Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Chem Phys ; 160(11)2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38506288

ABSTRACT

Aqueous inorganic salt solutions play a prominent role in both physiological and chemical experiments, and significant attention has been directed toward understanding the mechanisms underlying salt dissolution. In our effort to elucidate the hydration process of potassium chloride, we employed a comprehensive genetic algorithm to explore the structures of KCl(H2O)n (n = 1-10). A series of stable structures were identified by high-level ab initio optimization and single-point energy calculations with a zero-point energy correction. An analysis of the probability distribution of KCl(H2O)1-10 revealed that clusters with high probability at low temperatures exhibit reduced probabilities at higher temperatures, while others become more prevalent. When n = 1-9, the contact ion pair configurations or partially dissociated structures dominate in the system, and the probability distribution plot shows that the proportion of the solvent-separated ion pair (SSIP) structures of KCl(H2O)n is very small, while the SSIP configuration in KCl(H2O)10 becomes a stable structure with increasing temperature. The results from natural bond orbital analysis reveal a stronger interaction between chloride ions and water molecules. These findings provide valuable insights for a more comprehensive understanding of the intricacies of potassium chloride dissolution in water.

2.
Chemistry ; 29(51): e202300167, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37358027

ABSTRACT

We report a joint experimental and theoretical study on the stability and reactivity of Bin + (n=5-33) clusters. The alternating odd-even effect on the reaction rates of Bin + clusters with NO is observed, and Bi7 + finds the most inertness. First-principles calculation results reveal that the lowest energy structures of Bi6-9 + exhibit quasi-spherical geometry pertaining to the jellium shell model; however, the Bin + (n≥10) clusters adopt assembly structures. The prominent stability of Bi7 + is associated with its highly symmetric structure and superatomic states with a magic number of 34e closed shell. For the first time, we demonstrate that the unique s-p nonhybrid feature in bismuth rationalizes the stability of Bi6-9 + clusters within the jellium model, by filling the 6s electrons into the superatomic orbitals (forming "s-band"). Interestingly, the stability of 18e "s-band" coincides with the compact structure for Bin + at n≤9 but assembly structures for n≥10, showing an accommodation of the s electrons to the geometric structure. The atomic p-orbitals also allow to form superatomic orbitals at higher energy levels, contributing to the preferable structures of tridentate binding units. We illustrate the s-p nonhybrid nature accommodates the structure and superatomic states of bismuth clusters.

3.
Biotechnol Bioeng ; 120(10): 3013-3024, 2023 10.
Article in English | MEDLINE | ID: mdl-37306471

ABSTRACT

The limited supply of reducing power restricts the efficient utilization of acetate in Yarrowia lipolytica. Here, microbial electrosynthesis (MES) system, enabling direct conversion of inward electrons to NAD(P)H, was used to improve the production of fatty alcohols from acetate based on pathway engineering. First, the conversion efficiency of acetate to acetyl-CoA was reinforced by heterogenous expression of ackA-pta genes. Second, a small amount of glucose was used as cosubstrate to activate the pentose phosphate pathway and promote intracellular reducing cofactors synthesis. Third, through the employment of MES system, the final fatty alcohols production of the engineered strain YLFL-11 reached 83.8 mg/g dry cell weight (DCW), which was 6.17-fold higher than the initial production of YLFL-2 in shake flask. Furthermore, these strategies were also applied for the elevation of lupeol and betulinic acid synthesis from acetate in Y. lipolytica, demonstrating that our work provides a practical solution for cofactor supply and the assimilation of inferior carbon sources.


Subject(s)
Metabolic Engineering , Yarrowia , Yarrowia/genetics , Yarrowia/metabolism , Fermentation , Pentacyclic Triterpenes/metabolism , Acetates/metabolism
4.
Front Microbiol ; 13: 898884, 2022.
Article in English | MEDLINE | ID: mdl-35547152

ABSTRACT

Non-homologous end joining (NHEJ)-mediated integration is effective in generating random mutagenesis to identify beneficial gene targets in the whole genome, which can significantly promote the performance of the strains. Here, a novel target leading to higher protein synthesis was identified by NHEJ-mediated integration that seriously improved fatty alcohols biosynthesis in Yarrowia lipolytica. One batch of strains transformed with fatty acyl-CoA reductase gene (FAR) showed significant differences (up to 70.53-fold) in fatty alcohol production. Whole-genome sequencing of the high-yield strain demonstrated that a new target YALI0_A00913g ("A1 gene") was disrupted by NHEJ-mediated integration of partial carrier DNA, and reverse engineering of the A1 gene disruption (YlΔA1-FAR) recovered the fatty alcohol overproduction phenotype. Transcriptome analysis of YlΔA1-FAR strain revealed A1 disruption led to strengthened protein synthesis process that was confirmed by sfGFP gene expression, which may account for enhanced cell viability and improved biosynthesis of fatty alcohols. This study identified a novel target that facilitated synthesis capacity and provided new insights into unlocking biosynthetic potential for future genetic engineering in Y. lipolytica.

5.
Sci China Life Sci ; 64(12): 2114-2128, 2021 12.
Article in English | MEDLINE | ID: mdl-33660223

ABSTRACT

Genomic variants libraries are conducive to obtain dominant strains with desirable phenotypic traits. The non-homologous end joining (NHEJ), which enables foreign DNA fragments to be randomly integrated into different chromosomal sites, shows prominent capability in genomic libraries construction. In this study, we established an efficient NHEJ-mediated genomic library technology in Yarrowia lipolytica through regulation of NHEJ repair process, employment of defective Ura marker and optimization of iterative transformations, which enhanced genes integration efficiency by 4.67, 22.74 and 1.87 times, respectively. We further applied this technology to create high lycopene producing strains by multi-integration of heterologous genes of CrtE, CrtB and CrtI, with 23.8 times higher production than rDNA integration through homologous recombination (HR). The NHEJ-mediated genomic library technology also achieved random and scattered integration of loxP and vox sites, with the copy number up to 65 and 53, respectively, creating potential for further application of recombinase mediated genome rearrangement in Y. lipolytica. This work provides a high-efficient NHEJ-mediated genomic library technology, which enables random and scattered genomic integration of multiple heterologous fragments and rapid generation of diverse strains with superior phenotypes within 96 h. This novel technology also lays an excellent foundation for the development of other genetic technologies in Y. lipolytica.


Subject(s)
DNA End-Joining Repair , Genomic Library , Yarrowia/genetics , Gene Dosage , Lycopene/metabolism , Phenotype , Synthetic Biology/methods , Whole Genome Sequencing , Yarrowia/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL