polymerases/metabolism , Mutagenesis/drug effects , RNA/genetics , Transcription, Genetic/drug effects , Amiloride/analogs & derivatives , Amiloride/pharmacology , Animals , Antiviral Agents/adverse effects , Antiviral Agents/pharmacology , Base Sequence , Chlorocebus aethiops , Enterovirus/genetics , Genetic Variation/drug effects , HeLa Cells , Humans , Mutagens/pharmacology , RNA/metabolism , RNA, Viral/drug effects , RNA, Viral/genetics , Templates, Genetic , Transcription, Genetic/genetics , Vero Cells
14.
AIDS ; 36(9): 1265-1272, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35442221

ABSTRACT

OBJECTIVE: The aim of this study was to assess the prevalence of cytomegalovirus (CMV) viremia in HIV-positive patients starting antiretroviral therapy (ART) and to evaluate its impact on clinical outcomes. DESIGN: A retrospective analysis of four clinical trials (INSIGHT FIRST, SMART, START, and ANRS REFLATE TB). METHODS: Stored plasma samples from participants were used to measure CMV viremia at baseline prior to initiating ART and at visits through 1 year of follow-up after ART initiation. CMV viremia was measured centrally using a quantitative PCR assay. Within FIRST, associations of CMV viremia at baseline and through 8 months of ART were examined with a composite clinical outcome of AIDS, serious non-AIDS events, or death using Cox proportional hazards regression. RESULTS: Samples from a total of 3176 participants, 1169 from FIRST, 137 from ANRS REFLATE TB, 54 from SMART, and 1816 from START were available with baseline CMV viremia prevalence of 17, 26, 0, and 1%, respectively. Pooled across trials, baseline CMV viremia was associated with low CD4 + T-cell counts and high HIV RNA levels. In FIRST, CMV viremia was detected in only 5% of participants between baseline and month 8. After adjustment for CD4 + T-cell count and HIV RNA levels, hazard ratios for risk of clinical outcomes was 1.15 (0.86-1.54) and 2.58 (1.68-3.98) in FIRST participants with baseline and follow-up CMV viremia, respectively. CONCLUSION: Baseline CMV viremia in HIV-positive patients starting ART is associated with advanced infection and only persistent CMV viremia after ART initiation is associated with a higher risk of morbidity and mortality.


Subject(s)
Cytomegalovirus Infections , HIV Infections , HIV Seropositivity , CD4 Lymphocyte Count , Cytomegalovirus/genetics , Cytomegalovirus Infections/complications , Disease Progression , HIV Infections/complications , HIV Infections/drug therapy , HIV Seropositivity/complications , Humans , RNA/therapeutic use , Retrospective Studies , Viremia/drug therapy
15.
Leukemia ; 36(4): 1025-1034, 2022 04.
Article in English | MEDLINE | ID: mdl-35105946

ABSTRACT

Patients with hematological malignancy and COVID-19 display a high mortality rate. In such patients, immunosuppression due to underlying disease and previous specific treatments impair humoral response, limiting viral clearance. Thus, COVID-19 convalescent plasma (CCP) therapy appears as a promising approach through the transfer of neutralizing antibodies specific to SARS-CoV-2. We report the effect of CCP in a cohort of 112 patients with hematological malignancy and COVID-19 and a propensity score analysis on subgroups of patients with B-cell lymphoid disease treated (n = 81) or not (n = 120) with CCP between May 1, 2020 and April 1, 2021. The overall survival of the whole cohort was 65% (95% CI = 56-74.9) and 77.5% (95% CI = 68.5-87.7) for patients with B-cell neoplasm. Prior anti-CD20 monoclonal antibody therapy was associated with better overall survival, whereas age, high blood pressure, and COVID-19 severity were associated with a poor outcome. After an inverse probability of treatment weighting approach, we observed in anti-CD20-exposed patients with B-cell lymphoid disease a decreased mortality of 63% (95% CI = 31-80) in the CCP-treated group compared to the CCP-untreated subgroup, confirmed in the other sensitivity analyses. Convalescent plasma may be beneficial in COVID-19 patients with B-cell neoplasm who are unable to mount a humoral immune response.


Subject(s)
COVID-19 , Neoplasms , Antibodies, Viral , COVID-19/therapy , Humans , Immunization, Passive , Propensity Score , SARS-CoV-2 , COVID-19 Serotherapy
16.
Emerg Microbes Infect ; 10(1): 2300-2302, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34792439

ABSTRACT

Diphtheria is a re-emerging disease in resource-rich settings. We here report three cases of cutaneous diphtheria diagnosed and managed in our infectious disease department and discuss the determinants of its re-emergence. Migration, travel and vaccine scepticism are key factors not only for diphtheria re-emergence, but for the future of most preventable diseases.


Subject(s)
Diphtheria/diagnosis , Adolescent , Adult , Communicable Diseases, Emerging/diagnosis , Communicable Diseases, Emerging/microbiology , Corynebacterium/classification , Corynebacterium/genetics , Corynebacterium/isolation & purification , Diphtheria/microbiology , Female , Humans , Male , Middle Aged , Transients and Migrants/statistics & numerical data
17.
Nat Commun ; 12(1): 2290, 2021 04 16.
Article in English | MEDLINE | ID: mdl-33863888

ABSTRACT

Arthropod-borne viruses pose a major threat to global public health. Thus, innovative strategies for their control and prevention are urgently needed. Here, we exploit the natural capacity of viruses to generate defective viral genomes (DVGs) to their detriment. While DVGs have been described for most viruses, identifying which, if any, can be used as therapeutic agents remains a challenge. We present a combined experimental evolution and computational approach to triage DVG sequence space and pinpoint the fittest deletions, using Zika virus as an arbovirus model. This approach identifies fit DVGs that optimally interfere with wild-type virus infection. We show that the most fit DVGs conserve the open reading frame to maintain the translation of the remaining non-structural proteins, a characteristic that is fundamental across the flavivirus genus. Finally, we demonstrate that the high fitness DVG is antiviral in vivo both in the mammalian host and the mosquito vector, reducing transmission in the latter by up to 90%. Our approach establishes the method to interrogate the DVG fitness landscape, and enables the systematic identification of DVGs that show promise as human therapeutics and vector control strategies to mitigate arbovirus transmission and disease.


Subject(s)
Antiviral Agents/administration & dosage , Defective Viruses/genetics , Mosquito Vectors/drug effects , Zika Virus Infection/drug therapy , Zika Virus/genetics , Aedes/drug effects , Aedes/virology , Animals , Chlorocebus aethiops , Computational Biology , Directed Molecular Evolution , Disease Models, Animal , Female , Genetic Fitness , Genome, Viral/genetics , HEK293 Cells , Humans , Mice , Mosquito Control/methods , Mosquito Vectors/virology , Open Reading Frames/genetics , RNA, Viral/genetics , Vero Cells , Zika Virus Infection/transmission , Zika Virus Infection/virology
18.
PLoS One ; 15(11): e0241592, 2020.
Article in English | MEDLINE | ID: mdl-33180795

ABSTRACT

Superinfection exclusion (SIE) is a process by which a virally infected cell is protected from subsequent infection by the same or a closely related virus. By preventing cell coinfection, SIE favors preservation of genome integrity of a viral strain and limits its recombination potential with other viral genomes, thereby impacting viral evolution. Although described in virtually all viral families, the precise step(s) impacted by SIE during the viral life cycle have not been systematically explored. Here, we describe for the first time SIE triggered by chikungunya virus (CHIKV), an alphavirus of public health importance. Using single-cell technologies, we demonstrate that CHIKV excludes subsequent infection with: CHIKV; Sindbis virus, a related alphavirus; and influenza A, an unrelated RNA virus. We further demonstrate that SIE does not depend on the action of type I interferon, nor does it rely on host cell transcription. Moreover, exclusion is not mediated by the action of a single CHIKV protein; in particular, we observed no role for non-structural protein 2 (nsP2), making CHIKV unique among characterized alphaviruses. By stepping through the viral life cycle, we show that CHIKV exclusion occurs at the level of replication, but does not directly influence virus binding, nor viral structural protein translation. In sum, we characterized co-infection during CHIKV replication, which likely influences the rate of viral diversification and evolution.


Subject(s)
Chikungunya Fever/virology , Chikungunya virus/physiology , Superinfection/virology , Viral Nonstructural Proteins/metabolism , Virus Replication , Animals , Cells, Cultured , Chikungunya virus/genetics , Chikungunya virus/pathogenicity , Chlorocebus aethiops , Genome, Viral , Influenza A virus/pathogenicity , Mice , Sindbis Virus/pathogenicity , Vero Cells , Viral Nonstructural Proteins/genetics
19.
Sci Transl Med ; 12(532)2020 02 26.
Article in English | MEDLINE | ID: mdl-32102936

ABSTRACT

Obesity and insulin resistance are risk factors for nonalcoholic fatty liver disease (NAFLD), the most common chronic liver disease worldwide. Because no approved medication nor an accurate and noninvasive diagnosis is currently available for NAFLD, there is a clear need to better understand the link between obesity and NAFLD. Lipid accumulation during obesity is known to be associated with oxidative stress and inflammatory activation of liver macrophages (LMs). However, we show that although LMs do not become proinflammatory during obesity, they display signs of oxidative stress. In livers of both humans and mice, antioxidant nuclear factor erythroid 2-related factor 2 (NRF2) was down-regulated with obesity and insulin resistance, yielding an impaired response to lipid accumulation. At the molecular level, a microRNA-targeting NRF2 protein, miR-144, was elevated in the livers of obese insulin-resistant humans and mice, and specific silencing of miR-144 in murine and human LMs was sufficient to restore NRF2 protein expression and the antioxidant response. These results highlight the pathological role of LMs and their therapeutic potential to restore the impaired endogenous antioxidant response in obesity-associated NAFLD.


Subject(s)
Antioxidants , Insulin Resistance , Kupffer Cells , Non-alcoholic Fatty Liver Disease , Animals , Humans , Liver , Mice , MicroRNAs , NF-E2-Related Factor 2 , Obesity
SELECTION OF CITATIONS
SEARCH DETAIL