Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Journal subject
Affiliation country
Publication year range
1.
Nature ; 612(7940): 519-527, 2022 12.
Article in English | MEDLINE | ID: mdl-36477534

ABSTRACT

In mice and humans, sleep quantity is governed by genetic factors and exhibits age-dependent variation1-3. However, the core molecular pathways and effector mechanisms that regulate sleep duration in mammals remain unclear. Here, we characterize a major signalling pathway for the transcriptional regulation of sleep in mice using adeno-associated virus-mediated somatic genetics analysis4. Chimeric knockout of LKB1 kinase-an activator of AMPK-related protein kinase SIK35-7-in adult mouse brain markedly reduces the amount and delta power-a measure of sleep depth-of non-rapid eye movement sleep (NREMS). Downstream of the LKB1-SIK3 pathway, gain or loss-of-function of the histone deacetylases HDAC4 and HDAC5 in adult brain neurons causes bidirectional changes of NREMS amount and delta power. Moreover, phosphorylation of HDAC4 and HDAC5 is associated with increased sleep need, and HDAC4 specifically regulates NREMS amount in posterior hypothalamus. Genetic and transcriptomic studies reveal that HDAC4 cooperates with CREB in both transcriptional and sleep regulation. These findings introduce the concept of signalling pathways targeting transcription modulators to regulate daily sleep amount and demonstrate the power of somatic genetics in mouse sleep research.


Subject(s)
Signal Transduction , Sleep Duration , Transcription, Genetic , Animals , Mice , Gene Expression Regulation , Phosphorylation , Signal Transduction/physiology , Sleep, Slow-Wave/genetics , Gene Expression Profiling
2.
J Neurosci ; 2022 Jun 03.
Article in English | MEDLINE | ID: mdl-35667851

ABSTRACT

Classical forward and reverse mouse genetics require germline mutations and, thus, are unwieldy to study sleep functions of essential genes or redundant pathways. It is also time-consuming to conduct electroencephalogram/electromyogram-based mouse sleep screening owing to labor-intensive surgeries and genetic crosses. Here, we describe a highly accurate SleepV (video) system and adeno-associated virus (AAV)-based adult brain chimeric (ABC)-expression/knockout (KO) platform for somatic genetics analysis of sleep in adult male or female mice. A pilot ABC screen identifies CREB and CRTC1, of which constitutive or inducible expression significantly reduces quantity and/or quality of non-rapid eye movement sleep. Whereas ABC-KO of exon 13 of Sik3 by AAV-Cre injection in Sik3-E13flox/flox adult mice phenocopies Sleepy (Sik3Slp/+) mice, ABC-CRISPR of Slp/Sik3 reverses hypersomnia of Sleepy mice, indicating a direct role of SLP/SIK3 kinase in sleep regulation. Multiplex ABC-CRISPR of both orexin/hypocretin receptors causes narcolepsy episodes, enabling one-step analysis of redundant genes in adult mice. Therefore, this somatic genetics approach should facilitate high-throughput analysis of sleep regulatory genes, especially for essential or redundant genes, in adult mice by skipping mouse development and minimizing genetic crosses.SIGNIFICANCE STATEMENTThe molecular mechanisms of mammalian sleep regulation remain unclear. Classical germline mouse genetics are unwieldy to study sleep functions of essential genes or redundant pathways. The EEG/EMG-based mouse sleep screening is time-consuming owing to labor-intensive surgeries and lengthy genetic crosses. To overcome these "bottlenecks", we developed a highly accurate video-based sleep analysis system and adeno-associated virus-mediated ABC-expression/knockout platform for somatic genetics analysis of sleep in adult mice. These methodologies facilitate rapid identification of sleep regulatory genes, but also efficient mechanistic studies of the molecular pathways of sleep regulation in mice.

3.
Beijing Da Xue Xue Bao Yi Xue Ban ; 47(4): 667-73, 2015 Aug 18.
Article in Zh | MEDLINE | ID: mdl-26284407

ABSTRACT

OBJECTIVE: To compare the diffusion properties of fluorescent probes dextran-tetramethylrhodamine (DT) and lucifer yellow CH (LY) and magnetic probe gadolinium-diethylene triamine pentaacetic acid (Gd-DTPA) in porous media and to screen out a suitable fluorescent probe for optical imaging of brain interstitial space (ISS). METHODS: Agarose gels sample were divided into DT group, LY group and Gd-DTPA group, and the corresponding molecular probes were imported in each group. The dynamic diffusions of DT and LY in agarose gels at different time points (15, 30, 45, 60, 90, and 120 min) were scanned with laser scanning confocal microscope, the dynamic diffusion of Gd-DTPA was imaged with magnetic resonance imaging. The average diffusion speed of LY were demonstrated to be consistent with those of Gd-DTPA. The LY was introduced into caudate putamen of 18 rats, respectively, the diffusion of LY in the sequential slices of rat brain at different time points (0.5, 1, 2, 3, 7, 11 h) were scanned, and the results were compared with those of rats' brain with Gd-DTPA imported and imaged in vivo with magnetic resonance imaging. RESULTS: The diffusions of the three probes were isotropic in the agarose gels, and the average diffusion speeds of DT, LY and Gd-DTPA were: (0.07±0.02)×10(-2) mm2/s, (1.54±0.47)×10(-2) mm2/s, (1.45±0.50)×10(-2) mm2/s, respectively. The speed of DT was more slower than both LY and Gd-DTPA (ANOVA, F=367.15, P<0.001; Post-Hoc LSD, P<0.001), and there was no significant difference between the speeds of LY and Gd-DTPA (Post-Hoc LSD, P=0.091). The variation tendency of diffusion area of DT was different with both that of LY and that of Gd-DTPA (Bonferroni correction, α=0.0125, P<0.001), and there was no significant difference between LY and Gd-DTPA (Bonferroni correction, α=0.0125, P=0.203), in analysis by repeated measures data of ANOVA. The diffusions of LY and Gd-DTPA were anisotropy in rat caudate putamen,and the average diffusion speeds of LY and Gd-DTPA were: (1.03±0.29)×10(-3) mm2/s, (0.81±0.27)×10(-3) mm2/s, respectively, no significant difference was demonstrated (t=0.759, P=0.490); half-time of single intensity of LY and Gd-DTPA was (2.58±0.04) h, (2.46±0.10) h, respectively, no significant difference was found (t=2.025, P=0.113). The diffusion area ratios between LY and Gd-DTPA in rat caudate putamen was not statistically different at hours 0.5, 1, 2, 3 and 7 (t=2.249, P=0.088; t=2.582, P=0.061; t=1.966, P=0.121; t=0.132, P=0.674; t=0.032, P=0.976), while, a slightly difference was found at 11 h (t=2.917, P=0.043,in analysis by t test). CONCLUSION: LY present the same diffusion property with Gd-DTPA in porous media witch including agarose gels and live rat brain tissue, indicates that LY is a suitable fluorescent probe for optical imaging of brain ISS, and it can be used for microscopic, macro and in vitro measure of brain ISS.


Subject(s)
Contrast Media , Fluorescent Dyes , Molecular Probes , Neuroimaging , Animals , Brain , Diffusion , Fluorescence , Gadolinium DTPA , Magnetic Resonance Imaging , Microscopy, Confocal , Rats
SELECTION OF CITATIONS
SEARCH DETAIL