Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Entropy (Basel) ; 26(3)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38539765

ABSTRACT

The drawbacks of a one-dimensional chaotic map are its straightforward structure, abrupt intervals, and ease of signal prediction. Richer performance and a more complicated structure are required for multidimensional chaotic mapping. To address the shortcomings of current chaotic systems, an n-dimensional cosine-transform-based chaotic system (nD-CTBCS) with a chaotic coupling model is suggested in this study. To create chaotic maps of any desired dimension, nD-CTBCS can take advantage of already-existing 1D chaotic maps as seed chaotic maps. Three two-dimensional chaotic maps are provided as examples to illustrate the impact. The findings of the evaluation and experiments demonstrate that the newly created chaotic maps function better, have broader chaotic intervals, and display hyperchaotic behavior. To further demonstrate the practicability of nD-CTBCS, a reversible data hiding scheme is proposed for the secure communication of medical images. The experimental results show that the proposed method has higher security than the existing methods.

2.
J Antimicrob Chemother ; 76(11): 2787-2794, 2021 10 11.
Article in English | MEDLINE | ID: mdl-34329431

ABSTRACT

OBJECTIVES: To describe a novel chromosomal aminoglycoside phosphotransferase named APH(3')-IId identified in an MDR Brucella intermedia ZJ499 isolate from a cancer patient. METHODS: Species identity was determined by PCR and MALDI-TOF MS analysis. WGS was performed to determine the genetic elements conferring antimicrobial resistance. Gene cloning, transcriptional analysis and targeted gene deletion, as well as protein purification and kinetic analysis, were performed to investigate the mechanism of resistance. RESULTS: APH(3')-IId consists of 266 amino acids and shares the highest identity (48.25%) with the previously known APH(3')-IIb. Expression of aph(3')-IId in Escherichia coli decreased susceptibility to kanamycin, neomycin, paromomycin and ribostamycin. The aph(3')-IId gene in ZJ499 was transcriptionally active under laboratory conditions and the relative abundance of this transcript was unaffected by treatment with the above four antibiotics. However, deletion of aph(3')-IId in ZJ499 results in decreased MICs of these drugs. The purified APH(3')-IId showed phosphotransferase activity against kanamycin, neomycin, paromomycin and ribostamycin, with catalytic efficiencies (kcat/Km) ranging from ∼105 to 107 M-1 s-1. Genetic environment and comparative genomic analyses suggested that aph(3')-IId is probably a ubiquitous gene in Brucella, with no mobile genetic elements detected in its surrounding region. CONCLUSIONS: APH(3')-IId is a novel chromosomal aminoglycoside phosphotransferase and plays an important role in the resistance of B. intermedia ZJ499 to kanamycin, neomycin, paromomycin and ribostamycin. To the best of our knowledge, APH(3')-IId represents the fourth characterized example of an APH(3')-II enzyme.


Subject(s)
Aminoglycosides , Brucella , Drug Resistance, Multiple, Bacterial , Kanamycin Kinase , Aminoglycosides/pharmacology , Anti-Bacterial Agents/pharmacology , Brucella/drug effects , Brucella/enzymology , Humans , Kanamycin/pharmacology , Kanamycin Kinase/genetics , Kinetics
3.
Article in English | MEDLINE | ID: mdl-32571822

ABSTRACT

Members of the Enterobacter cloacae complex are important opportunistic human pathogens capable of causing a wide variety of infections. During recent decades, aminoglycoside-resistant E. cloacae complex isolates have increasingly been reported and have become a major concern. Here, we employed high-throughput sequencing in combination with specific PCR assays to investigate the prevalence of aminoglycoside resistance genes among 170 isolates of the E. cloacae complex collected from a teaching hospital in Wenzhou, China. A total of 12 known genes [aphA-1, strA, strB, aac(6')-IIc, aadA2, aac(3)-IId, aadB, aadA1, rmtB, armA, aadA5, and aac(6')-Ie-aph(2'')-Ia] and 1 novel gene [aac(3)-IIg] were identified, with aphA-1 (71.18%), strA (55.29%), and strB (52.35%) being the most prevalent, and aac(3)-IIg was detected with a positive rate of 21.76% (37/170). The aac(3)-IIg gene was 810 bp in length and encoded a protein that shared 72 to 78% identities with previously known AAC(3)-II aminoglycoside 3-N-acetyltransferases. The MICs of gentamicin and tobramycin were 512 µg/ml and 64 µg/ml, respectively, when aac(3)-IIg was cloned into Escherichia coli DH5α. All aac(3)-IIg-positive isolates exerted broad aminoglycoside resistance profiles, mediated by the coexistence of multiple resistance genes. Moreover, aminoglycoside resistance and resistance genes were found to be transferable in most strains (24/37). Nevertheless, pulsed-field gel electrophoresis (PFGE) and dendrogram analysis showed clonal diversity among these isolates. S1 nuclease PFGE, Southern hybridization, and whole-genome sequencing indicated that aac(3)-IIg was located on transferable as well as nontransferable plasmids of various sizes. The analysis of the genetic environment suggested that aac(3)-IIg is embedded within a class 1 integron, with IS26 playing an important role in its mobility.


Subject(s)
Aminoglycosides , Enterobacter cloacae , Aminoglycosides/pharmacology , Anti-Bacterial Agents/pharmacology , China , Drug Resistance, Bacterial/genetics , Enterobacter cloacae/genetics , Hospitals, Teaching , Humans , Microbial Sensitivity Tests , Prevalence
4.
Can J Infect Dis Med Microbiol ; 2018: 7170416, 2018.
Article in English | MEDLINE | ID: mdl-30598711

ABSTRACT

In order to study the relationship between the structure and function of AmpG, structure, site-specific mutation, and gene complementary experiments have been performed against the clinical isolates of Pseudomonas aeruginosa. We found that there are 51 nucleotide variations at 34 loci over the ampG genes from 24 of 35 P. aeruginosa strains detected, of which 7 nucleotide variations resulted in amino acid change. The ampG variants with the changed nucleotides (amino acids) could complement the function of ampG deleted PA01 (PA01ΔG). The ampicillin minimum inhibitory concentration (MIC) of PA01ΔG complemented with 32 ampG variants was up to 512 µg/ml, similar to the original PA01 (P. aeruginosa PA01). Furthermore, site-directed mutation of two conservative amino acids (I53 and W90) showed that when I53 was mutated to 53S or 53T (I53S or I53T), the ampicillin MIC level dropped drastically, and the activity of AmpC ß-lactamase decreased as well. By contrast, the ampicillin MIC and the activity of AmpC ß-lactamase remained unchanged for W90R and W90S mutants. Our studies demonstrated that although nucleotide variations occurred in most of the ampG genes, the structure of AmpG protein in clinical isolates is stable, and conservative amino acid is necessary to maintain normal function of AmpG.

5.
Fish Physiol Biochem ; 42(2): 467-82, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26508172

ABSTRACT

PRDM1 (PRDI-BF1-RIZ1 homologous domain containing 1) appears to be a pleiotropic regulatory factor in various processes. It contains a PR (PRDI-BF1-RIZ1 homologous) domain protein and five zinc fingers. In the present study, a gene coding the homolog of prdm1 and the 5' regulatory region of prdm1 was identified from the Paralichthys olivaceus (denoted Po-prdm1). Results of real-time quantitative polymerase chain reaction amplification (RT-qPCR) and in situ hybridization (ISH) in embryos revealed that Po-prdm1 was highly expressed between the early gastrula and tail bud stages, with its expression peaking in the mid-gastrula stage, whereas the results of RT-qPCR and ISH in tissues demonstrated that Po-prdm1 transcripts were ubiquitously detected in all tissues, which indicates its pleiotropic function in multiple processes. ISH of gonadal tissues revealed that the transcripts were located in the nucleus and cytoplasm of the oocytes in the ovaries but only in the spermatogonia and not in the spermatocytes in the testes. The Po-prdm1 transcription factor binding sites and their conserved binding region among vertebrates were analyzed in this study. The combined results suggest that Po-PRDM1 has a conserved function in teleosts and mammals.


Subject(s)
Embryo, Nonmammalian/physiology , Fish Proteins/metabolism , Flounder/embryology , Animals , Flounder/physiology
6.
Cell Biol Int ; 39(1): 74-83, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25052690

ABSTRACT

The plasticity of human and murine bone marrow mesenchymal stem cells (BMSCs) has been proven by their ability to trans-differentiate to multilineage cells, including germ cells. We have investigated ability of goat BMSCs to trans-differentiate to germ cells with extrinsic (e.g., retinoic acid [RA] and BMP4 signalling molecules) and intrinsic factor expression (e.g., DAZL gene ectopic expression). Having optimized the concentration of RA and BMP4, gBMSCs were treated with RA 1 µM) and BMP4 (25 ng/mL), individually and collectively. Both RA and BMP4 induced OCT4, MVH, DAZL, STELLA, NANOG and C-KIT expression, but RNF17, PIWIL2, STRA8, and SCP3 were only expressed after RA treatment. In terms of an endogenous factor, a germ cell specific gene, deleted in Azoospermia-like (DAZL), was overexpressed by plasmid and mRNA techniques. Compared with the RA treated group, DAZL ectopic expression upregulated the transcription and translation of MVH, and SCP3 was also increased at the mRNA level. The mRNA-based method had more effect on the germ cells gene expression compared to the plasmid method. Ectopic expression of the DAZL gene enhanced trans-differentiation compared to the RA-treated group. Knockdown experiments confirmed the pivotal role of DAZL in germ cell differentiation. This study provides further information on the mechanisms underlying the spermatogenesis, which will guide the derivation of post-meiotic germ cells from adult stem cells in vitro.


Subject(s)
Bone Morphogenetic Protein 4/pharmacology , Cell Transdifferentiation/drug effects , Germ Cells/cytology , Mesenchymal Stem Cells/drug effects , RNA-Binding Proteins/metabolism , Tretinoin/pharmacology , Animals , Bone Marrow Cells/cytology , Cells, Cultured , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , Goats , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , RNA Interference , RNA, Small Interfering/metabolism , RNA-Binding Proteins/antagonists & inhibitors , RNA-Binding Proteins/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptome/drug effects , Up-Regulation/drug effects
7.
Int J Mol Sci ; 16(11): 27931-44, 2015 Nov 24.
Article in English | MEDLINE | ID: mdl-26610486

ABSTRACT

Sox3, which belongs to the SoxB1 subgroup, plays major roles in neural and gonadal development. In the present study, Japanese flounder Paralichthys olivaceus sox3 gene (Posox3) and its promoter sequence were isolated and characterized. The deduced PoSox3 protein contained 298 amino acids with a characteristic HMG-box domain. Alignment and phylogenetic analyses indicated that PoSox3 shares highly identical sequence with Sox3 homologues from different species. The promoter region of Posox3 has many potential transcription factor (TF) binding sites. The expression profiles of Posox3 in different developmental stages and diverse adult tissues were analyzed by quantitative real-time RT-PCR (qRT-PCR). Posox3 mRNA was maternally inherited, and maintained at a considerably high expression level between the blastula stage and the hatching stage during embryonic development. Posox3 was abundantly expressed in the adult brain and showed sexually dimorphic expression pattern. In situ hybridization (ISH) was carried out to investigate the cellular distribution of Posox3 in the ovary, and results showed the uniform distribution of Posox3 throughout the cytoplasm of oogonia and stage I-III oocytes. These results indicate that Posox3 has potentially vital roles in embryonic and neural development and may be involved in the oogenesis process. Our work provides a fundamental understanding of the structure and potential functions of Sox3 in Paralichthys olivaceus.


Subject(s)
Cloning, Molecular , Flounder/genetics , Gene Expression , Promoter Regions, Genetic , SOXB1 Transcription Factors/genetics , Amino Acid Sequence , Animals , Base Sequence , Computational Biology/methods , Embryonic Development/genetics , Flounder/classification , Gene Expression Profiling , Gene Expression Regulation, Developmental , Genomics/methods , Molecular Sequence Data , Organ Specificity/genetics , Phylogeny , SOXB1 Transcription Factors/chemistry , Sequence Alignment
8.
Animals (Basel) ; 14(4)2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38396511

ABSTRACT

Docosahexaenoic acid (DHA) is an essential nutrient for humans and plays a critical role in human development and health. Freshwater fish, such as the common carp (Cyprinus carpio), have a certain degree of DHA biosynthesis ability and could be a supplemental source of human DHA needs. The elongase of very-long-chain fatty acid 5 (Elovl5) is an important enzyme affecting polyunsaturated fatty acid (PUFA) biosynthesis. However, the function and regulatory mechanism of the elovl5 gene related to DHA synthesis in freshwater fish is not clear yet. Previous studies have found that there are two copies of the elovl5 gene, elovl5a and elovl5b, which have different functions. Our research group found significant DHA content differences among individuals in Yellow River carp (Cyprinus carpio var.), and four candidate genes were found to be related to DHA synthesis through screening. In this study, the expression level of elovl5a is decreased in the high-DHA group compared to the low-DHA group, which indicated the down-regulation of elovl5a in the DHA synthesis pathways of Yellow River carp. In addition, using a dual-luciferase reporter gene assay, we found that by targeting the 3'UTR region of elovl5a, miR-26a-5p could regulate DHA synthesis in common carp. After CRISPR/Cas9 disruption of elovl5a, the DHA content in the disrupted group was significantly higher than in the wildtype group; meanwhile, the expression level of elovl5a in the disrupted group was significantly reduced compared with the wildtype group. These results suggest that elovl5a may be down-regulating DHA synthesis in Yellow River carp. This study could provide useful information for future research on the genes and pathways that affect DHA synthesis.

9.
Int J Biol Macromol ; 254(Pt 1): 127614, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37884231

ABSTRACT

An emerging research focus is the role of m6A modifications in mediating the post-transcriptional regulation of mRNA during mammalian development. Recent evidence suggests that m6A methyltransferases and demethylases play critical roles in skeletal muscle development. Ythdf2 is a m6A "reader" protein that mediates mRNA degradation in an m6A-dependent manner. However, the specific function of Ythdf2 in skeletal muscle development and the underlying mechanisms remain unclear. Here, we observed that Ythdf2 expression was significantly upregulated during myogenic differentiation, whereas Ythdf2 knockdown markedly inhibited myoblast proliferation and differentiation. Combined analysis of high-throughput sequencing, Co-IP, and RIP assay revealed that Ythdf2 could bind to m6A sites in STK11 mRNA and form an Ago2 silencing complex to promote its degradation, thereby regulating its expression and consequently, the AMPK/mTOR pathway. Furthermore, STK11 downregulation partially rescued Ythdf2 knockdown-induced impairment of proliferation and myogenic differentiation by inhibiting the AMPK/mTOR pathway. Collectively, our results indicate that Ythdf2 mediates the decay of STK11 mRNA, an AMPK activator, in an Ago2 system-dependent manner, thereby driving skeletal myogenesis by suppressing the AMPK/mTOR pathway. These findings further enhance our understanding of the molecular mechanisms underlying RNA methylation in the regulation of myogenesis and provide valuable insights for conducting in-depth studies on myogenesis.


Subject(s)
AMP-Activated Protein Kinases , TOR Serine-Threonine Kinases , Animals , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Transcription Factors , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA Stability , Muscle Development/genetics , Mammals/genetics
10.
Proteome Sci ; 11(1): 6, 2013 Jan 30.
Article in English | MEDLINE | ID: mdl-23363438

ABSTRACT

Arthrospira (Spirulina) platensis as a representative species of cyanobacteria has been recognized and used worldwide as a source of protein in the food, which possesses some unusual and valuable physiological characteristics, such as alkali and salt tolerance. Based on complete genome sequencing of Arthrospira (Spirulina) plantensis-YZ, we compared the protein expression profiles of this organism under different salt-stress conditions (i.e. 0.02 M, 0.5 M and 1.0 M NaCl, respectively), using 2-D electrophoresis and peptide mass fingerprinting, and retrieved 141 proteins showing significantly differential expression in response to salt-stress. Of the 141 proteins, 114 Arthrospira (Spirulina) plantensis-YZ proteins were found with significant homology to those found in Arthrospira (76 proteins in Arthrospira platensis str. Paraca and 38 in Arthrospira maxima CS-328). The remaining 27 proteins belong to other bacteria. Subsequently, we determined the transcriptional level of 29 genes in vivo in response to NaCl treatments and verified them by qRT-PCR. We found that 12 genes keep consistency at both transcription and protein levels, and transcription of all of them but one were up-regulated. We classified the 141 differentially expressed proteins into 18 types of function categories using COG database, and linked them to their respective KEGG metabolism pathways. These proteins are involved in 31 metabolism pathways, such as photosynthesis, glucose metabolism, cysteine and methionine metabolism, lysine synthesis, fatty acid metabolism, glutathione metabolism. Additionally, the SRPs, heat shock protein and ABC transporter proteins were identified, which probably render Arthrospira (Spirulina) plantensis's resistance against high salt stress.

11.
Gene ; 860: 147214, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36690227

ABSTRACT

This study explored the mechanism of ipsilateral testis injury after ipsilateral testicular torsion detorsion (T/D) and the potential testis-protective part of the octamer-binding transcription factor 4 (Oct4)-cancerous inhibitors of protein phosphatase 2A (CIP2A) axis in a T/D animal model and in ischemia-reperfusion (IR)-treated testicular Sertoli TM4 cells. Quantitative Polymerase chain reaction (PCR) and western blot (WB) confirmed the downregulation of both CIP2A and Oct4 expression in the testicular tissue from T/D mice compared with sham-operated mice. T/D model was then established in mice with upregulated Oct4 expression in the testis. Oct4 elevation restored CIP2A expression in testes after T/D treatment. Furthermore, we observed that an increase in Oct4 ameliorated the testicular damage caused by torsion in the testis. Biochemical analysis indicated that T/D treatment increased serum anti-sperm antibody levels, but reduced testosterone levels. Meanwhile, in testicular tissue, reactive oxygen species (ROS), malondialdehyde (MDA), and activity of testicular myeloperoxidase (MPO) enzymes were promoted, while glutathione peroxidase activity (GPx) was decreased by T/D injury. Notably, testicular Oct4 restoration partially counteracted the effect of T/D treatment on these biochemical indices. Hypoxia/reoxygenation (HR) treatment was applied to TM4 cells to mimic TT injury in vitro. A gain-of-function study showed that Oct4 overexpression partly counteracted the promoting role of HR in cell damage, apoptosis, and oxidative stress in TM4 cells. These observations provide novel insights into the possible biochemical mechanism underlying the mediation of the Oct4-CIP2A axis in T/D injury.


Subject(s)
Reperfusion Injury , Spermatic Cord Torsion , Animals , Humans , Male , Mice , Antioxidants/pharmacology , Malondialdehyde/metabolism , Oxidative Stress , Reperfusion Injury/metabolism , Sertoli Cells/metabolism , Testis/metabolism
12.
Food Chem ; 405(Pt A): 134802, 2023 Mar 30.
Article in English | MEDLINE | ID: mdl-36371832

ABSTRACT

Natural N and S co-doped carbon dots (NSCDs) were synthesized via hydrothermal synthesis using food-derived crawfish shells as green precursors. The relationship between quantum yield (QY) and protein content of six crawfish shells treated with different alkalis was investigated. The synthesized NSCDs displayed a large QY of 18.57 %, which was higher than most of the chitin-derived CDs. Due to the oxidation of hydroxyl radicals, adding H2O2 and horseradish peroxidase (HRP) quenched the fluorescence of NSCDs, resulting in a detection limit (LOD) of 1.25 µM for H2O2. The addition of pentachlorophenol (PCP) was supposed to consume part of the hydroxyl radicals and protect NSCDs from being oxidized. Accordingly, a facile and rapid "off-on" fluorescence sensor was developed to detect PCP with a LOD of 2.30 µM. Further, the method described was successfully used to detect PCP in three real samples.


Subject(s)
Pentachlorophenol , Quantum Dots , Carbon , Fluorescence , Hydrogen Peroxide , Spectrometry, Fluorescence , Nitrogen , Fluorescent Dyes
13.
Biosens Bioelectron ; 239: 115630, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37634420

ABSTRACT

Multiple pesticides are often used in combination to protect crops from pests. This makes rapid on-site detection of pesticide contamination challenging. Herein, we describe a method for simultaneous detection of diverse neonicotinoid pesticides using a sensor that combines neonicotinoid-specific odorant-binding protein 2 (OBP2), which was cloned from an insect chemical sensing protein and modified gold nanoparticles with local surface plasmon resonance (LSPR)-based digital nanoplasmonometry (DiNM). When neonicotinoid pesticides bind to OBP2 on gold nanoparticles, the induced LSPR shift peak wavelength is too small to be measured using conventional LSPR immunoassays. DiNM records and compares the scattered image intensity in two adjacent wavelength bands, A and B, centered on the LSPR peak. It considers both the peak shift and the relative intensity change in these two bands, resulting in a significant LSPR signal enhancement. Then the spectral-image contrast was computed as the signal response. Using this approach, we obtained excellent limits of detection (LODs) of 1.4, 1.5, and 4.5 ppb for the neonicotinoids imidacloprid, acetamiprid, and dinotefuran, respectively. Blind tests demonstrated high positive and negative rates for teas, approximately 85 and 100%, respectively. Recombinant OBP2 produced in E. coli offers several advantages over antibodies, including high yield, time savings, and cost effectiveness. Moreover, this method is highly selective and sensitive to neonicotinoids, making it practical for field use.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Biomimetics , Escherichia coli , Gold , Neonicotinoids
14.
Article in English | MEDLINE | ID: mdl-36459089

ABSTRACT

The lethal neurotoxins, paralytic shellfish toxins (PSTs), and tetrodotoxin (TTX) have recently been found in marine shellfish from many coastal states. Herein, we applied a sensitive and reliable ultra-performance hydrophilic interaction chromatography (HILIC)-tandem mass spectrometry (MS) method to determine 13 PSTs and TTX in marine shellfish using a porous carbon solid-phase extraction (SPE). This in-house validation study required the development of a novel chromatographic separation using a HILIC-Z column, which was necessary to retain highly polar compounds. Using acetonitrile as the organic phase and ammonium formate-formic acid buffer as the aqueous phase, the quantitative analysis was carried out with an external standard method in the multiple reaction monitoring modes using positive electrospray ionization. To reduce interference, 1% aqueous acetic acid extracts of the shellfish samples were cleaned up by ion-pair SPE using a porous graphitic carbon cartridge. The calibration curves for PSTs and TTX were linear (R2 > 0.995), and the sensitivity was good, with limits of detection (LODs) of 1.7-13.7 µg/kg, and limits of quantitation (LOQs) of 5.2-41.0 µg/kg. The recoveries were 76.5-95.5% with RSDs of 3.1-12.0%. Finally, We applied the method for the determination of PSTs and TTX in three batches of Nassarius showing excellent method accuracy against expected values.


Subject(s)
Graphite , Tandem Mass Spectrometry , Tetrodotoxin/analysis , Tandem Mass Spectrometry/methods , Carbon/chemistry , Porosity , Shellfish/analysis , Chromatography, Liquid/methods , Chromatography, High Pressure Liquid , Solid Phase Extraction , Hydrophobic and Hydrophilic Interactions
15.
Chemosphere ; 303(Pt 1): 134962, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35580645

ABSTRACT

Tetrodotoxin (TTX) is a potent marine neurotoxin that exists in a variety of aquatic and terrestrial organisms. Pufferfish in different habitats show great variation in their TTX contents. Exploring the genes involved in TTX metabolism could contribute to our understanding of the molecular mechanisms underlying TTX accumulation, translocation, and detoxification in pufferfish. In this study, transcriptomic analysis was used to identify the functional genes related to TTX metabolism in the blood, liver, and muscle of the toxic and non-toxic tiger puffer (Takifugu rubripes). A total of 6101 differentially expressed genes (DEGs) were obtained after transcriptomic analysis; of these, 2401 were identified in the blood, 2262 in the liver, and 1438 in the muscle. After enrichment analysis, fourteen genes encoding glutathione S-transferases (GSTs), glutathione peroxidase (GPx), thioredoxins (TXNs), superoxide dismutase (SOD), ATP-binding cassettes (ABCs), apolipoproteins (APOs), inhibitors of apoptosis protein (IAP), and solute carrier (SLC), which are mainly antioxidant enzymes, membrane transporters, or anti-apoptotic factors, were revealed in the blood. Thirty-six genes encoding SLCs, ABCs, long-chain-fatty-acid-CoA ligases (ACSLs), interleukin 6 cytokine family signal transducer (IL6ST), endoplasmic reticulum (ER), and heat shock protein family A (Hsp70) were involved in transmembrane transporter activity and innate immune response. Notably, a large number of slc genes were found to play critical and diverse roles in TTX accumulation and translocation in the liver of T. rubripes. Nine genes from the slc, hsp70, complement C5 (c5), acsl, er, and serpin peptidase inhibitor (serpin) gene families were found to participate in the regulation of protein processing and anti-apoptosis. These results reflect the diverse functions of genes closely related to TTX accumulation, translocation, and detoxification in T. rubripes.


Subject(s)
Takifugu , Transcriptome , Animals , Gene Expression Profiling , Liver/metabolism , Takifugu/genetics , Takifugu/metabolism , Tetrodotoxin/metabolism
16.
ACS Omega ; 7(51): 48403-48415, 2022 Dec 27.
Article in English | MEDLINE | ID: mdl-36591148

ABSTRACT

Cigarettes, potentially safer alternatives to combustible cigarettes, have been reported to increase the health risk for long-term users, so accumulating information about their potential toxicity is of great concern. However, toxicological evaluations of e-cigarette aerosols are limited, which may be attributed to the lack of a simple and efficient extraction method. Here, we developed a high-speed centrifugal method for extracting e-cigarette aerosol collected mass (ACM) and prepared ACM samples of 26 representative e-cigarettes, and 10 samples were further selected based on their cytotoxicity for systematic toxicological assessments. The average extraction efficiency of ACM, primary aerosol components, and typical carbonyls exceeded 85%. The toxicological evaluation showed that the IC50 value range of e-cigarettes for cytotoxicity was 2-52 mg/mL ACM, all e-cigarettes can induce the risk of DNA damage, mitochondrial depolarization, and c-Jun-related signal disturbances; most e-cigarettes significantly caused disturbance of oxidative stress balance. E-cigarettes with higher cytotoxicity appeared to cause a higher degree of damage, while no e-cigarette promoted mutagenicity and cytochrome c release. The toxicity difference among e-cigarettes using nicotine equivalent was significantly lower than that of ACM. This study provides a novel extraction method and a comprehensive in vitro toxicity risk profile of e-cigarette aerosols.

17.
Cancer Med ; 11(6): 1454-1464, 2022 03.
Article in English | MEDLINE | ID: mdl-35128835

ABSTRACT

BACKGROUND: Nucleolin (NCL, C23) is a multifunctional phosphoprotein that plays a vital role in modulating the survival, proliferationand apoptosis of cancer cells. However, the effects of NCL on cervical cancer and the underlying mechanisms behind this are poorly understood. METHODS: Lentiviral transfection technology was used to construct NCL knockdown cell lines. MTT, colony formation assays, and tumorigenic assays in vivo were performed to observe cell proliferation. HOECHST 33342 staining, flow cytometry, and caspase activity assay were used to test cell apoptosis. RNA-Seq, Western blotting, and RT-PCR were conducted to investigate the specific molecular mechanism. RESULTS: NCL knockdown inhibited cell proliferation and promoted apoptosis both in vivo and in vitro. Mechanistic studies revealed that NCL knockdown inhibited the PI3K/AKT pathway by upregulating FGF, ITGA, TNXB, VEGF, Caspase 3, and Bax, as well as by downregulating AKT, GNB4, CDK6, IL6R, LAMA, PDGFD, PPP2RSA and BCL-2. In addition, the expression levels of apoptosis-related genes after using a PI3K inhibitor LY294002 were consistent with shRNA studies, while treatment with a 740Y-P agonist showed the opposite effect. CONCLUSIONS: Our findings indicate that downregulation of NCL may be a novel treatment strategy forcervical cancer.


Subject(s)
Phosphatidylinositol 3-Kinases , Phosphoproteins , Proto-Oncogene Proteins c-akt , RNA-Binding Proteins , Apoptosis/genetics , Cell Line, Tumor , Cell Proliferation , Down-Regulation , HeLa Cells , Humans , Phosphatidylinositol 3-Kinases/metabolism , Phosphoproteins/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA-Binding Proteins/metabolism , Signal Transduction , Nucleolin
18.
Yi Chuan ; 33(10): 1134-40, 2011 Oct.
Article in Zh | MEDLINE | ID: mdl-21993288

ABSTRACT

In this work, the functions of promoter fragments of two potential salt-tolerance related genes of Spirulina (Spirulina platensis Geitl.) were studied using green fluorescent protein gene (gfp) as a reporter. The promoter structures of two salt-tolerance related genes of Spirulina were predicted using online promoter prediction software. pMD18-T and pUC18 vectors were used to clone the promoter sequences as well as the gfp gene and kanamycine resistance (kan) gene. The fragments containing pro-gfp-kanr were further cloned into pKW1188 vector and the resulting recombinant plasmids were then transformed into a host strain Synechocystis sp. (Synechocystis pevalekii Ercegovic) PCC6803. The resulting bacterial strains were grown under various concentrations of salinity for defining time intervals. The bacterial fluorescence was observed using laser confocal microscope. Our results showed that the transgenic bacteria grown at different concentrations of salinity for various periods produced varying fluorescence intensities. The bacteria treated with NaCl at the concentrations of 0.4mol/L to 0.6mol/L for 6 to 8 h showed the strongest fluorescent intensity. From the result of high salt induced expression of gfp, we predicted that the genes under control of these two promoters are likely to play important roles in the salt tolerance of Spirulina. Accordingly, we believed that a research platform for the studying functions of the promoters of the salt-tolerance related genes in Spirulina has been developed with the gfp as a reporter, the kanr gene as the selection marker, and Synechocystis. sp. PCC6803 as the expression host.


Subject(s)
Promoter Regions, Genetic/physiology , Sodium Chloride/pharmacology , Spirulina/genetics , Base Sequence , Green Fluorescent Proteins/genetics , Molecular Sequence Data , Synechocystis/genetics
19.
Front Microbiol ; 12: 687533, 2021.
Article in English | MEDLINE | ID: mdl-34475858

ABSTRACT

Dietary copper supplementation in the feed of piglets generally exceeds 250-800 mg/kg, where a higher quantity (>250 mg/kg) can promote growth and improve feed conversion. Despite the reported positive effects, 90% of copper is excreted and can accumulate and pollute the soil. Data indicate that fungi have a biosorptive capacity for copper. Thus, the objectives of the present experiment were to study the effects of adding different strains of fungi on the biosorptive capacity for copper in swine manure and to evaluate potential effects on microbiota profiles. Aspergillus niger (AN), Aspergillus oryzae (AO), and Saccharomyces cerevisiae (SC) were selected, and each added 0.4% into swine manure, which contain 250 mg/kg of copper. The incubations lasted for 29 days, and biosorption parameters were analyzed on the 8th (D8), 15th (D15), 22nd (D22), and 29th (D29) day. Results showed that after biosorption, temperature was 18.47-18.77°C; pH was 6.33-6.91; and content of aflatoxin B1, ochratoxin A, and deoxynivalenol were low. In addition, residual copper concentration with AN was the lowest on D15, D22, and D29. The copper biosorption rate was also highest with AN, averaging 84.85% on D29. Biosorption values for AO reached 81.12% and for SC were lower than 80%. Illumina sequencing of 16S and ITS rRNA gene revealed that fungal treatments reduced the diversity and richness of fungal abundance, but had no effect on bacterial abundance. Unknown_Marinilabiliaceae, Proteiniphilum, Tissierella, and Curvibacter were the dominant bacteria, while Aspergillus and Trichoderma were the dominant fungi. However, the added strain of S. cerevisiae was observed to be lower than the dominant fungi, which contained less than 0.05%. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment predicted via PICRUSt2 that there were bacterial genes potentially related to various aspects of metabolism and environmental information processing. Overall, data indicated that Aspergillus can provide microbial materials for adsorption of copper.

20.
Anticancer Agents Med Chem ; 21(10): 1240-1249, 2021.
Article in English | MEDLINE | ID: mdl-32900352

ABSTRACT

OBJECTIVE: To investigate the effects of Phycoerythrin (PE) on the human ovarian cancer cell line SKOV-3 and its antitumor mechanisms from a transcriptional point of view. METHODS: SKOV-3 cells were exposed to different concentrations of phycoerythrin. The efficiency of this treatment was evaluated through cell growth inhibition, changes in cell morphology, apoptosis and intracellular ROS levels. High throughput sequencing (RNA-seq) was performed to screen Differentially Expressed Genes (DEGs), which was verified using RT-PCR and Western blotting. RESULTS: PE showed a significant inhibitory effect on the growth of SKOV-3 cells in a time- and dose-dependent manner. H&E staining, electron microscopy and flow cytometry revealed that PE induced apoptosis in SKOV-3 cells. Transcriptome analysis showed that 2963 genes were differentially expressed between untreated or PEtreated cells. GO and KEGG pathway analyses identified 16 classical pathways that were enriched. We verified 8 DEGs including, JNK, GADD45A, EDEM2, RAD23, UBQLN, CAPN1, XBP1, and OS9. These results were consistent with the results from transcriptional sequences. CONCLUSION: The inhibitory effect of PE on SKOV-3 cells was a result of interaction with multiple pathways and signaling molecules. Among these, the ROS/JNK/Bcl-2 signaling pathway, upregulation of JNK, GADD45A and RAD23 as well as downregulation of XBP1 and OS9 played a critical role in the PE -induced apoptosis in human ovarian cancer cells.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Gracilaria/chemistry , Phycoerythrin/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Phycoerythrin/chemistry , Phycoerythrin/isolation & purification , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL