Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 476
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Plant Cell ; 35(12): 4238-4265, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37648264

ABSTRACT

Variegation is a rare type of mosaicism not fully studied in plants, especially fruits. We examined red and white sections of grape (Vitis vinifera cv. 'Béquignol') variegated berries and found that accumulation of products from branches of the phenylpropanoid and isoprenoid pathways showed an opposite tendency. Light-responsive flavonol and monoterpene levels increased in anthocyanin-depleted areas in correlation with increasing MYB24 expression. Cistrome analysis suggested that MYB24 binds to the promoters of 22 terpene synthase (TPS) genes, as well as 32 photosynthesis/light-related genes, including carotenoid pathway members, the flavonol regulator HY5 HOMOLOGUE (HYH), and other radiation response genes. Indeed, TPS35, TPS09, the carotenoid isomerase gene CRTISO2, and HYH were activated in the presence of MYB24 and MYC2. We suggest that MYB24 modulates ultraviolet and high-intensity visible light stress responses that include terpene and flavonol synthesis and potentially affects carotenoids. The MYB24 regulatory network is developmentally triggered after the onset of berry ripening, while the absence of anthocyanin sunscreens accelerates its activation, likely in a dose-dependent manner due to increased radiation exposure. Anthocyanins and flavonols in variegated berry skins act as effective sunscreens but for different wavelength ranges. The expression patterns of stress marker genes in red and white sections of 'Béquignol' berries strongly suggest that MYB24 promotes light stress amelioration but only partly succeeds during late ripening.


Subject(s)
Vitis , Vitis/genetics , Vitis/metabolism , Anthocyanins/metabolism , Fruit/genetics , Fruit/metabolism , Terpenes/metabolism , Sunscreening Agents , Flavonols/metabolism , Carotenoids/metabolism , Gene Expression Regulation, Plant
2.
Plant Cell ; 34(1): 579-596, 2022 01 20.
Article in English | MEDLINE | ID: mdl-34735009

ABSTRACT

The self-incompatibility (SI) system with the broadest taxonomic distribution in angiosperms is based on multiple S-locus F-box genes (SLFs) tightly linked to an S-RNase termed type-1. Multiple SLFs collaborate to detoxify nonself S-RNases while being unable to detoxify self S-RNases. However, it is unclear how such a system evolved, because in an ancestral system with a single SLF, many nonself S-RNases would not be detoxified, giving low cross-fertilization rates. In addition, how the system has been maintained in the face of whole-genome duplications (WGDs) or lost in other lineages remains unclear. Here we show that SLFs from a broad range of species can detoxify S-RNases from Petunia with a high detoxification probability, suggestive of an ancestral feature enabling cross-fertilization and subsequently modified as additional SLFs evolved. We further show, based on its genomic signatures, that type-1 was likely maintained in many lineages, despite WGD, through deletion of duplicate S-loci. In other lineages, SI was lost either through S-locus deletions or by retaining duplications. Two deletion lineages regained SI through type-2 (Brassicaceae) or type-4 (Primulaceae), and one duplication lineage through type-3 (Papaveraceae) mechanisms. Thus, our results reveal a highly dynamic process behind the origin, maintenance, loss, and regain of SI.


Subject(s)
Biological Evolution , Germ Cells, Plant/physiology , Magnoliopsida/physiology , Self-Incompatibility in Flowering Plants , Self-Incompatibility in Flowering Plants/genetics
3.
Mol Ther ; 32(7): 2316-2327, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38734901

ABSTRACT

HIV-1 infection remains a public health problem with no cure. Although antiretroviral therapy (ART) is effective for suppressing HIV-1 replication, it requires lifelong drug administration due to a stable reservoir of latent proviruses and may cause serious side effects and drive the emergence of drug-resistant HIV-1 variants. Gene therapy represents an alternative approach to overcome the limitations of conventional treatments against HIV-1 infection. In this study, we constructed and investigated the antiviral effects of an HIV-1 Tat-dependent conditionally replicating adenovirus, which selectively replicates and expresses the diphtheria toxin A chain (Tat-CRAds-DTA) in HIV-1-infected cells both in vitro and in vivo. We found that Tat-CRAds-DTA could specifically induce cell death and inhibit virus replication in HIV-1-infected cells mediated by adenovirus proliferation and DTA expression. A low titer of progeny Tat-CRAds-DTA was also detected in HIV-1-infected cells. In addition, Tat-CRAds-DTA showed no apparent cytotoxicity to HIV-1-negative cells and demonstrated significant therapeutic efficacy against HIV-1 infection in a humanized mouse model. The findings in this study highlight the potential of Tat-CRAds-DTA as a new gene therapy for the treatment of HIV-1 infection.


Subject(s)
Adenoviridae , Diphtheria Toxin , Genetic Therapy , Genetic Vectors , HIV Infections , HIV-1 , Virus Replication , tat Gene Products, Human Immunodeficiency Virus , Humans , HIV-1/genetics , Diphtheria Toxin/genetics , Animals , Adenoviridae/genetics , HIV Infections/therapy , tat Gene Products, Human Immunodeficiency Virus/genetics , tat Gene Products, Human Immunodeficiency Virus/metabolism , Mice , Genetic Therapy/methods , Genetic Vectors/genetics , Disease Models, Animal , Cell Line , HEK293 Cells , Gene Expression , Peptide Fragments
4.
Glycobiology ; 34(3)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38181393

ABSTRACT

Heparan sulfate (HS) plays its biological functions by interacting with hundreds of secreted extracellular and transmembrane proteins. Interaction with HS has been shown to be required for the normal function of many HS-binding proteins. Receptor for advanced glycation end-product (RAGE) is such a protein, whose activation requires HS-induced oligomerization. Using RAGE as an exemplary protein, we show here the workflow of a simple method of developing and characterizing mAbs that targets the HS-binding site. We found that HS-binding site of RAGE is quite immunogenic as 18 out of 94 anti-RAGE mAbs target various epitopes within the HS-binding site. Sequence analysis found that a common feature of anti-HS-binding site mAbs is the presence of abundant acidic residues (range between 6 to 11) in the complementarity determining region, suggesting electrostatic interaction plays an important role in promoting antigen-antibody interaction. Interestingly, mAbs targeting different epitopes within the HS-binding site blocks HS-RAGE interaction to different degrees, and the inhibitory effect is highly consistent among mAbs that target the same epitope. Functional assay revealed that anti-HS-binding site mAbs show different potency in inhibiting osteoclastogenesis, and the inhibitory potency does not have a simple correlation with the affinity and the epitope. Our study demonstrates that developing HS-binding site targeting mAbs should be applicable to most HS-binding proteins. By targeting this unique functional site, these mAbs might find therapeutic applications in treating various human diseases.


Subject(s)
Antibodies, Monoclonal , Heparitin Sulfate , Humans , Heparitin Sulfate/chemistry , Epitopes/chemistry , Binding Sites
5.
Small ; : e2311658, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38733228

ABSTRACT

Under damp or aquatic conditions, the corrosion products deposited on micro-cracks/pore sites bring about the failure of intrinsically healable organic coatings. Inspired by mussels, a composite coating of poly (methyl methacrylate-co-butyl acylate-co-dopamine acrylamide)/phenylalanine-functionalized boron nitride (PMBD/BN-Phe) is successfully prepared on the reinforcing steel, which exhibits excellent anti-corrosion and underwater self-healing capabilities. The self-healing property of PMBD is derived from the synergistic effect of hydrogen bonding and metal-ligand coordination bonding, and thereby the continuous generation of corrosion products can be significantly suppressed through in situ capture of cations by the catechol group. Furthermore, the corrosion protection ability can be remarkably improved by the labyrinth effect of BN and the inhibition role of Phe, and the desired interfacial compatibility can be formed by the hydrogen bonds between BN-Phe and PMBD matrix. The corrosion current density (icorr) of PMBD/BN-Phe coating is determined as 7.95 × 10-11 A cm-2. The low-frequency impedance modulus (|Z|f  =  0.0 1 Hz is remained at 3.47 × 109 Ω cm2, indicating an ultra-high self-healing efficiency (≈89.5%). It is anticipated to provide a unique strategy for development of an underwater self-healing coating and robust durability for application in anti-corrosion engineering of marine buildings.

6.
FASEB J ; 37(4): e22848, 2023 04.
Article in English | MEDLINE | ID: mdl-36906285

ABSTRACT

Temozolomide (TMZ), the primary drug for glioma treatment, has limited treatment efficacy. Additionally, considerable evidence shows that isocitrate dehydrogenase 1 mutation-type (IDH1 mut) gliomas have a better response to TMZ than isocitrate dehydrogenase 1 wildtype (IDH1 wt) gliomas. Here, we aimed to identify potential mechanisms underlying this phenotype. Herein, the Cancer Genome Atlas bioinformatic data and 30 clinical samples from patients were analyzed to reveal the expression level of cytosine-cytosine-adenosine-adenosine-thymidine (CCAAT) Enhancer Binding Protein Beta (CEBPB) and prolyl 4-hydroxylase subunit alpha 2 (P4HA2) in gliomas. Next, cellular and animal experiments, including cell proliferation, colony formation, transwell, CCK-8, and xenograft assays, were performed to explore the tumor-promoting effects of P4HA2 and CEBPB. Then, chromatin immunoprecipitation (ChIP) assays were used to confirm the regulatory relationships between them. Finally, a co-immunoprecipitation (Co-IP) assay was performed to confirm the effect of IDH1-132H to CEBPB proteins. We found that CEBPB and P4HA2 expression was significantly upregulated in IDH1 wt gliomas and associated with poor prognosis. CEBPB knockdown inhibited the proliferation, migration, invasion, and temozolomide resistance of glioma cells and hindered the growth of glioma xenograft tumors. CEBPE, as a transcription factor, exerted its function by transcriptionally upregulating P4HA2 expression in glioma cells. Importantly, CEBPB is prone to ubiquitin-proteasomal degradation in IDH1 R132H glioma cells. We also demonstrated that both genes are related to collagen synthesis, as confirmed by in vivo experiments. Thus, CEBPE promotes proliferation and TMZ resistance by inducing P4HA2 expression in glioma cells and offers a potential therapeutic target for glioma treatment.


Subject(s)
CCAAT-Enhancer-Binding Protein-beta , Glioma , Prolyl Hydroxylases , Animals , Humans , CCAAT-Enhancer-Binding Protein-beta/genetics , Cell Line, Tumor , Cell Proliferation , Glioma/metabolism , Isocitrate Dehydrogenase/genetics , Mutation , Temozolomide/pharmacology , Prolyl Hydroxylases/genetics
7.
Fish Shellfish Immunol ; 150: 109647, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38797335

ABSTRACT

NIK (NF-κB inducing kinase) belongs to the mitogen-activated protein kinase family, which activates NF-κB and plays a vital role in immunology, inflammation, apoptosis, and a series of pathological responses. In NF-κB noncanonical pathway, NIK and IKKα have been often studied in mammals and zebrafish. However, few have explored the relationship between NIK and other subunits of the IKK complex. As a classic kinase in the NF-κB canonical pathway, IKKß has never been researched with NIK in fish. In this paper, the full-length cDNA sequence of grass carp (Ctenopharyngodon idella) NIK (CiNIK) was first cloned and identified. The expression level of CiNIK in grass carp cells was increased under GCRV stimuli. Under the stimulation of GCRV, poly (I:C), and LPS, the expression of NIK in various tissues of grass carp was also increased. This suggests that CiNIK responds to viral stimuli. To study the relationship between CiNIK and CiIKKß, we co-transfected CiNIK-FLAG and CiIKKB-GFP into grass carp cells in coimmunoprecipitation and immunofluorescence experiments. The results revealed that CiNIK interacts with CiIKKß. Besides, the degree of autophosphorylation of CiNIK was enhanced under poly (I:C) stimulation. CiIKKß was phosphorylated by CiNIK and then activated the activity of p65. The activity change of p65 indicates that NF-κB downstream inflammatory genes will be functioning. CiNIK or CiIKKß up-regulated the expression of IL-8. It got higher when CiNIK and CiIKKß coexisted. This paper revealed that NF-κB canonical pathway and noncanonical pathway are not completely separated in generating benefits.


Subject(s)
Amino Acid Sequence , Carps , Fish Proteins , Interleukin-8 , NF-kappa B , Protein Serine-Threonine Kinases , Up-Regulation , Animals , Carps/genetics , Carps/immunology , Fish Proteins/genetics , Fish Proteins/immunology , Fish Proteins/chemistry , NF-kappa B/genetics , NF-kappa B/metabolism , Interleukin-8/genetics , Interleukin-8/metabolism , Interleukin-8/immunology , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/immunology , Protein Serine-Threonine Kinases/metabolism , Fish Diseases/immunology , Signal Transduction , Reoviridae/physiology , Phylogeny , NF-kappaB-Inducing Kinase , Gene Expression Regulation/immunology , Poly I-C/pharmacology , Lipopolysaccharides/pharmacology , Reoviridae Infections/immunology , Reoviridae Infections/veterinary , Sequence Alignment/veterinary , Immunity, Innate/genetics , Base Sequence , Gene Expression Profiling/veterinary
8.
Exp Lung Res ; 50(1): 42-52, 2024.
Article in English | MEDLINE | ID: mdl-38425288

ABSTRACT

BACKGROUND: Acute respiratory distress syndrome (ARDS) is a respiratory failure syndrome characterized by hypoxemia and changes in the respiratory system. ARDS is the most common cause of death in COVID-19 deaths was ARDS. In this study, we explored the role of miR-223 in exosomes in ARDS. METHODS: Exosomes were purified from the supernatants of macrophages. qPCR was used to detect relative mRNA levels. A luciferase reporter assay was performed to verify the miRNA target genes. Western blotting was used to detect the activation of inflammatory pathways. Flow cytometry was performed to assess apoptosis. An LPS-induced ARDS mouse model was used to assess the function of miR-223 in ARDS. RESULTS: Exosomes secreted by macrophages promoted apoptosis in A549 cells. Macrophages and exosomes contain high levels of miR-223. Exogenous miR-223 can decrease the expression of insulin-like growth factor 1 receptor (IGF-1R) in A549 and promote the apoptosis of A549.Transfection of anti-miR223 antisense nucleotides effectively reduced the level of miR-223 in macrophages and exosomes and eliminated the pro-apoptotic effect of A549. In vivo, LPS stimulation increased inflammatory cell infiltration in the lungs of mice, whereas knockdown of miR-223 in mice resulted in significantly reduced eosinophil infiltration. CONCLUSIONS: Macrophages can secrete exosomes containing miR-223 and promote apoptosis by targeting the IGF-1R/Akt/mTOR signaling pathway in A549 cells and mouse models, suggesting that miR-223 is a potential target for treating COVID-19 induced ARDS.


Subject(s)
COVID-19 , MicroRNAs , Respiratory Distress Syndrome , Animals , Mice , Cell Communication , Insulin-Like Peptides , Lipopolysaccharides , MicroRNAs/genetics , MicroRNAs/metabolism , Respiratory Distress Syndrome/genetics , Humans
9.
BMC Pediatr ; 24(1): 111, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38350912

ABSTRACT

BACKGROUND: Infantile hemangioma is one of the most common benign soft tissue tumors in infants. The pathogenesis of infantile hemangioma remains unclear and twin studies regarding its incidence may help clarify disease pathogenesis. Thus, this study aimed to analyze the clinical characteristics of infantile hemangioma in twin patients and discuss its clinical incidence. METHODS: We retrospectively analyzed the data of 83 pairs of twins with infantile hemangioma admitted to the Guangdong Provincial Women and Children Hospital and Henan Provincial People's Hospital between May 2016 and May 2022. Thirty-one pairs of twins among whom both developed infantile hemangioma and 52 pairs of twins among whom only one twin was affected were included. Analysis was performed using the Spearman correlation. Additionally, we analyzed the influence of factors such as sex, twin zygosity, preterm birth, birth weight, and assisted reproduction on the clinical characteristics of twins. RESULTS: We observed that disease occurrence in both twins correlated with assisted reproduction (χ2 = 13. 102, P < 0.05) and preterm birth (χ2 = 36.523, P < 0.05). Twin zygosity (χ2 = 0.716, P > 0.05) and total birth weight of twins (t=-3.369, P > 0.05) were not correlated with infantile hemangioma. However, among twins, the ones with lesser birth weight were more likely to develop infantile hemangioma. CONCLUSIONS: The clinical characteristics of infantile hemangioma in twins were consistent with their epidemiological characteristics. Female sex, preterm birth, less birth weight, and assisted reproduction increased the probability of morbidity in both twins. Analysis of the characteristics of infantile hemangioma in twins may assist further research and clinical treatment.


Subject(s)
Hemangioma, Capillary , Premature Birth , Infant , Child , Infant, Newborn , Humans , Female , Retrospective Studies , Birth Weight , Premature Birth/epidemiology , Twins
10.
BMC Pediatr ; 24(1): 107, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38347448

ABSTRACT

OBJECTIVE: As the predominant complication in preterm infants, Bronchopulmonary Dysplasia (BPD) necessitates accurate identification of infants at risk and expedited therapeutic interventions for an improved prognosis. This study evaluates the potential of Monosaccharide Composite (MC) enriched with environmental information from circulating glycans as a diagnostic biomarker for early-onset BPD, and, concurrently, appraises BPD risk in premature neonates. MATERIALS AND METHODS: The study incorporated 234 neonates of ≤32 weeks gestational age. Clinical data and serum samples, collected one week post-birth, were meticulously assessed. The quantification of serum-free monosaccharides and their degraded counterparts was accomplished via High-performance Liquid Chromatography (HPLC). Logistic regression analysis facilitated the construction of models for early BPD diagnosis. The diagnostic potential of various monosaccharides for BPD was determined using Receiver Operating Characteristic (ROC) curves, integrating clinical data for enhanced diagnostic precision, and evaluated by the Area Under the Curve (AUC). RESULTS: Among the 234 neonates deemed eligible, BPD development was noted in 68 (29.06%), with 70.59% mild (48/68) and 29.41% moderate-severe (20/68) cases. Multivariate analysis delineated several significant risk factors for BPD, including gestational age, birth weight, duration of both invasive mechanical and non-invasive ventilation, Patent Ductus Arteriosus (PDA), pregnancy-induced hypertension, and concentrations of two free monosaccharides (Glc-F and Man-F) and five degraded monosaccharides (Fuc-D, GalN-D, Glc-D, and Man-D). Notably, the concentrations of Glc-D and Fuc-D in the moderate-to-severe BPD group were significantly diminished relative to the mild BPD group. A potent predictive capability for BPD development was exhibited by the conjunction of gestational age and Fuc-D, with an AUC of 0.96. CONCLUSION: A predictive model harnessing the power of gestational age and Fuc-D demonstrates promising efficacy in foretelling BPD development with high sensitivity (95.0%) and specificity (94.81%), potentially enabling timely intervention and improved neonatal outcomes.


Subject(s)
Bronchopulmonary Dysplasia , Infant, Premature , Infant , Male , Female , Pregnancy , Infant, Newborn , Humans , Gestational Age , Bronchopulmonary Dysplasia/complications , Fucose , Monosaccharides
11.
Article in English | MEDLINE | ID: mdl-38716540

ABSTRACT

Bone cancer pain (BCP), due to cancer bone metastasis and bone destruction, is a common symptom of tumors, including breast, prostate, and lung tumors. Patients often experience severe pain without effective treatment. Here, using a mouse model of bone cancer, we report that MOTS-c, a novel mitochondrial-derived peptide, confers remarkable protection against cancer pain and bone destruction. Briefly, we find that the plasma level of endogenous MOTS-c is significantly lower in the BCP group than in the sham group. Accordingly, intraperitoneal administration of MOTS-c robustly attenuates bone cancer-induced pain. These effects are blocked by compound C, an AMPK inhibitor. Furthermore, MOTS-c treatment significantly enhances AMPKα 1/2 phosphorylation. Interestingly, mechanical studies indicate that at the spinal cord level, MOTS-c relieves pain by restoring mitochondrial biogenesis, suppressing microglial activation, and decreasing the production of inflammatory factors, which directly contribute to neuronal modulation. However, in the periphery, MOTS-c protects against local bone destruction by modulating osteoclast and immune cell function in the tumor microenvironment, providing long-term relief from cancer pain. Additionally, we find that chronic administration of MOTS-c has little effect on liver, renal, lipid or cardiac function in mice. In conclusion, MOTS-c improves BCP through peripheral and central synergistic effects on nociceptors, immune cells, and osteoclasts, providing a pharmacological and biological rationale for the development of mitochondrial peptide-based therapeutic agents for cancer-induced pain.

12.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Article in English | MEDLINE | ID: mdl-33658363

ABSTRACT

Blood pH is tightly maintained between 7.35 and 7.45, and acidosis (pH <7.3) indicates poor prognosis in sepsis, wherein lactic acid from anoxic tissues overwhelms the buffering capacity of blood. Poor sepsis prognosis is also associated with low zinc levels and the release of High mobility group box 1 (HMGB1) from activated and/or necrotic cells. HMGB1 added to whole blood at physiological pH did not bind leukocyte receptors, but lowering pH with lactic acid to mimic sepsis conditions allowed binding, implying the presence of natural inhibitor(s) preventing binding at normal pH. Testing micromolar concentrations of divalent cations showed that zinc supported the robust binding of sialylated glycoproteins with HMGB1. Further characterizing HMGB1 as a sialic acid-binding lectin, we found that optimal binding takes place at normal blood pH and is markedly reduced when pH is adjusted with lactic acid to levels found in sepsis. Glycan array studies confirmed the binding of HMGB1 to sialylated glycan sequences typically found on plasma glycoproteins, with binding again being dependent on zinc and normal blood pH. Thus, HMGB1-mediated hyperactivation of innate immunity in sepsis requires acidosis, and micromolar zinc concentrations are protective. We suggest that the potent inflammatory effects of HMGB1 are kept in check via sequestration by plasma sialoglycoproteins at physiological pH and triggered when pH and zinc levels fall in late stages of sepsis. Current clinical trials independently studying zinc supplementation, HMGB1 inhibition, or pH normalization may be more successful if these approaches are combined and perhaps supplemented by infusions of heavily sialylated molecules.


Subject(s)
Acidosis/blood , HMGB1 Protein/blood , Sepsis/blood , Sialoglycoproteins/blood , Zinc/blood , Acidosis/immunology , Acidosis/metabolism , Acidosis/pathology , Carrier Proteins , HMGB1 Protein/pharmacology , Humans , Hydrogen-Ion Concentration , Immunity, Innate , Lipopolysaccharides/pharmacology , Polysaccharides/chemistry , Sepsis/immunology , Sepsis/pathology , Sialic Acids/chemistry , Sialoglycoproteins/chemistry , Zinc/metabolism
13.
Chem Biodivers ; 21(2): e202301672, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38116924

ABSTRACT

Two rare jatropham lactam derivatives, named as fulvanines J-K (1-2), together with six known pyrrole alkaloids, 5,5'-oxydi(3-methyl-3-pyrrolin-2-one) (3), (-)-5-hydroxy-3-methyl-3-pyrrolin-2-one (jatropham) (4), (±)-5-O-methyljatropham (5), perlolyrine (6), butyl-2-formyl-5-(hydroxymethyl)-1H-pyrrole-1-butanoate (7), and hemerocallisamine II (8), were isolated from the flower of Hemerocallis fulva. Their structures were elucidated on the basis of spectroscopic methods and compared with the NMR spectra data in the literature. All compounds were evaluated for their anti-complementary activity in vitro, and compounds 1, 4, and 6 exhibited anti-complement effect with CH50 values from 0.61 to 1.42 mM.


Subject(s)
Alkaloids , Hemerocallis , Hemerocallis/chemistry , Molecular Structure , Lactams/pharmacology , Lactams/chemistry , Alkaloids/pharmacology , Alkaloids/chemistry , Pyrroles/pharmacology , Pyrroles/chemistry
14.
Environ Toxicol ; 39(1): 252-263, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37694959

ABSTRACT

Due to the high abundance in the Earth's crust and industrial application, fluoride is widely present in our living environment. However, excessive fluoride exposure causes toxicity in different organs. As the most important detoxification and excretion organ, liver is more easily involved in fluoride toxicity than other organs, and oxidative stress is considered as the key mechanism related with fluoride hepatotoxicity. In this study, we mainly investigated the role of nuclear factor erythroid-derived 2-like 2 (NRF2, a core transcription factor in oxidative stress) in fluoride exposure-induced hepatotoxicity as well as the related mechanism. Herein, liver cells (BNL CL.2) were treated with fluoride in different concentrations. The hepatotoxicity and NRF2 signaling pathway were analyzed respectively. Our results indicated that excessive fluoride (over 1 mM) resulted in obvious toxicity in hepatocyte and activated NRF2 and NRF2 target genes. The increased ROS generation after fluoride exposure suppressed KEAP1-induced NRF2 ubiquitylation and degradation. Meanwhile, fluoride exposure also led to blockage of autophagic flux and upregulation of p62, which contributed to activation of NRF2 via competitive binding with KEAP1. Both pharmaceutical activation and genetic activation of NRF2 accelerated fluoride exposure-induced hepatotoxicity. Thus, the upregulation of NRF2 in hepatocyte after fluoride exposure can be regarded as a cellular self-defense, and NRF2-KEAP1 system could be a novel molecular target against fluoride exposure-induced hepatotoxicity.


Subject(s)
Chemical and Drug Induced Liver Injury , Fluorides , Humans , Kelch-Like ECH-Associated Protein 1/metabolism , Fluorides/toxicity , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Signal Transduction/genetics , Hepatocytes/metabolism , Oxidative Stress/physiology , Autophagy/genetics
15.
Mikrochim Acta ; 191(6): 352, 2024 05 28.
Article in English | MEDLINE | ID: mdl-38806756

ABSTRACT

Developing convenient and reliable methods for Hg2+ monitoring is highly important. Some precious metal nanomaterials with intriguing peroxidase-like activity have been used for highly sensitive Hg2+ detection. However, H2O2 must be added during these detections, which impedes practical applications of Hg2+ sensors due to its susceptible decomposition by environmental factors. Herein, we discovered that the combination of Hg2+ and palladium metal-organic framework@graphene (Pd-MOF@GNs) exhibits oxidase-like activity (OXD). In the absence of H2O2, this activity not only catalyzes the oxidation of chromogenic substrates such as 3,3',5,5'-tetramethylbenzidine (TMB) or o-phenylenediamine (OPD) to produce a color change but also enhances the electrical signals during OPD oxidation. Based on these properties, an effective and convenient dual-mode colorimetric and electrochemical sensor for Hg2+ has been developed. The colorimetric and amperometric linear relationships for Hg2+ were 0.045 µM-0.25 mM and 0.020 µM-2.0 mM, respectively. The proposed strategy shows good recovery in real sample tests, indicating promising prospects for multiple environmental sample detection of Hg2+ without relying on H2O2. The colorimetric and electrochemical dual-mode Hg2+ sensor is expected to hold great potentials in applications such as environmental monitoring, rapid field detection, and integration into smartphone detection of Hg2+.


Subject(s)
Colorimetry , Electrochemical Techniques , Graphite , Limit of Detection , Mercury , Metal-Organic Frameworks , Palladium , Graphite/chemistry , Colorimetry/methods , Mercury/analysis , Mercury/chemistry , Metal-Organic Frameworks/chemistry , Palladium/chemistry , Electrochemical Techniques/methods , Benzidines/chemistry , Oxidation-Reduction , Water Pollutants, Chemical/analysis , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/analysis , Oxidoreductases/chemistry , Oxidoreductases/metabolism , Phenylenediamines/chemistry
16.
J Environ Manage ; 358: 120870, 2024 May.
Article in English | MEDLINE | ID: mdl-38640757

ABSTRACT

Bacterium with high Cr(VI) detoxification capability belonged to the genus Bacillus have been largely explored, yet their reduction strategies are still in debate. Cr(VI) removal performance and mechanism of Bacillus sp. HL1 isolated from tailings a site was comprehensively investigated in this study. Approximately 88.31% of 100 mg/L Cr(VI) was continuously removed within 72 h, while it could resist up to 300 mg/L Cr(VI). Metal ions Mn2+ and Cu2+ could effectively improve the Cr(VI) removal performance to 14.41% and 3.41% under the optimal conditions, respectively. Cr(VI) removal performances by subcellular extracts showed that nearly 45.28% of 100 mg/L extracellular Cr(VI) was efficaciously reduced to Cr(III), while only 14.27%, 6.40%, and 2.73% of the cell-free extract, resting cells, and cell debris were reduced, respectively. This suggested that extracellular bioreduction was the primary Cr(VI) detoxification strategy despite a small part of Cr(VI) reduction took place intracellularly. In particular, the reduction products of the intracellular and extracellular compounds significantly differed, with organo-Cr(III) complex outside the cell and crystalline Cr(III) precipitate inside. Such observation was also evidenced by the intracellular black precipitate observed in the TEM image. XRD, XPS, and EPR analysis showed different Cr(III) compositions of intracellular and extracellular products. This study deepens our insights into the different fates of microorganisms that reduce Cr(VI) intracellularly and extracellularly.


Subject(s)
Bacillus , Biodegradation, Environmental , Chromium , Bacillus/metabolism , Chromium/metabolism , Oxidation-Reduction
17.
J Environ Manage ; 353: 120167, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38308995

ABSTRACT

The quality of soil containing heavy metals (HMs) around nonferrous metal mining areas is often not favorable for plant growth. Three types of plant growth promoting rhizobacteria (PGPR)-assisted ryegrass were examined here to treat Cd, Pb, and Zn contaminated soil collected from a nonferrous metal smelting facility. The effects of PGPR-assisted plants on soil quality, plant growth, and the migration and transformation of HMs were evaluated. Results showed that inter-root inoculation of PGPR to ryegrass increased soil redox potential, urease, sucrase and acid phosphatase activities, microbial calorimetry, and bioavailable P, Si, and K content. Inoculation with PGPR also increased aboveground parts and root length, P, Si, and K contents, and antioxidant enzyme activities. The most significant effect was that the simultaneous inoculation of all three PGPRs increased the ryegrass extraction (%) of Cd (59.04-79.02), Pb (105.56-157.13), and Zn (27.71-40.79), compared to CK control (without fungi). Correspondingly, the inter-root soil contents (%) of total Cd (39.94-57.52), Pb (37.59-42.17), and Zn (34.05-37.28) were decreased compared to the CK1 control (without fungi and plants), whereas their bioavailability was increased. Results suggest that PGPR can improve soil quality in mining areas, promote plant growth, transform the fraction of HMs in soil, and increase the extraction of Cd, Pb, and Zn by ryegrass. PGPR is a promising microbe-assisted phytoremediation strategy that can promote the re-greening of vegetation in the mining area while remediating HMs pollution.


Subject(s)
Lolium , Metals, Heavy , Soil Pollutants , Cadmium , Lead , Symbiosis , Soil/chemistry , Metals, Heavy/analysis , Bacteria , Biodegradation, Environmental , Zinc , Soil Pollutants/analysis
18.
World J Microbiol Biotechnol ; 40(6): 195, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722426

ABSTRACT

Bacillus subtilis is regarded as a promising microbial expression system in bioengineering due to its high stress resistance, nontoxic, low codon preference and grow fast. The strain has a relatively efficient expression system, as it has at least three protein secretion pathways and abundant molecular chaperones, which guarantee its expression ability and compatibility. Currently, many proteins are expressed in Bacillus subtilis, and their application prospects are broad. Although Bacillus subtilis has great advantages compared with other prokaryotes related to protein expression and secretion, it still faces deficiencies, such as low wild-type expression, low product activity, and easy gene loss, which limit its large-scale application. Over the years, many researchers have achieved abundant results in the modification of Bacillus subtilis expression systems, especially the optimization of promoters, expression vectors, signal peptides, transport pathways and molecular chaperones. An optimal vector with a suitable promoter strength and other regulatory elements could increase protein synthesis and secretion, increasing industrial profits. This review highlights the research status of optimization strategies related to the expression system of Bacillus subtilis. Moreover, research progress on its application as a food-grade expression system is also presented, along with some future modification and application directions.


Subject(s)
Bacillus subtilis , Bacterial Proteins , Promoter Regions, Genetic , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Genetic Vectors , Molecular Chaperones/metabolism , Molecular Chaperones/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Protein Sorting Signals/genetics
19.
Plant J ; 110(2): 529-547, 2022 04.
Article in English | MEDLINE | ID: mdl-35092714

ABSTRACT

The stilbenoid pathway is responsible for the production of resveratrol in grapevine (Vitis vinifera L.). A few transcription factors (TFs) have been identified as regulators of this pathway but the extent of this control has not been deeply studied. Here we show how DNA affinity purification sequencing (DAP-Seq) allows for the genome-wide TF-binding site interrogation in grape. We obtained 5190 and 4443 binding events assigned to 4041 and 3626 genes for MYB14 and MYB15, respectively (approximately 40% of peaks located within −10 kb of transcription start sites). DAP-Seq of MYB14/MYB15 was combined with aggregate gene co-expression networks (GCNs) built from more than 1400 transcriptomic datasets from leaves, fruits, and flowers to narrow down bound genes to a set of high confidence targets. The analysis of MYB14, MYB15, and MYB13, a third uncharacterized member of Subgroup 2 (S2), showed that in addition to the few previously known stilbene synthase (STS) targets, these regulators bind to 30 of 47 STS family genes. Moreover, all three MYBs bind to several PAL, C4H, and 4CL genes, in addition to shikimate pathway genes, the WRKY03 stilbenoid co-regulator and resveratrol-modifying gene candidates among which ROMT2-3 were validated enzymatically. A high proportion of DAP-Seq bound genes were induced in the activated transcriptomes of transient MYB15-overexpressing grapevine leaves, validating our methodological approach for delimiting TF targets. Overall, Subgroup 2 R2R3-MYBs appear to play a key role in binding and directly regulating several primary and secondary metabolic steps leading to an increased flux towards stilbenoid production. The integration of DAP-Seq and reciprocal GCNs offers a rapid framework for gene function characterization using genome-wide approaches in the context of non-model plant species and stands up as a valid first approach for identifying gene regulatory networks of specialized metabolism.


Subject(s)
Gene Expression Regulation, Plant , Stilbenes , Gene Expression Regulation, Plant/genetics , Gene Regulatory Networks , Plant Proteins/genetics , Plant Proteins/metabolism , Shikimic Acid , Stilbenes/metabolism
20.
Eur J Immunol ; 52(2): 338-351, 2022 02.
Article in English | MEDLINE | ID: mdl-34755333

ABSTRACT

PSMA3, a member of the proteasome subunit, has been shown to play a major player in protein degradation. Reportedly, PSMA3 functions as a negative regulator in various cancers including colon, pancreatic and gastric cancers. However, the contributions of PSMA3 to the progression of esophageal squamous cell carcinoma (ESCC) and the underlying mechanism remain unclear. Therefore, in this study, we investigated whether PSMA3 is involved in ESCC progression and the potential underlying mechanism. The results revealed that PSMA3 was highly expressed in the ESCC tumor tissues and functioned as a negative indicator according to the data from The Cancer Genome Atlas (TCGA)/Gene Expression Omnibus (GEO) datasets and clinical patients' samples. Pathway enrichment analysis showed that PSMA3 was closely correlated with ESCC cancer stemness and the inflammatory response; however, this correlation was absent after knockdown of PSMA3 in vitro. We further demonstrated that PSMA3 suppressed CD8+ T-cells infiltration depending on the C-C motif chemokine ligand 3 (CCL3)/C-C motif chemokine receptor 5 (CCR5) axis. Collectively, these results demonstrate the role of PSMA3 in ESCC cancer stemness and the negative regulation of CD8 T-cells infiltration mediated by PSMA3. The results of this study may provide a potential target for the immuno-oncology effect of PSMA3 in ESCC therapy.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Gene Expression Regulation, Enzymologic/immunology , Gene Expression Regulation, Neoplastic/immunology , Neoplasm Proteins , Cell Line, Tumor , Databases, Nucleic Acid , Esophageal Neoplasms/enzymology , Esophageal Neoplasms/genetics , Esophageal Neoplasms/immunology , Esophageal Squamous Cell Carcinoma/enzymology , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/immunology , Humans , Neoplasm Proteins/biosynthesis , Neoplasm Proteins/genetics , Neoplasm Proteins/immunology , Proteasome Endopeptidase Complex/biosynthesis , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/immunology
SELECTION OF CITATIONS
SEARCH DETAIL