Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
J Virol ; 98(4): e0184423, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38436247

ABSTRACT

Porcine Mx1 is a type of interferon-induced GTPase that inhibits the replication of certain RNA viruses. However, the antiviral effects and the underlying mechanism of porcine Mx1 for porcine reproductive and respiratory syndrome virus (PRRSV) remain unknown. In this study, we demonstrated that porcine Mx1 could significantly inhibit PRRSV replication in MARC-145 cells. By Mx1 segment analysis, it was indicated that the GTPase domain (68-341aa) was the functional area to inhibit PRRSV replication and that Mx1 interacted with the PRRSV-N protein through the GTPase domain (68-341aa) in the cytoplasm. Amino acid residues K295 and K299 in the G domain of Mx1 were the key sites for Mx1-N interaction while mutant proteins Mx1(K295A) and Mx1(K299A) still partially inhibited PRRSV replication. Furthermore, we found that the GTPase activity of Mx1 was dominant for Mx1 to inhibit PRRSV replication but was not essential for Mx1-N interaction. Finally, mechanistic studies demonstrated that the GTPase activity of Mx1 played a dominant role in inhibiting the N-Nsp9 interaction and that the interaction between Mx1 and N partially inhibited the N-Nsp9 interaction. We propose that the complete anti-PRRSV mechanism of porcine Mx1 contains a two-step process: Mx1 binds to the PRRSV-N protein and subsequently disrupts the N-Nsp9 interaction by a process requiring the GTPase activity of Mx1. Taken together, the results of our experiments describe for the first time a novel mechanism by which porcine Mx1 evolves to inhibit PRRSV replication. IMPORTANCE: Mx1 protein is a key mediator of the interferon-induced antiviral response against a wide range of viruses. How porcine Mx1 affects the replication of porcine reproductive and respiratory syndrome virus (PRRSV) and its biological function has not been studied. Here, we show that Mx1 protein inhibits PRRSV replication by interfering with N-Nsp9 interaction. Furthermore, the GTPase activity of porcine Mx1 plays a dominant role and the Mx1-N interaction plays an assistant role in this interference process. This study uncovers a novel mechanism evolved by porcine Mx1 to exert anti-PRRSV activities.


Subject(s)
Myxovirus Resistance Proteins , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Viral Nonstructural Proteins , Virus Replication , Animals , Cell Line , Interferons/immunology , Interferons/metabolism , Mutation , Myxovirus Resistance Proteins/chemistry , Myxovirus Resistance Proteins/genetics , Myxovirus Resistance Proteins/metabolism , Porcine Reproductive and Respiratory Syndrome/enzymology , Porcine Reproductive and Respiratory Syndrome/metabolism , Porcine Reproductive and Respiratory Syndrome/virology , Porcine respiratory and reproductive syndrome virus/growth & development , Porcine respiratory and reproductive syndrome virus/metabolism , Protein Binding , Swine/virology , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/metabolism
2.
J Virol ; 96(17): e0061222, 2022 09 14.
Article in English | MEDLINE | ID: mdl-36005757

ABSTRACT

Protein SUMOylation represents an important cellular process that regulates the activities of numerous host proteins as well as of many invasive viral proteins. Foot-and-mouth disease virus (FMDV) is the first animal virus discovered. However, whether SUMOylation takes place during FMDV infection and what role it plays in FMDV pathogenesis have not been investigated. In the present study, we demonstrated that SUMOylation suppressed FMDV replication by small interfering RNA (siRNA) transfection coupled with pharmaceutical inhibition of SUMOylation, which was further confirmed by increased virus replication for SUMOylation-deficient FMDV with mutations in 3C protease, a target of SUMOylation. Moreover, we provided evidence that four lysine residues, Lys-51, -54, -110, and -159, worked together to confer the SUMOylation to the FMDV 3C protease, which may make SUMOylation of FMDV 3C more stable and improve the host's chance of suppressing the replication of FMDV. This is the first report that four lysine residues can be alternatively modified by SUMOylation. Finally, we showed that SUMOylation attenuated the cleavage ability, the inhibitory effect of the interferon signaling pathway, and the protein stability of FMDV 3C, which appeared to correlate with a decrease in FMDV replication. Taken together, the results of our experiments describe a novel cellular regulatory event that significantly restricts FMDV replication through the SUMOylation of 3C protease. IMPORTANCE FMD is a highly contagious and economically important disease in cloven-hoofed animals. SUMOylation, the covalent linkage of a small ubiquitin-like protein to a variety of substrate proteins, has emerged as an important posttranslational modification that plays multiple roles in diverse biological processes. In this study, four lysine residues of FMDV 3C were found to be alternatively modified by SUMOylation. In addition, we demonstrated that SUMOylation attenuated FMDV 3C function through multiple mechanisms, including cleavage ability, the inhibitory effect of the interferon signaling pathway, and protein stability, which, in turn, resulted in a decrease of FMDV replication. Our findings indicate that SUMOylation of FMDV 3C serves as a host cell defense against FMDV replication. Further understanding of the cellular and molecular mechanisms driving this process should offer novel insights to design an effective strategy to control the dissemination of FMDV in animals.


Subject(s)
Cysteine Endopeptidases/metabolism , Foot-and-Mouth Disease Virus , 3C Viral Proteases , Animals , Antiviral Agents , Foot-and-Mouth Disease , Foot-and-Mouth Disease Virus/genetics , Host-Pathogen Interactions , Lysine/metabolism , Peptide Hydrolases/metabolism , Sumoylation , Virus Replication
3.
BMC Musculoskelet Disord ; 24(1): 675, 2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37620819

ABSTRACT

OBJECTIVE: Exploring the correlation between bone turnover marks (BTMs) with lumbar BMD in middle-aged populations. METHODS: The cross-sectional analysis fetched data came from NHANES. The level of serum bone alkaline phosphatase (sBAP) and urinary N-telopeptide (uNTx) were regarded as representative of bone turnover. Lumbar BMD was the outcome of the study. Multivariable linear regression models were utilized to detect the correlation of sBAP and uNTx with Lumbar BMD. RESULTS: The level of sBAP and uNTx was negatively correlated with lumbar BMD in every multivariable linear regression. For sBAP, this inverse correlation was stable in both men and women (P < 0.01). uNTx indicated a negative association after all relevant covariables were adjusted (P < 0.01). The men group remained the negative correlation in gender subgroup analysis (P < 0.01). CONCLUSION: This study indicated that the increased level of sBAP and uNTx associated with lumbar BMD decreased among middle-aged adults. This correlation could prompt researchers to explore further the relationship between bone turnover rate and BMD, which may provide information for the early detection of BMD loss and provide a new strategy for clinical practice.


Subject(s)
Alkaline Phosphatase , Bone Density , Adult , Male , Middle Aged , Female , Humans , Cross-Sectional Studies , Nutrition Surveys , Bone Remodeling
4.
J Virol ; 95(15): e0036121, 2021 07 12.
Article in English | MEDLINE | ID: mdl-33980594

ABSTRACT

Foot-and-mouth disease virus (FMDV) is the pathogen of foot-and-mouth disease (FMD), which is a highly contagious disease in cloven-hoofed animals. To survive in the host, FMDV has evolved multiple strategies to antagonize host innate immune responses. In this study, we showed that the leader protease (Lpro) of FMDV, a papain-like proteinase, promoted viral replication by evading the antiviral interferon response through counteracting the 2',5'-oligoadenylate synthetase (OAS)/RNase L system. Specifically, we observed that the titers of Lpro deletion virus were significantly lower than those of wild-type FMDV (FMDV-WT) in cultured cells. Our mechanistic studies demonstrated that Lpro interfered with the OAS/RNase L pathway by interacting with the N-terminal domain of swine RNase L (sRNase L). Remarkably, Lpro of FMDV exhibited species-specific binding to RNase L in that the interaction was observed only in swine cells, not human, monkey, or canine cells. Lastly, we presented evidence that by interacting with sRNase L, FMDV Lpro inhibited cellular apoptosis. Taken together, these results demonstrate a novel mechanism that Lpro utilizes to escape the OAS/RNase L-mediated antiviral defense pathway. IMPORTANCE FMDV is a picornavirus that causes a significant disease in agricultural animals. FMDV has developed diverse strategies to escape the host interferon response. Here, we show that Lpro of FMDV antagonizes the OAS/RNase L pathway, an important interferon effector pathway, by interacting with the N-terminal domain of sRNase L. Interestingly, such a virus-host interaction is species-specific because the interaction is detected only in swine cells, not in human, monkey, or canine cells. Furthermore, Lpro inhibits apoptosis through interacting with sRNase L. This study demonstrates a novel mechanism by which FMDV has evolved to inhibit host innate immune responses.


Subject(s)
2',5'-Oligoadenylate Synthetase/metabolism , Endopeptidases/metabolism , Endoribonucleases/metabolism , Foot-and-Mouth Disease Virus/immunology , Immune Evasion/immunology , Immunity, Innate/immunology , Animals , Apoptosis/immunology , Cell Line , Cricetinae , Dogs , Endopeptidases/genetics , Endopeptidases/immunology , Endoribonucleases/genetics , Foot-and-Mouth Disease/immunology , Foot-and-Mouth Disease/virology , HEK293 Cells , Haplorhini , Humans , Immune Evasion/genetics , Madin Darby Canine Kidney Cells , Protein Domains , Swine
5.
Cell Mol Neurobiol ; 42(8): 2489-2504, 2022 Nov.
Article in English | MEDLINE | ID: mdl-34436728

ABSTRACT

AMPA receptors are tetrameric ionic glutamate receptors, which mediate 90% fast excitatory synaptic transmission induced by excitatory glutamate in the mammalian central nervous system through the activation or inactivation of ion channels. The alternation of synaptic AMPA receptor number and subtype is thought to be one of the primary mechanisms that involve in synaptic plasticity regulation and affect the functions in learning, memory, and cognition. The increasing of surface AMPARs enhances synaptic strength during long-term potentiation, whereas the decreasing of AMPARs weakens synaptic strength during the long-term depression. It is closely related to the AMPA receptor as well as its subunits assembly, trafficking, and degradation. The dysfunction of any step in these precise regulatory processes is likely to induce the disorder of synaptic transmission and loss of neurons, or even cause neuropsychiatric diseases ultimately. Therefore, it is useful to understand how AMPARs regulate synaptic plasticity and its role in related neuropsychiatric diseases via comprehending architecture and trafficking of the receptors. Here, we reviewed the progress in structure, expression, trafficking, and relationship with synaptic plasticity of AMPA receptor, especially in anxiety, depression, neurodegenerative disorders, and cerebral ischemia.


Subject(s)
Neuronal Plasticity , Receptors, AMPA , Animals , Glutamic Acid/metabolism , Mammals/metabolism , Neuronal Plasticity/physiology , Protein Transport , Receptors, AMPA/metabolism , Synapses/metabolism , Synaptic Transmission/physiology
6.
J Cell Physiol ; 236(5): 3832-3862, 2021 05.
Article in English | MEDLINE | ID: mdl-33111343

ABSTRACT

Tetrahydroxy stilbene glycoside (TSG) is a main active compound in Polygonum multiflorum. Acetaminophen (APAP) is a well-known analgesic and antipyretic drug. It is considered to be safe within a therapeutic range, in case of acute intoxication hepatotoxicity occurs. This present study aims to observe TSG-provided alleviation on APAP-induced hepatoxicity in C57BL/6 mice. APAP performs extensive necrosis and dissolves nucleus suggesting liver damage from hepatic histopathology. Serum alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase, and alkaline phosphatase analysis and liver histological evaluation showed that TSG reduced the hepatotoxicity induced by a toxic dose of APAP. Moreover, TSG alone had no hepatotoxicity. TSG eliminated hepatic glutathione depletion and cysteine adducts formation. It also reduced the expression of interleukin-10 and lowered the production of reactive oxygen species in liver tissues. Luminex was used to detect cytokine production in different groups. Herein, we used an untargeted metabolomics approach by performing ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry on treated mice to identify metabolic disruptions under APAP and TSG. Major alterations were observed for purine metabolism, amino acid metabolism, and fatty acid metabolism. These data provide metabolic evidence and biomarkers in the liver that the ABC transporters, Glycine serine and threonine metabolism, and Choline metabolism in cancer changed the most. These targets of metabolites have the potential to improve our understanding of homeostatic. Meanwhile, these metabolites revealed that TSG can alleviate inflammation caused by APAP and promote the activity of intrinsic antioxidants. In summary, TSG can regulate lipid metabolism, promote the production of antioxidant enzymes, and decrease the inflammatory response.


Subject(s)
Glycosides/pharmacology , Liver/pathology , Metabolomics , Stilbenes/pharmacology , Acetaminophen , Animals , Chromatography, High Pressure Liquid , Cytokines/metabolism , Data Analysis , Discriminant Analysis , Glycosides/chemistry , Inflammation/pathology , Least-Squares Analysis , Liver/drug effects , Liver/metabolism , Liver/physiopathology , Male , Mass Spectrometry , Mice, Inbred C57BL , Multivariate Analysis , Oxidative Stress/drug effects , Signal Transduction/drug effects , Stilbenes/chemistry
7.
Sex Health ; 18(1): 58-63, 2021 03.
Article in English | MEDLINE | ID: mdl-33639685

ABSTRACT

Background HIV prevalence has been rapidly increasing among men who have sex with men (MSM) attending university in China, but HIV testing rates remain suboptimal. The factors associated with past HIV testing in this population in Beijing, China, were investigated. METHODS: This study used data from the baseline survey of an HIV intervention clinical trial among MSM who did not have a history of a positive HIV diagnosis. This analysis focused on the HIV testing experience in a subgroup of university student MSM participants. Log-binomial models were used to evaluate factors associated with past HIV testing. RESULTS: Of 375 university student MSM, the median age was 22 years; 89.3% were Han ethnic. Approximately half (50.4%, n = 189) had ever taken an HIV test before the survey. In a multivariable log-binomial model, older age (adjusted prevalence ratio (APR), 1.04; 95% confidence interval (CI), 1.02-1.06), had first sexual intercourse at age <18 years (APR, 1.35; 95% CI, 1.08-1.45) and knew someone living with HIV (APR, 1.33; 95% CI, 1.07-1.61) were associated with a higher likelihood of past testing. Self-reported barriers to taking a test included perceived low HIV risk, fear of a positive diagnosis, did not know where to get tested and fear of discrimination. Facilitators included anonymity in taking a test, confidentiality of testing results and availability of home-based and rapid testing. CONCLUSIONS: The HIV testing rate among university student MSM was low. Interventions should be implemented to address structural, institutional and individual barriers to HIV testing in this vulnerable population.


Subject(s)
HIV Infections , Sexual and Gender Minorities , Adolescent , Adult , Aged , China/epidemiology , Cross-Sectional Studies , HIV Infections/diagnosis , HIV Infections/epidemiology , HIV Testing , Homosexuality, Male , Humans , Male , Sexual Behavior , Universities , Young Adult
8.
Langmuir ; 34(27): 8058-8064, 2018 07 10.
Article in English | MEDLINE | ID: mdl-29905482

ABSTRACT

Use of carrier solvents to assist dissolution of phase-selective organogelators (PSOGs) before application in oil gelation is a common approach for solution-based gelators. Because of the competition in H-bonds by the polar carrier solvent, decreased gelling ability of PSOGs was often observed. That is, while data are available, the previously documented biphasic minimum gelling concentrations (BMGCs) are much larger than the MGCs determined using heating-cooling cycle for the same PSOG against the same oil. In this study, we show that, by minimizing amount of polar carrier solvent used, the gelling ability of PSOGs actually can be enhanced very substantially, rather than being weakened. More specifically, we demonstrate that use of a minute amount of polar carrier solvents of different types (e.g., ethyl acetate, acetone, acetonitrile, and tetrahydrofuran) significantly enhances the gelling ability of seven structurally different organogelators in hydrophobic oil. In particular, with the use of 5 vol % essentially nontoxic ethyl acetate, application of this previously unexplored strategy onto four monopeptide-based PSOGs produces up to 11-fold improvement in biphasic gelling ability toward seven (un)weathered crude oils of widely ranging viscosities. While collectively overcoming many problematic issues (slow gelling action, low gelling ability, or a need to use hot or toxic solvent for dissolution of gelator) associated with PSOGs, this surprisingly simple yet powerful and reliable method produces unprecedented rapid supergelation of crude oil at room temperature, with BMGCs of as low as 0.38 w/v % (e.g., 3.8 g per liter of crude oil) and an averaged reduction in material cost of gelators by 85-97%.

9.
Org Biomol Chem ; 13(43): 10613-9, 2015 Nov 21.
Article in English | MEDLINE | ID: mdl-26381358

ABSTRACT

Through a series of crystallographic snapshots of water chain-containing aquapores formed from numerous one-dimensionally aligned aquafoldamer molecules 2, we demonstrated here (1) a preferential recognition of the water molecules over methanol molecules by the assembled cavity-containing aquapores with a selectivity factor of at least 17.7, (2) the dynamic nature of the water chains and the aquapores in response to varying external stimuli that exert the most influential impact on the aromatic π-π stacking in the aquapores and (3) the aquapores undergo a significant rearrangement in order to accommodate water, rather than methanol, molecules.


Subject(s)
Aquaporins/metabolism , Biomimetic Materials/metabolism , Water/metabolism , Aquaporins/chemistry , Biomimetic Materials/chemistry , Crystallography, X-Ray , Hydrogen Bonding , Methanol/metabolism , Models, Molecular , Permeability , Thermodynamics , Water/chemistry
10.
Int Immunopharmacol ; 137: 112491, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38909499

ABSTRACT

BACKGROUND: Polycystic ovary syndrome (PCOS) is a common and complex endocrine disease in women, with a prevalence of 5% to 18% worldwide. HeQi San (HQS) is a Chinese medicine compound prescription, which has been applied to treat various endocrine and metabolic diseases. OBJECTIVE: The study was intended to investigate the effect of HQS on PCOS, and clarify the potential mechanism via in vivo and in vitro experiments. METHODS: The PCOS mouse model was established by injecting the dehydroepiandrosterone (DHEA) subcutaneously and fading high-fat diet for 3 weeks. After making model, PCOS mice were treated with HQS (8.75 g/kg and 17.5 g/kg, ig.) for 4 weeks. Firstly, we assessed the histopathological changes in ovary tissues and detected the hormone level. Subsequently, the study evaluated the capability of anti-inflammatory and regulating macrophage polarization of HQS in vivo and in vitro. The secretion of inflammation indicators was measured with Elisa kits, and the expression level of phosphorylated nuclear factor kappa-B (P-NFκB) and B-lymphocyte activation antigen B7 (CD80) was measured by immunofluorescence and Western blot. Meanwhile, the apoptosis of ovarian granulosa cells was detected via tunel staining and Western blot. The co-culture model in vitro was utilized to assess the effect between macrophage polarization and human ovarian granulosa cells (KGN cells) apoptosis. Furthermore, 16S rDNA sequencing was utilized to elevate gut microbiota change in PCOS mice. RESULTS: HQS reversed the abnormal hormone increase, ameliorated insulin resistance, and improved histopathological changes of the ovary tissue to exert the therapeutic effect. HQS inhibited the expression of P-NF-κB and decreased the production of interleukin 6 (IL-6) and tumor necrosis factor-α (TNF-α) to further prohibit the macrophage M1 polarization in ovary tissues and macrophages. The apoptosis-positive cells, Bcl-2 Assaciated X protein (BAX), and cleaved-caspase 3 expression were also decreased in the treatment group. The B-cell lymphoma-2 (Bcl2) expression was enhanced after HQS treatment in vivo. The co-culture experiments also verified that HQS could prevent the apoptosis of KGN cells. Furthermore, HQS mediated the abundance of gut flora. The abundance of bifldobacterium and parasutterella was increased and the abundance of lachnoclostridium was decreased. CONCLUSION: The study verified that HQS has the effect of anti-inflammation and inhibits macrophage M1 polarization. Besides, HQS could mediate the abundance of gut microbiota in mice with PCOS. Thus, this study would provide more reasonable basis of HQS for clinical use. In conclusion, HQS might be a potential candidate for PCOS treatment.


Subject(s)
Anti-Inflammatory Agents , Dehydroepiandrosterone , Disease Models, Animal , Drugs, Chinese Herbal , Gastrointestinal Microbiome , Polycystic Ovary Syndrome , Animals , Polycystic Ovary Syndrome/drug therapy , Polycystic Ovary Syndrome/chemically induced , Polycystic Ovary Syndrome/immunology , Female , Gastrointestinal Microbiome/drug effects , Mice , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Ovary/pathology , Ovary/drug effects , Ovary/immunology , Ovary/metabolism , Humans , Macrophages/drug effects , Macrophages/immunology , RAW 264.7 Cells , Cytokines/metabolism , Apoptosis/drug effects , NF-kappa B/metabolism , Diet, High-Fat/adverse effects , Inflammation/drug therapy , Mice, Inbred C57BL
11.
J Proteomics ; 299: 105157, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38462170

ABSTRACT

Traditional Chinese medicine has been utilized in China for approximately thousands of years in clinical settings to prevent Alzheimer's disease (AD) and enhance memory, despite the lack of a systematic exploration of its biological underpinnings. Exciting research has corroborated the beneficial effects of tetrahydroxy stilbene glycoside (TSG), an extract derived from Polygonum multiflorum, in delaying learning and memory impairment in a model that mimics AD. Therefore, the primary objective of this study is to investigate the major function of TSG upon protein regulation in AD. Herein, a novel approach, encompassing data independent acquisition (DIA), DIA phosphorylated proteomics, and parallel reaction monitoring (PRM), was utilized to integrate quantitative proteomic data collected from APP/PS1 mouse model exhibiting toxic intracellular aggregation of Aß. Initially, we deliberated upon both single and multi-dimensional data pertaining to AD model mice. Furthermore, we authenticated disparities in protein phosphorylation quantity and expression, phosphorylation function, and ultimately phosphorylation kinase analysis. In order to validate the results, we utilized PRM ion monitoring technology to identify potential protein or peptide biomarkers. In the mixed samples, targeted detection of 50 target proteins revealed that 26 to 33 target proteins were stably detected by PRM. In summary, our findings provide new candidates for AD biomarker, which have been identified and validated through protein researches conducted on mouse brains. This offers a wealth of potential resources for extensive biomarker validation in neurodegenerative diseases. SIGNIFICANCE: DIA phosphorylated proteomics technique was used to detect and analyze phosphorylated proteins in brain tissues of mice with AD. Data were analyzed by various bioinformatics tools to explore the phosphorylation events and characterize them related to TSG. The results of DIA were further verified by PRM. Besides, we mapped the major metabolite classes emerging from the analyses to key biological pathways implicated in AD to understand the potential roles of the molecules and the interactions in triggering symptom onset and progression of AD. Meanwhile, we clarified that in the context of AD onset and TSG intervention, the changes in proteins, protein phosphorylation, phosphorylation kinases, and the internal connections.


Subject(s)
Alzheimer Disease , Mice , Animals , Alzheimer Disease/metabolism , Proteomics , Amyloid beta-Protein Precursor , Glycosides , Biomarkers , Mice, Transgenic , Disease Models, Animal , Amyloid beta-Peptides/metabolism
12.
Light Sci Appl ; 13(1): 177, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39060257

ABSTRACT

Vertically stacked all-organic active-matrix organic light-emitting diodes are promising candidates for high-quality skin-like displays due to their high aperture ratio, extreme mechanical flexibility, and low-temperature processing ability. However, these displays suffer from process interferences when interconnecting functional layers made of all-organic materials. To overcome this challenge, we present an innovative integration strategy called "discrete preparation-multilayer lamination" based on microelectronic processes. In this strategy, each functional layer was prepared separately on different substrates to avoid chemical and physical damage caused by process interferences. A single interconnect layer was introduced between each vertically stacked functional layer to ensure mechanical compatibility and interconnection. Compared to the previously reported layer-by-layer preparation method, the proposed method eliminates the need for tedious protection via barrier and pixel-defining layer processing steps. Additionally, based on active-matrix display, this strategy allows multiple pixels to collectively display a pattern of "1" with an aperture ratio of 83%. Moreover, the average mobility of full-photolithographic organic thin-film transistors was 1.04 cm2 V-1 s-1, ensuring stable and uniform displays. This strategy forms the basis for the construction of vertically stacked active-matrix displays, which should facilitate the commercial development of skin-like displays in wearable electronics.

13.
Vet Microbiol ; 296: 110172, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38971118

ABSTRACT

TAK1-binding protein 1 (TAB1) assembles with TAK1 through its C-terminal domain, leading to the self-phosphorylation and activation of TAK1, which plays an important role in the activation of NF-κB and MAPK signaling pathway. Pseudorabies virus (PRV) is the pathogen of Pseudorabies (PR), which belongs to the Alphaherpesvirus subfamily and causes serious economic losses to the global pig industry. However, the impact of swine TAB1 (sTAB1) on PRV infection has not been reported. In this study, evidence from virus DNA copies, virus titer and western blotting confirmed that sTAB1 could inhibit PRV replication and knockout of sTAB1 by CRISPR-Cas9 gene editing system could promote PRV replication. Further mechanistic studies by real-time PCR and luciferase reporter gene assay demonstrated that sTAB1 could enhance the production of inflammatory factors and chemokines, IFN-ß transcription level and IFN-ß promoter activity after PRV infection. In summary, we clarify the underlying mechanism of sTAB1 in inhibiting PRV replication for the first time, which provides a new idea for preventing PRV infection and lays a foundation for PRV vaccine development.


Subject(s)
Herpesvirus 1, Suid , Pseudorabies , Virus Replication , Animals , Herpesvirus 1, Suid/genetics , Herpesvirus 1, Suid/physiology , Swine , Pseudorabies/virology , Swine Diseases/virology , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Cell Line , CRISPR-Cas Systems , Interferon-beta/genetics , Interferon-beta/metabolism
14.
Vet Microbiol ; 296: 110173, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38971119

ABSTRACT

Porcine reproductive and respiratory syndrome (PRRS) is the most economically significant disease caused by porcine reproductive and respiratory syndrome virus (PRRSV). Type I interferon (IFN) induces a large number of interferon-stimulated genes (ISGs) expression to inhibit PRRSV infection. To survive in the host, PRRSV has evolved multiple strategies to antagonize host innate immune response. Previous studies have reported that PRRSV N protein decreases the expression of TRIM25 and TRIM25-mediated RIG-I ubiquitination to suppress IFN-ß production. However, whether other PRRSV proteins inhibit the antiviral function of TRIM25 is less well understood. In this study, we first found that PRRSV NSP1α decreased ISGylation of TRIM25. Meanwhile, NSP1α significantly suppressed TRIM25-mediated IFN-ß production to promote PRRSV replication. Further studies demonstrated that PRRSV NSP1α reduced the protein level of TRIM25 in proteasome system but did not regulate the transcription level of TRIM25. In addition, the function of NSP1α in TRIM25 degradation did not rely on its papain-like cysteine protease activity. Taken together, PRRSV NSP1α antagonizes the antiviral response of TRIM25 by mediating TRIM25 degradation to promote PRRSV replication. Our data identify TRIM25 as a natural target of PRRSV NSP1α and reveal a novel mechanism that PRRSV induces TRIM25 degradation and inhibits host antiviral immune response.


Subject(s)
Immunity, Innate , Porcine respiratory and reproductive syndrome virus , Proteasome Endopeptidase Complex , Tripartite Motif Proteins , Ubiquitin-Protein Ligases , Viral Nonstructural Proteins , Virus Replication , Porcine respiratory and reproductive syndrome virus/immunology , Animals , Proteasome Endopeptidase Complex/metabolism , Proteasome Endopeptidase Complex/genetics , Swine , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/immunology , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/metabolism , Porcine Reproductive and Respiratory Syndrome/immunology , Porcine Reproductive and Respiratory Syndrome/virology , Interferon-beta/genetics , Interferon-beta/metabolism , Interferon-beta/immunology , Transcription Factors/metabolism , Transcription Factors/genetics , Cell Line , Ubiquitination , Humans , HEK293 Cells , Host-Pathogen Interactions/immunology
15.
Vet Microbiol ; 280: 109720, 2023 May.
Article in English | MEDLINE | ID: mdl-36921497

ABSTRACT

Porcine reproductive and respiratory syndrome virus (PRRSV) is an enveloped positive-stranded RNA virus which causes serious economic losses to pig industry worldwide. Type I IFN induces expression of interferon-stimulated genes 15 (ISG15) to inhibit virus replication. To survive in the host, PRRSV has evolved to antagonize the antiviral response of ISGylation. Previous studies have reported that nonstructural protein 2 of PRRSV inhibits the ISGylation and antiviral function of ISG15 depending on its ovarian tumor (OTU) domain/papain-like protease domain (PLP2). However, whether there are other PRRSV proteins inhibiting ISGylation of cellular proteins is less well understood. In this study, we first found that PRRSV Nsp11 decreased ISGylation of cellular proteins. Meanwhile, the expression level of ISG15 was significantly inhibited by Nsp11. Further mechanistic studies demonstrated that the transcription of ISG15 was reduced by endoribonuclease activity of Nsp11. Finally, we found that the Nsp11-induced degradation of ISG15 was partially relied on autophagy-lysosome system. Taken together, PRRSV Nsp11 antagonizes the antiviral response of ISG15 by its endoribonuclease activity to promote PRRSV replication. Our results reveal a novel mechanism that PRRSV inhibits ISGylation of cellular proteins and impairs host innate immune response.


Subject(s)
Interferon Type I , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Swine Diseases , Animals , Swine , Porcine respiratory and reproductive syndrome virus/metabolism , Antiviral Agents/pharmacology , Cell Line , Endoribonucleases/genetics , Endoribonucleases/chemistry , Endoribonucleases/metabolism , Immunity, Innate , Viral Nonstructural Proteins/metabolism , Virus Replication
16.
Adv Sci (Weinh) ; 10(29): e2302974, 2023 10.
Article in English | MEDLINE | ID: mdl-37610561

ABSTRACT

Intrinsically stretchable gas sensors possess outstanding advantages in seamless conformability and high-comfort wearability for real-time detection toward skin/respiration gases, making them promising candidates for health monitoring and non-invasive disease diagnosis and therapy. However, the strain-induced deformation of the sensitive semiconductor layers possibly causes the sensing signal drift, resulting in failure in achievement of the reliable gas detection. Herein, a surprising result that the stretchable organic polymers present a universal strain-insensitive gas sensing property is shown. All the stretchable polymers with different degrees of crystallinity, including indacenodithiophene-benzothiadiazole (PIDTBT), diketo-pyrrolo-pyrrole bithiophene thienothiophene (DPPT-TT) and poly[4-(4,4-dihexadecyl-4H-cyclopenta[1,2-b:5,4-b']dithiophen-2-yl)-alt-[1,2,5]thiad-iazolo [3,4-c] pyridine] (PCDTPT), show almost unchanged gas response signals in the different stretching states. This outstanding advantage enables the intrinsically stretchable devices to imperceptibly adhere on human skin and well conform to the versatile deformations such as bending, twisting, and stretching, with the highly strain-stable gas sensing property. The intrinsically stretchable PIDTBT sensor also demonstrates the excellent selectivity toward the skin-emitted trimethylamine (TMA) gas, with a theoretical limit of detection as low as 0.3 ppb. The work provides new insights into the preparation of the reliable skin-like gas sensors and highlights the potential applications in the real-time detection of skin gas and respiration gas for non-invasive medical treatment and disease diagnosis.


Subject(s)
Semiconductors , Skin , Humans , Polymers , Wearable Electronic Devices
17.
Front Genet ; 14: 1164274, 2023.
Article in English | MEDLINE | ID: mdl-37020999

ABSTRACT

Objective: We explore the candidate susceptibility genes for influenza A virus (IAV), measles, rubella, and mumps and their underlying biological mechanisms. Methods: We downloaded the genome-wide association study summary data of four virus-specific immunoglobulin G (IgG) level data sets (anti-IAV IgG, anti-measles IgG, anti-rubella IgG, and anti-mumps virus IgG levels) and integrated them with reference models of three potential tissues from the Genotype-Tissue Expression (GTEx) project, namely, whole blood, lung, and transformed fibroblast cells, to identify genes whose expression is predicted to be associated with IAV, measles, mumps, and rubella. Results: We identified 19 significant genes (ULK4, AC010132.11, SURF1, NIPAL2, TRAP1, TAF1C, AC000078.5, RP4-639F20.1, RMDN2, ATP1B3, SRSF12, RP11-477D19.2, TFB1M, XXyac-YX65C7_A.2, TAF1C, PCGF2, and BNIP1) associated with IAV at a Bonferroni-corrected threshold of p < 0.05; 14 significant genes (SOAT1, COLGALT2, AC021860.1, HCG11, METTL21B, MRPL10, GSTM4, PAQR6, RP11-617D20.1, SNX8, METTL21B, ANKRD27, CBWD2, and TSFM) associated with measles at a Bonferroni-corrected threshold of p < 0.05; 15 significant genes (MTOR, LAMC1, TRIM38, U91328.21, POLR2J, SCRN2, Smpd4, UBN1, CNTROB, SCRN2, HOXB-AS1, SLC14A1, AC007566.10, AC093668.2, and CPD) associated with mumps at a Bonferroni-corrected threshold of p < 0.05; and 13 significant genes (JAGN1, RRP12, RP11-452K12.7, CASP7, AP3S2, IL17RC, FAM86HP, AMACR, RRP12, PPP2R1B, C11orf1, DLAT, and TMEM117) associated with rubella at a Bonferroni-corrected threshold of p < 0.05. Conclusions: We have identified several candidate genes for IAV, measles, mumps, and rubella in multiple tissues. Our research may further our understanding of the pathogenesis of infectious respiratory diseases.

18.
Sci Rep ; 13(1): 5792, 2023 04 08.
Article in English | MEDLINE | ID: mdl-37031278

ABSTRACT

Recent studies have shown a correlation between high-density lipoprotein cholesterol (HDL-C) and bone mineral density (BMD) in adults, but their relationship is unclear in adolescents. This study aimed to explore whether a correlation existed between them among adolescents aged 12-19. Data analyzed in our study was fetched from the National Health and Nutrition Examination Survey (NHANES) database 2011-2018. The relationship between HDL-C level and total BMD value was analyzed by multivariate logistic regression models, fitted smoothing curves, and generalized additive models. 3770 participants participated in this analysis. After adjusting for all relevant covariates involved in this study, we found a negative correlation between HDL-C levels and total bone density in male adolescents.Furthermore, the stratified analysis showed that all covariables-adjusted models retained the negative correlation excepting female, black, or Mexican American subgroups. An inverted U-shaped curve represented the correlation of HDL-C and total BMD among adolescents aged 16 to 19, and the turning point was 1.06 mmol/L. After adjusting for all relevant covariates involved in this study, the study found a negative correlation between HDL-C levels and total BMD in male adolescents aged 12 to 19, particularly among those of races other than Black and Mexican. There was a saturation effect between HDL-C level and total BMD in 16-19-year-old adolescents. The turning point was 1.06 mmol/L. Therefore, HDL-C might be a biomarker to detect bone health and further perform a more detailed examination.


Subject(s)
Bone Density , Adult , Humans , Male , Female , Adolescent , Young Adult , Cholesterol, HDL , Cross-Sectional Studies , Nutrition Surveys , Triglycerides
19.
Front Public Health ; 11: 1094062, 2023.
Article in English | MEDLINE | ID: mdl-36875412

ABSTRACT

Objectives: The prevalence of obesity is on the rise and is connected to numerous factors. However, the relationship between obesity and nickel has never been investigated. Our study aimed to explore the association between urinary nickel and obesity Status in adults. Methods: From the 2017-2018 National Health and Nutrition Examination Surveys (NHANES), 1,705 participants ≥18 years of age were enrolled. To explore further the relationship among urinary nickel, body mass index (BMI), and waist circumference(WC), Weighted multivariate linear regression analyses and further subgroup analyzes were conducted. Results: Urinary nickel does not correlate with BMI level but positively correlates with WC. In the subgroup analyzed according to sex, Urinary nickel has a positive correlation with BMI and WC in males but has a negative correlation in females. Secondary stratification analysis according to sex and race, Urinary nickel positively correlates with BMI in White males. It also positively correlates with WC in both White and Black males. Conclusions: A correlation was found between urinary nickel levels and BMI and WC in adult males. Adult men, especially those already obese, may need to reduce nickel exposure.


Subject(s)
Nickel , Obesity , Adult , Female , Humans , Male , Cross-Sectional Studies , Nickel/urine , Nutrition Surveys , Obesity/epidemiology , Obesity/urine
20.
Virol Sin ; 38(3): 387-397, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36921803

ABSTRACT

Foot-and-mouth disease virus (FMDV) has developed various strategies to antagonize the host innate immunity. FMDV Lpro and 3Cpro interfere with type I IFNs through different mechanisms. The structural protein VP3 of FMDV degrades Janus kinase 1 to suppress IFN-γ signaling transduction. Whether non-structural proteins of FMDV are involved in restraining type II IFN signaling pathways is unknown. In this study, it was shown that FMDV replication was resistant to IFN-γ treatment after the infection was established and FMDV inhibited type II IFN induced expression of IFN-γ-stimulated genes (ISGs). We also showed for the first time that FMDV non-structural protein 3C antagonized IFN-γ-stimulated JAK-STAT signaling pathway by blocking STAT1 nuclear translocation. 3Cpro expression significantly reduced the ISGs transcript levels and palindromic gamma-activated sequences (GAS) promoter activity, without affecting the protein level, tyrosine phosphorylation, and homodimerization of STAT1. Finally, we provided evidence that 3C protease activity played an essential role in degrading KPNA1 and thus inhibited ISGs mRNA and GAS promoter activities. Our results reveal a novel mechanism by which an FMDV non-structural protein antagonizes host type II IFN signaling.


Subject(s)
Foot-and-Mouth Disease Virus , Interferon Type I , Animals , Interferon-gamma/pharmacology , Foot-and-Mouth Disease Virus/genetics , Signal Transduction , Immunity, Innate , Interferon Type I/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL