Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
1.
Genome Res ; 33(10): 1690-1707, 2023 10.
Article in English | MEDLINE | ID: mdl-37884341

ABSTRACT

The rumen undergoes developmental changes during maturation. To characterize this understudied dynamic process, we profiled single-cell transcriptomes of about 308,000 cells from the rumen tissues of sheep and goats at 17 time points. We built comprehensive transcriptome and metagenome atlases from early embryonic to rumination stages, and recapitulated histomorphometric and transcriptional features of the rumen, revealing key transitional signatures associated with the development of ruminal cells, microbiota, and core transcriptional regulatory networks. In addition, we identified and validated potential cross-talk between host cells and microbiomes and revealed their roles in modulating the spatiotemporal expression of key genes in ruminal cells. Cross-species analyses revealed convergent developmental patterns of cellular heterogeneity, gene expression, and cell-cell and microbiome-cell interactions. Finally, we uncovered how the interactions can act upon the symbiotic rumen system to modify the processes of fermentation, fiber digestion, and immune defense. These results significantly enhance understanding of the genetic basis of the unique roles of rumen.


Subject(s)
Metagenome , Microbiota , Sheep/genetics , Animals , Transcriptome , Rumen , Ruminants/genetics
2.
Genome Res ; 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-35948368

ABSTRACT

Understanding the genetic mechanisms of phenotypic variation in hybrids between domestic animals and their wild relatives may aid germplasm innovation. Here, we report the high-quality genome assemblies of a male Pamir argali (O ammon polii, 2n = 56), a female Tibetan sheep (O aries, 2n = 54), and a male hybrid of Pamir argali and domestic sheep, and the high-throughput sequencing of 425 ovine animals, including the hybrids of argali and domestic sheep. We detected genomic synteny between Chromosome 2 of sheep and two acrocentric chromosomes of argali. We revealed consistent satellite repeats around the chromosome breakpoints, which could have resulted in chromosome fusion. We observed many more hybrids with karyotype 2n = 54 than with 2n = 55, which could be explained by the selfish centromeres, the possible decreased rate of normal/balanced sperm, and the increased incidence of early pregnancy loss in the aneuploid ewes or rams. We identified genes and variants associated with important morphological and production traits (e.g., body weight, cannon circumference, hip height, and tail length) that show significant variations. We revealed a strong selective signature at the mutation (c.334C > A, p.G112W) in TBXT and confirmed its association with tail length among sheep populations of wide geographic and genetic origins. We produced an intercross population of 110 F2 offspring with varied number of vertebrae and validated the causal mutation by whole-genome association analysis. We verified its function using CRISPR-Cas9 genome editing. Our results provide insights into chromosomal speciation and phenotypic evolution and a foundation of genetic variants for the breeding of sheep and other animals.

3.
Inorg Chem ; 63(15): 6692-6700, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38573894

ABSTRACT

The fabrication of molecular crystalline materials with fast, multistimuli-responsive behavior and the construction of the corresponding structure-activity relationship are of extraordinary significance for the development of smart materials. In this context, three multistimuli-responsive functional metal-organic polyhedra (MOP), {[Dy2(bcbp)3(NO3)1.5(H2O)7]·Cl4.2·(NO3)0.3·H2O}n (1), {[Dy2(bcbp)4(H2O)8]Cl6}n (2), and {[Eu2(bcbp)4(H2O)10]Cl6·H2O}n (3; bcbp = 1,1'-bis(4-carboxyphenyl)-4,4'-bipyridinium), were successfully prepared and characterized. All of the compounds exhibit rapid and reversible photochromic and electrochromic dual-responsive behaviors. Furthermore, benefiting from the well-defined crystal structure and different responsive behaviors, the photoinduced electron transfer (PIET) process and structure-activity relationship were explored. In addition, considering the excellent photochromic performance, function filter paper and smart organic glass were successfully prepared and used for ink-free printing and UV light detection.

4.
Int J Med Sci ; 21(5): 784-794, 2024.
Article in English | MEDLINE | ID: mdl-38617006

ABSTRACT

Introduction: Bardet-Biedl syndrome (BBS) is a rare autosomal recessive disorder with clinical features of retinal dystrophy, obesity, postaxial polydactyly, renal anomalies, learning disabilities, hypogonadism, and genitourinary abnormalities. Nevertheless, previous studies on the phenotypic traits of BBS heterozygous carriers have generated inconclusive results. The aim of our study was to investigate the impact of BBS heterozygosity on carriers when compared to non-carriers within the Taiwanese population. Materials and Methods: This study follows a hospital-based case-control design. We employed the Taiwan Biobank version 2 (TWBv2) array to identify three specific loci associated with BBS (rs773862084, rs567573386, and rs199910690). In total, 716 patients were included in the case group, and they were compared to a control group of 2,864 patients who lacked BBS alleles. The control group was selected through gender and age matching at a ratio of 1:4. The association between BBS-related loci and comorbidity was assessed using logistic regression models. Results: We found that BBS heterozygous carriers exhibited a significant association with elevated BMI levels, especially the variant rs199910690 in MKS1 (p=0.0037). The prevalence of comorbidities in the carriers' group was not higher than that in the non-carriers' group. Besides, the average values of the biochemistry data showed no significant differences, except for creatinine level. Furthermore, we conducted a BMI-based analysis to identify specific risk factors for chronic kidney disease (CKD). Our findings revealed that individuals carrying the CA/AA genotype of the BBS2 rs773862084 variant or the CT/TT genotype of the MKS1 rs199910690 variant showed a reduced risk of developing CKD, irrespective of their BMI levels. When stratified by BMI level, obese males with the MKS1 rs199910690 variant and obese females with the BBS2 rs773862084 variant exhibited a negative association with CKD development. Conclusion: We found that aside from the association with overweight and obesity, heterozygous BBS mutations did not appear to increase the predisposition of individuals to comorbidities and metabolic diseases. To gain a more comprehensive understanding of the genetic susceptibility associated with Bardet-Biedl Syndrome (BBS), further research is warranted.


Subject(s)
Bardet-Biedl Syndrome , Renal Insufficiency, Chronic , Female , Male , Humans , Bardet-Biedl Syndrome/epidemiology , Bardet-Biedl Syndrome/genetics , Comorbidity , Heterozygote , Obesity/epidemiology , Obesity/genetics , Renal Insufficiency, Chronic/epidemiology , Renal Insufficiency, Chronic/genetics
5.
Mol Biol Evol ; 38(3): 838-855, 2021 03 09.
Article in English | MEDLINE | ID: mdl-32941615

ABSTRACT

How animals, particularly livestock, adapt to various climates and environments over short evolutionary time is of fundamental biological interest. Further, understanding the genetic mechanisms of adaptation in indigenous livestock populations is important for designing appropriate breeding programs to cope with the impacts of changing climate. Here, we conducted a comprehensive genomic analysis of diversity, interspecies introgression, and climate-mediated selective signatures in a global sample of sheep and their wild relatives. By examining 600K and 50K genome-wide single nucleotide polymorphism data from 3,447 samples representing 111 domestic sheep populations and 403 samples from all their seven wild relatives (argali, Asiatic mouflon, European mouflon, urial, snow sheep, bighorn, and thinhorn sheep), coupled with 88 whole-genome sequences, we detected clear signals of common introgression from wild relatives into sympatric domestic populations, thereby increasing their genomic diversities. The introgressions provided beneficial genetic variants in native populations, which were significantly associated with local climatic adaptation. We observed common introgression signals of alleles in olfactory-related genes (e.g., ADCY3 and TRPV1) and the PADI gene family including in particular PADI2, which is associated with antibacterial innate immunity. Further analyses of whole-genome sequences showed that the introgressed alleles in a specific region of PADI2 (chr2: 248,302,667-248,306,614) correlate with resistance to pneumonia. We conclude that wild introgression enhanced climatic adaptation and resistance to pneumonia in sheep. This has enabled them to adapt to varying climatic and environmental conditions after domestication.


Subject(s)
Adaptation, Biological/genetics , Disease Resistance/genetics , Genetic Introgression , Sheep/genetics , Animals , Biological Evolution , Climate Change , Genetic Variation , Phylogeography , Pneumonia/immunology , Sheep/immunology
6.
Small ; 18(26): e2201159, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35589558

ABSTRACT

Just as the heterojunctions in physics, donor-acceptor (D-A) heterostructures are an emerging class of photoactive materials fabricated from two semiconductive components at the molecular level. Among them, D-A hybrid heterostructures from organic and inorganic semiconductive components have attracted extensive attention in the past decades due to their combined advantages of high stability for the inorganic semiconductors and modifiability for the organic semiconductors, which are particularly beneficial to efficiently achieve photoinduced charge separation and transfer upon irradiations. In this review, by analogy with the heterojunctions in physics, a definition of the D-A heterostructures and their general design and synthetic strategies are given. Meanwhile, the D-A hybrid heterostructures are focused on and their recent advances in potential applications of photochromism, photomodulated luminescence, and photocatalysis summarized.

7.
Inorg Chem ; 61(21): 8153-8159, 2022 May 30.
Article in English | MEDLINE | ID: mdl-35580155

ABSTRACT

Donor-acceptor (D-A) hybrid frameworks with visual X-ray photochromism at room temperature are fascinating because of their promising applications as X-ray detectors. Herein, a 3-fold interpenetrated D-A hybrid framework, [Eu(bcbp)1.5(DMF)(H2O)2][Co(CN)6]·4H2O·CH3OH (1), has been obtained by incorporating electron-rich Co(CN)63- into the electron-deficient europium viologen framework, which interestingly exhibits ultraviolet and low-power X-ray dual photochromism with a remarkable color change from brown to green. Experimental and theoretical studies revealed that the X-ray photochromic behavior of hybrid 1 could be attributed to its D-A hybrid structural feature increasing the extent of photoinduced electron transfer and thus photogenerated radical species upon X-ray irradiation. Meanwhile, due to the introduction of emissive lanthanide cations in the D-A system, hybrid 1 exhibits photomodulated luminescence properties.

8.
Inorg Chem ; 61(1): 105-112, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-34918511

ABSTRACT

The self-assembly of electron-deficient protonated N, N'-dipyridyltetrachloroperylenediimide (4Cl-DPPDI) and electron-rich polyoxometalate acids HnXM12O40 (POMs; X = P or Si; M = W or Mo) resulted in four isomorphous donor-acceptor hybrid crystals 1-4 with segregated POM anions and one-dimensional racemic hydrogen-bonded 4Cl-DPPDI networks as electron-donor and -acceptor components, respectively. Because of the compact contacts between the POM anions and 4Cl-DPPDI tectons induced by anion-π interactions, besides enhanced photochromism, these four unique isostructural hybrids exhibited unusual room-temperature phosphorescence (RTP) emissions. More interestingly, owing to the facial compact contacts of two racemic 4Cl-DPPDI tectons induced by lone pair-π-assisted π-π interactions, they also showed unprecedented photon upconversion by triplet-triplet annihilation (TTA).

9.
Mol Ecol ; 30(23): 6273-6288, 2021 12.
Article in English | MEDLINE | ID: mdl-34845798

ABSTRACT

Whole-genome sequencing has advanced the study of species evolution, including the detection of genealogical discordant events such as ancient hybridization and incomplete lineage sorting (ILS). The evolutionary history of bighorn (Ovis canadensis) and thinhorn (Ovis dalli) sheep present an ideal system to investigate evolutionary discordance due to their recent and rapid radiation and putative secondary contact between bighorn and thinhorn sheep subspecies, specifically the dark pelage Stone sheep (O. dalli stonei) and predominately white Dall sheep (O. dalli dalli), during the last ice age. Here, we used multiple genomes of bighorn and thinhorn sheep, together with snow (O. nivicola) and the domestic sheep (O. aries) as outgroups, to assess their phylogenomic history, potential introgression patterns and their adaptive consequences. Among the Pachyceriforms (snow, bighorn and thinhorn sheep) a consistent monophyletic species tree was retrieved; however, many genealogical discordance patterns were observed. Alternative phylogenies frequently placed Stone and bighorn as sister clades. This relationship occurred more often and was less divergent than that between Dall and bighorn. We also observed many blocks containing introgression signal between Stone and bighorn genomes in which coat colour genes were present. Introgression signals observed between Dall and bighorn were more random and less frequent, and therefore probably due to ILS or intermediary secondary contact. These results strongly suggest that Stone sheep originated from a complex series of events, characterized by multiple, ancient periods of secondary contact with bighorn sheep.


Subject(s)
Sheep Diseases , Sheep, Bighorn , Animals , Genome , Hybridization, Genetic , Phylogeny , Sheep/genetics , Sheep, Bighorn/genetics
10.
Inorg Chem ; 60(21): 16233-16240, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34648276

ABSTRACT

Donor-acceptor (D-A) hybrid crystals are an emerging kind of crystalline hybrid material composed of semiconductive inorganic donors and organic acceptors. Except for the intrinsic photochromism, recently we have reported that the anion-π polyoxometalate (POM)/naphthalenediimide (NDI) hybrid crystals could produce an interesting room temperature phosphorescence (RTP) quantum yield up to 7.2%. Herein, we extended into core-substituted NDIs and anticipated the regulation of their photochromic and RTP properties. Thus, two hybrid crystals, namely (H4BDMPy-Br2NDI)·(NMP)4·(HPW12O40) (1) and (H4BDMPy-I2NDI)·(HPW12O40) (2) (H2BDMPy-Br2NDI: N,N'-bis(3,5-dimethylpyrazolyl)-2,6-dibromo-1,4,5,8-naphthalenediimide and H2BDMPy-I2NDI: N,N'-bis(3,5-dimethylpyrazolyl)-2,6-diiodide-1,4,5,8-naphthalenediimide), have been synthesized from phosphotungstic anions (PW12O403-) and Br or I core-substituted NDIs. Compared to the core-unsubstituted analogues (H4BDMPy-NDI)·(NMP)4·(HPW12O40) (3), 2 with photosensitive iodine substituents is more sensitive to light, which can become discolored under natural light. As a result of the heavy-atom effect, hybrid 1 exhibits remarkable RTP with the quantum yield up to 10.2% and a lifetime of 1.14 ms.

11.
Macromol Rapid Commun ; 42(24): e2100577, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34626510

ABSTRACT

Photocatalysis is an efficient and green technology in the environmental protection. Due to the high charge separation and transfer, donor-acceptor (D-A) conjugated polymers attract much attention for their photocatalytic degradations towards organic pollutants. Herein, the authors reported three novel D-A conjugated polymers, named as HPBP, HPTP, and HPF, with heptazine moieties as electron acceptors, while biphenyl, terphenyl, or fluorene moieties as electron donors, respectively, which indeed exhibit a highly efficient photocatalytic degradation towards tetracyclines upon the visible-light irradiation. Among them, the photocatalytic performance of HPF is especially noticeable with the degradation rate up to 87% within 30 min, almost 11 times in comparison to those of pristine g-C3 N4 , which is mainly attributed to its high crystallinity and conjugation. For their photocatalytic mechanism, the •O2 - radical anions are regarded as the active species.


Subject(s)
Polymers , Tetracyclines , Heterocyclic Compounds, 3-Ring , Triazines
12.
Mol Biol Evol ; 36(2): 283-303, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30445533

ABSTRACT

Tibetan sheep are the most common and widespread domesticated animals on the Qinghai-Tibetan Plateau (QTP) and have played an essential role in the permanent human occupation of this high-altitude region. However, the precise timing, route, and process of sheep pastoralism in the QTP region remain poorly established, and little is known about the underlying genomic changes that occurred during the process. Here, we investigate the genomic variation in Tibetan sheep using whole-genome sequences, single nucleotide polymorphism arrays, mitochondrial DNA, and Y-chromosomal variants in 986 samples throughout their distribution range. We detect strong signatures of selection in genes involved in the hypoxia and ultraviolet signaling pathways (e.g., HIF-1 pathway and HBB and MITF genes) and in genes associated with morphological traits such as horn size and shape (e.g., RXFP2). We identify clear signals of argali (Ovis ammon) introgression into sympatric Tibetan sheep, covering 5.23-5.79% of their genomes. The introgressed genomic regions are enriched in genes related to oxygen transportation system, sensory perception, and morphological phenotypes, in particular the genes HBB and RXFP2 with strong signs of adaptive introgression. The spatial distribution of genomic diversity and demographic reconstruction of the history of Tibetan sheep show a stepwise pattern of colonization with their initial spread onto the QTP from its northeastern part ∼3,100 years ago, followed by further southwest expansion to the central QTP ∼1,300 years ago. Together with archeological evidence, the date and route reveal the history of human expansions on the QTP by the Tang-Bo Ancient Road during the late Holocene. Our findings contribute to a depth understanding of early pastoralism and the local adaptation of Tibetan sheep as well as the late-Holocene human occupation of the QTP.


Subject(s)
Acclimatization/genetics , Genome , Human Migration , Hybridization, Genetic , Sheep/genetics , Altitude , Animals , Ecotype , Humans , Selection, Genetic , Tibet
13.
Genet Sel Evol ; 52(1): 25, 2020 May 14.
Article in English | MEDLINE | ID: mdl-32408891

ABSTRACT

BACKGROUND: In the Neolithic, domestic sheep migrated into Europe and subsequently spread in westerly and northwesterly directions. Reconstruction of these migrations and subsequent genetic events requires a more detailed characterization of the current phylogeographic differentiation. RESULTS: We collected 50 K single nucleotide polymorphism (SNP) profiles of Balkan sheep that are currently found near the major Neolithic point of entry into Europe, and combined these data with published genotypes from southwest-Asian, Mediterranean, central-European and north-European sheep and from Asian and European mouflons. We detected clines, ancestral components and admixture by using variants of common analysis tools: geography-informative supervised principal component analysis (PCA), breed-specific admixture analysis, across-breed [Formula: see text] profiles and phylogenetic analysis of regional pools of breeds. The regional Balkan sheep populations exhibit considerable genetic overlap, but are clearly distinct from the breeds in surrounding regions. The Asian mouflon did not influence the differentiation of the European domestic sheep and is only distantly related to present-day sheep, including those from Iran where the mouflons were sampled. We demonstrate the occurrence, from southeast to northwest Europe, of a continuously increasing ancestral component of up to 20% contributed by the European mouflon, which is assumed to descend from the original Neolithic domesticates. The overall patterns indicate that the Balkan region and Italy served as post-domestication migration hubs, from which wool sheep reached Spain and north Italy with subsequent migrations northwards. The documented dispersal of Tarentine wool sheep during the Roman period may have been part of this process. Our results also reproduce the documented 18th century admixture of Spanish Merino sheep into several central-European breeds. CONCLUSIONS: Our results contribute to a better understanding of the events that have created the present diversity pattern, which is relevant for the management of the genetic resources represented by the European sheep population.


Subject(s)
Genetics, Population/methods , Polymorphism, Single Nucleotide/genetics , Sheep/genetics , Animals , Balkan Peninsula , Breeding/methods , Domestication , Genetic Testing/methods , Genetic Variation/genetics , Genotype , Phylogeny , Phylogeography/methods
14.
Anim Genet ; 51(5): 833-836, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32794198

ABSTRACT

MicroRNA resources in sheep are limited compared with those in other domesticated mammalian species. By sequencing small RNAs of sheep corpus luteum and endometrium, we have generated the largest amount of miRNA-seq data and compiled the most comprehensive list thus far of miRNAs (n = 599) in sheep. Additionally, we observed a highly conserved maternally imprinted cluster of miRNAs on chromosome 18 homologous to that found on chromosome 14 in human and several other eutherian mammals.


Subject(s)
MicroRNAs/genetics , Pregnancy, Animal/genetics , Sheep, Domestic/genetics , Animals , Female , Pregnancy , Sequence Analysis, RNA/veterinary
15.
J Pharmacol Exp Ther ; 369(1): 67-77, 2019 04.
Article in English | MEDLINE | ID: mdl-30745416

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is a very common chronic hepatic disease, with nonalcoholic steatohepatitis (NASH) as a major and severe subcategory that can lead to cirrhosis and hepatocellular carcinoma, and thereby to a high mortality rate. Currently, there has been no approved drug to treat NAFLD or NASH. The current study has presented RLA8, a novel and balanced quadruple agonist for hepatic lipid metabolism and inflammation-related peroxisome proliferator-activated receptors (PPARs)-α/γ/δ and G protein-coupled receptor 40 (GPR40), as a NASH drug candidate. The efficacy of RLA8 to treat NASH was evaluated in vivo using two mouse models induced by methionine/choline-deficient diet or by high-fat diet, respectively. RLA8 was shown to improve serum alanine aminotransferase and high-density lipoprotein cholesterol levels, reduce hepatic free fatty acid and triglyceride levels, and alleviate insulin resistance. Cytokine and lipoperoxide analysis revealed that RLA8 could reduce oxidative stress and inflammation. Histochemical and morphologic examination of mouse livers showed that RLA8 could improve pathologic changes such as steatosis, ballooning, collagen fiber, and inflammation. Polymerase chain reaction and Western blot analyses proved that RLA8 could result in PPARs and GPR40 activation, accompanied by upregulation of the 5'AMP-activated protein kinase-acetyl-CoA carboxylase pathway and inhibition of the expression of lipogenic genes and proteins, which provided more insights into its action mechanisms. In summary, RLA8 has significantly better efficacy to improve NASH-induced liver damage such as steatosis, inflammation, and fibrosis, and, consequently, it represents a new and highly promising NASH drug candidate that is worthy of further investigation and development.


Subject(s)
Liver Cirrhosis/complications , Non-alcoholic Fatty Liver Disease/drug therapy , Peroxisome Proliferator-Activated Receptors/agonists , Receptors, G-Protein-Coupled/agonists , Stilbenes/pharmacology , Animals , Body Weight/drug effects , Eating/drug effects , Gene Expression Regulation/drug effects , Male , Mice , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/metabolism , PPAR alpha/agonists , PPAR delta/agonists , PPAR gamma/agonists , Stilbenes/therapeutic use
16.
Heredity (Edinb) ; 122(2): 172-186, 2019 02.
Article in English | MEDLINE | ID: mdl-29784930

ABSTRACT

Prolific breeds of domestic sheep (Ovis aries) are important genetic resources due to their reproductive performance, which is characterized by multiple lambs per birth and out-of-season breeding. However, the lack of a comprehensive understanding of the genetic mechanisms underlying the important reproductive traits, particularly from the evolutionary genomics perspective, has impeded the efficient advancement of sheep breeding. Here, for the first time, by performing RNA-sequencing we built a de novo transcriptome assembly of ovarian and endometrial tissues in European mouflon (Ovis musimon) and performed an mRNA-miRNA integrated expression profiling analysis of the wild species and a highly prolific domestic sheep breed, the Finnsheep. We identified several novel genes with differentially expressed mRNAs (e.g., EREG, INHBA, SPP1, AMH, TDRD5, and ZP2) between the wild and domestic sheep, which are functionally involved in oocyte and follicle development and fertilization, and are significantly (adjusted P-value < 0.05) enriched in the Gene Ontology (GO) terms of various reproductive process, including the regulation of fertilization, oogenesis, ovarian follicle development, and sperm-egg recognition. Additionally, we characterized 58 differentially expressed miRNAs and 210 associated target genes that are essential for the regulation of female reproduction cycles through specific regulatory networks [e.g., (miR-136, miR-374a, miR-9-5p)-(EREG, INHBA)]. Furthermore, our integrated mRNA and miRNA expression profiling analysis elucidated novel direct and indirect miRNA/mRNA causal regulatory relationships related to the reproductive traits of the Ovis species. This study provides in-depth insights into the genomic evolution underlying the reproductive traits of the Ovis species and valuable resources for ovine genomics.


Subject(s)
MicroRNAs/genetics , RNA, Messenger/genetics , Reproduction , Sheep, Domestic/genetics , Sheep/genetics , Animals , Breeding , Female , Gene Expression Profiling , Male , MicroRNAs/metabolism , RNA, Messenger/metabolism , Sheep/classification , Sheep/physiology , Sheep, Domestic/classification , Sheep, Domestic/physiology , Transcriptome
17.
BMC Genomics ; 19(1): 104, 2018 01 29.
Article in English | MEDLINE | ID: mdl-29378514

ABSTRACT

BACKGROUND: The highly prolific breeds of domestic sheep (Ovis aries) are globally valuable genetic resources for sheep industry. Genetic, nutritional and other environmental factors affect prolificacy traits in sheep. To improve our knowledge of the sheep prolificacy traits, we conducted mRNA-miRNA integrated profiling of ovarian tissues from two pure breeds with large (Finnsheep) vs. small (Texel) litter sizes and their F1 crosses, half of which were fed a flushing diet. RESULTS: Among the samples, 16,402 genes (60.6% known ovine genes) were expressed, 79 novel miRNAs were found, and a cluster of miRNAs on chromosome 18 was detected. The majority of the differentially expressed genes between breeds were upregulated in the Texel with low prolificacy, owing to the flushing diet effect, whereas a similar pattern was not detected in the Finnsheep. F1 ewes responded similarly to Finnsheep rather than displaying a performance intermediate between the two pure breeds. CONCLUSIONS: The identification and characterization of differentially expressed genes and miRNAs in the ovaries of sheep provided insights into genetic and environmental factors affecting prolificacy traits. The three genes (CST6, MEPE and HBB) that were differentially expressed between the group of Finnsheep and Texel ewes kept in normal diet appeared to be candidate genes of prolificacy traits and will require further validation.


Subject(s)
Gene Expression Profiling/methods , MicroRNAs/genetics , Ovary/metabolism , Quantitative Trait Loci , RNA, Messenger/genetics , Sheep/growth & development , Sheep/genetics , Animals , Breeding , Female , Ovary/cytology , Phenotype , Polymorphism, Single Nucleotide , Reproduction
18.
Mol Biol Evol ; 34(9): 2380-2395, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28645168

ABSTRACT

China has a rich resource of native sheep (Ovis aries) breeds associated with historical movements of several nomadic societies. However, the history of sheep and the associated nomadic societies in ancient China remains poorly understood. Here, we studied the genomic diversity of Chinese sheep using genome-wide SNPs, mitochondrial and Y-chromosomal variations in > 1,000 modern samples. Population genomic analyses combined with archeological records and historical ethnic demographics data revealed genetic signatures of the origins, secondary expansions and admixtures, of Chinese sheep thereby revealing the peopling patterns of nomads and the expansion of early pastoralism in East Asia. Originating from the Mongolian Plateau ∼5,000‒5,700 years ago, Chinese sheep were inferred to spread in the upper and middle reaches of the Yellow River ∼3,000‒5,000 years ago following the expansions of the Di-Qiang people. Afterwards, sheep were then inferred to reach the Qinghai-Tibetan and Yunnan-Kweichow plateaus ∼2,000‒2,600 years ago by following the north-to-southwest routes of the Di-Qiang migration. We also unveiled two subsequent waves of migrations of fat-tailed sheep into northern China, which were largely commensurate with the migrations of ancestors of Hui Muslims eastward and Mongols southward during the 12th‒13th centuries. Furthermore, we revealed signs of argali introgression into domestic sheep, extensive historical mixtures among domestic populations and strong artificial selection for tail type and other traits, reflecting various breeding strategies by nomadic societies in ancient China.


Subject(s)
Phylogeography/methods , Sheep, Domestic/genetics , Animals , Animals, Domestic/genetics , Asian People/genetics , Breeding , China , DNA, Mitochondrial/genetics , Asia, Eastern , Genetic Variation/genetics , Genome/genetics , Genomics/methods , Haplotypes , Humans , Phylogeny , Polymorphism, Single Nucleotide/genetics , Sheep/genetics , Transients and Migrants , Y Chromosome/genetics
19.
Mol Biol Evol ; 33(10): 2576-92, 2016 10.
Article in English | MEDLINE | ID: mdl-27401233

ABSTRACT

Global climate change has a significant effect on extreme environments and a profound influence on species survival. However, little is known of the genome-wide pattern of livestock adaptations to extreme environments over a short time frame following domestication. Sheep (Ovis aries) have become well adapted to a diverse range of agroecological zones, including certain extreme environments (e.g., plateaus and deserts), during their post-domestication (approximately 8-9 kya) migration and differentiation. Here, we generated whole-genome sequences from 77 native sheep, with an average effective sequencing depth of ∼5× for 75 samples and ∼42× for 2 samples. Comparative genomic analyses among sheep in contrasting environments, that is, plateau (>4,000 m above sea level) versus lowland (<100 m), high-altitude region (>1500 m) versus low-altitude region (<1300 m), desert (<10 mm average annual precipitation) versus highly humid region (>600 mm), and arid zone (<400 mm) versus humid zone (>400 mm), detected a novel set of candidate genes as well as pathways and GO categories that are putatively associated with hypoxia responses at high altitudes and water reabsorption in arid environments. In addition, candidate genes and GO terms functionally related to energy metabolism and body size variations were identified. This study offers novel insights into rapid genomic adaptations to extreme environments in sheep and other animals, and provides a valuable resource for future research on livestock breeding in response to climate change.


Subject(s)
Acclimatization/genetics , Adaptation, Physiological/genetics , Sheep/genetics , Animals , Breeding , Climate , Environment , Extreme Environments , Genome , Genomics , High-Throughput Nucleotide Sequencing/methods , Phylogeny , Selection, Genetic , Sequence Analysis, DNA/methods
20.
Yi Chuan ; 39(11): 958-973, 2017 Nov 20.
Article in English | MEDLINE | ID: mdl-29254917

ABSTRACT

China has a rich resource of native sheep breeds, some of which possess specific traits such as prolificacy, excellent lamb pelts, multiple horns, fat tails and strong stress resistance. All these have been the focus of research. However, there is still a controversy about the origin of sheep breeds and a lack of comprehensive and systematic studies on genetic diversity of Chinese native sheep. In this review, we summarize recent research advances on the origin, evolution and genetic diversity of Chinese native sheep breeds based on paternal, maternal, and autosomal markers. This review will provide useful information for the conservation and utilization of sheep genetic resources, breeding of new sheep breeds and the sustainable development of Chinese sheep industry.


Subject(s)
Biological Evolution , Genetic Variation , Sheep/genetics , Animals , Breeding , DNA Copy Number Variations , DNA, Mitochondrial/genetics , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL