Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 294
Filter
Add more filters

Publication year range
1.
Drug Resist Updat ; 72: 101013, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38041877

ABSTRACT

Radioiodine-refractory differentiated thyroid cancer (RAIR-DTC) is difficult to treat with radioactive iodine because of the absence of the sodium iodide transporter in the basement membrane of thyroid follicular cells for iodine uptake. This is usually due to the mutation or rearrangement of genes and the aberrant activation of signal pathways, which result in abnormal expression of thyroid-specific genes, leading to resistance of differentiated thyroid cancer cells to radioiodine therapy. Therefore, inhibiting the proliferation and growth of RAIR-DTC with multikinase inhibitors and other drugs or restoring its differentiation and then carrying out radioiodine therapy have become the first-line treatment strategies and main research directions. The drugs that regulate these kinases or signaling pathways have been studied in clinical and preclinical settings. In this review, we summarized the major gene mutations, gene rearrangements and abnormal activation of signaling pathways that led to radioiodine resistance of RAIR-DTC, as well as the medicine that have been tested in clinical and preclinical trials.


Subject(s)
Thyroid Neoplasms , Humans , Thyroid Neoplasms/drug therapy , Thyroid Neoplasms/genetics , Thyroid Neoplasms/radiotherapy , Iodine Radioisotopes/therapeutic use , Signal Transduction
2.
Toxicol Appl Pharmacol ; 484: 116842, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38307257

ABSTRACT

Arenobufagin (ArBu) is a natural monomer extracted and isolated from the secretion of the Chinese toad, also known as toad venom. This compound exerts anti-tumor effects by promoting apoptosis in tumor cells, inhibiting tumor angiogenesis, and preventing the invasion and migration of tumor cells. However, their impact on ferroptosis in tumor cells has yet to be fully confirmed. In this study, we established a subcutaneous transplant tumor model in nude mice to investigate the inhibitory effect of ArBu on gastric cancer cells (MGC-803) and the safety of drug delivery. in vitro experiments, we screened the most sensitive cancer cell lines using the MTT method and determined the response of ArBu to cell death. Use flow cytometry to measure cytoplasmic and lipid reactive oxygen species (ROS) levels. Determine the expression levels of ferritin-related proteins through Western blot experiments. In addition, a MGC-803 cell model overexpressing Nrf2 was created using lentiviral transfection to investigate the role of ArBu in inducing ferroptosis in cancer cells. Our research findings indicate that ArBu inhibits the proliferation of MGC-803 cells and is linked to ferroptosis. In summary, our research findings indicate that ArBu is a potential anti-gastric cancer drug that can induce ferroptosis in human cancer cells through the Nrf2/SLC7A11/GPX4 pathway.


Subject(s)
Bufanolides , Ferroptosis , Stomach Neoplasms , Humans , Animals , Mice , Stomach Neoplasms/drug therapy , NF-E2-Related Factor 2/genetics , Mice, Nude , Reactive Oxygen Species
3.
Theor Appl Genet ; 137(7): 159, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38872054

ABSTRACT

KEY MESSAGE: Integrated linkage and association analysis revealed genetic basis across multiple environments. The genes Zm00001d003102 and Zm00001d015905 were further verified to influence amylose content using gene-based association study. Maize kernel amylose is an important source of human food and industrial raw material. However, the genetic basis underlying maize amylose content is still obscure. Herein, we used an intermated B73 × Mo17 (IBM) Syn10 doubled haploid population composed of 222 lines and a germplasm set including 305 inbred lines to uncover the genetic control for amylose content under four environments. Linkage mapping detected 16 unique QTL, among which four were individually repeatedly identified across multiple environments. Genome-wide association study revealed 17 significant (P = 2.24E-06) single-nucleotide polymorphisms, of which two (SYN19568 and PZE-105090500) were located in the intervals of the mapped QTL (qAC2 and qAC5-3), respectively. According to the two population co-localized loci, 20 genes were confirmed as the candidate genes for amylose content. Gene-based association analysis indicated that the variants in Zm00001d003102 (Beta-16-galactosyltransferase GALT29A) and Zm00001d015905 (Sugar transporter 4a) affected amylose content across multi-environment. Tissue expression analysis showed that the two genes were specifically highly expressed in the ear and stem, respectively, suggesting that they might participate in sugar transport from source to sink organs. Our study provides valuable genetic information for breeding maize varieties with high amylose.


Subject(s)
Amylose , Chromosome Mapping , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Zea mays , Zea mays/genetics , Amylose/metabolism , Amylose/genetics , Genome-Wide Association Study , Phenotype , Genetic Linkage , Genes, Plant , Genotype , Genetic Association Studies
4.
Biomacromolecules ; 25(3): 1550-1562, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38411008

ABSTRACT

Formation of adequate vascular network within engineered three-dimensional (3D) tissue substitutes postimplantation remains a major challenge for the success of biomaterials-based tissue regeneration. To better mimic the in vivo angiogenic and vasculogenic processes, nowadays increasing attention is given to the strategy of functionalizing biomaterial scaffolds with multiple bioactive agents. Aimed at engineering electrospun biomimicking fibers with pro-vasculogenic capability, this study was proposed to functionalize electrospun fibers of polycaprolactone/gelatin (PCL/GT) by cell-free fat extract (CEFFE or FE), a newly emerging natural "cocktail" of cytokines and growth factors extracted from human adipose tissue. This was achieved by having the electrospun PCL/GT fiber surface coated with polydopamine (PDA) followed by PDA-mediated immobilization of FE to generate the pro-vasculogenic fibers of FE-PDA@PCL/GT. It was found that the PDA-coated fibrous mat of PCL/GT exhibited a high FE-loading efficiency (∼90%) and enabled the FE to be released in a highly sustained manner. The engineered FE-PDA@PCL/GT fibers possess improved cytocompatibility, as evidenced by the enhanced cellular proliferation, migration, and RNA and protein expressions (e.g., CD31, vWF, VE-cadherin) in the human umbilical vein endothelial cells (huvECs) used. Most importantly, the FE-PDA@PCL/GT fibrous scaffolds were found to enormously stimulate tube formation in vitro, microvascular development in the in ovo chick chorioallantoic membrane (CAM) assay, and vascularization of 3D construct in a rat subcutaneous embedding model. This study highlights the potential of currently engineered pro-vasculogenic fibers as a versatile platform for engineering vascularized biomaterial constructs for functional tissue regeneration.


Subject(s)
Indoles , Polymers , Tissue Engineering , Tissue Scaffolds , Humans , Rats , Animals , Tissue Engineering/methods , Biocompatible Materials , Polyesters/pharmacology , Human Umbilical Vein Endothelial Cells
5.
BMC Geriatr ; 24(1): 134, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38321394

ABSTRACT

BACKGROUND: Sarcopenia is a senile syndrome of age-related muscle loss. It is thought to affect the development of chronic kidney disease and has a serious impact on the quality of life of the elder adults. Little is known about the association between sarcopenia and new-onset chronic kidney disease in middle-aged and elder adults. Using nationally representative data from the China Health and Retirement Longitudinal Study (CHARLS), we conducted a longitudinal analysis to investigate the association between sarcopenia status and new-onset chronic kidney disease in middle-aged and elder adults in China. METHODS: The study population consisted of 3676 participants aged 45 or older selected from 2011 CHARLS database who had no history of chronic kidney disease at the baseline and completed the follow-up in 2015. A multivariate cox regression model was employed to examine the association between sarcopenia and the incidence of new-onset chronic kidney disease. RESULTS: Followed up for 4 years, a total of 873 (22.5%) new cases of chronic kidney disease occurred. Among them, participants diagnosed with sarcopenia (HR1.45; 95% CI 1.15-1.83) were more likely to develop new-onset chronic kidney disease than those without sarcopenia. Similarly, patients with sarcopenia were more likely to develop new-onset chronic kidney disease than those with possible sarcopenia (HR 1.27; 95%CI 1.00-1.60). Subgroup analysis revealed that elder adults aged between 60 and 75 years old (HR 1.666; 95%CI 1.20-22.28), with hypertension (HR 1.57; 95%CI 1.02-2.40), people with sarcopenia had a significantly higher risk of developing new-onset chronic kidney disease than those without sarcopenia (all P < 0.05). CONCLUSION: Middle-aged and elder adults diagnosed with sarcopenia have a higher risk of developing new-onset chronic kidney disease.


Subject(s)
Renal Insufficiency, Chronic , Sarcopenia , Humans , Middle Aged , Aged , Retirement , Longitudinal Studies , Quality of Life , China
6.
J Environ Manage ; 360: 121196, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38763117

ABSTRACT

At present, biochar has a large application potential in soil amelioration, pollution remediation, carbon sequestration and emission reduction, and research on the effect of biochar on soil ecology and environment has made positive progress. However, under natural and anthropogenic perturbations, biochar may undergo a series of environmental behaviors such as migratory transformation, mineralization and decomposition, and synergistic transport, thus posing certain potential risks. This paper outlines the multi-interfacial migration pathway of biochar in "air-soil-plant-animal-water", and analyzes the migration process and mechanism at different interfaces during the preparation, transportation and application of biochar. The two stages of the biochar mineralization process (mineralization of easily degradable aliphatic carbon components in the early stage and mineralization of relatively stable aromatic carbon components in the later stage) were described, the self-influencing factors and external environmental factors of biochar mineralization were analyzed, and the mineral stabilization mechanism and positive/negative excitation effects of biochar into the soil were elucidated. The proximity between field natural and artificially simulated aging of biochar were analyzed, and the change of its properties showed a trend of biological aging > chemical aging > physical aging > natural aging, and in order to improve the simulation and prediction, the artificially simulated aging party needs to be changed from a qualitative method to a quantitative method. The technical advantages, application scope and potential drawbacks of different biochar modification methods were compared, and biological modification can create new materials with enhanced environmental application. The stability performance of modified biochar was compared, indicating that raw materials, pyrolysis temperature and modification method were the key factors affecting the stability of biochar. The potential risks to the soil environment from different pollutants carried by biochar were summarized, the levels of pollutants released from biochar in the soil environment were highlighted, and a comprehensive selection of ecological risk assessment methods was suggested in terms of evaluation requirements, data acquisition and operation difficulty. Dynamic tracing of migration decomposition behavior, long-term assessment of pollution remediation effects, and directional design of modified composite biochar materials were proposed as scientific issues worthy of focused attention. The results can provide a certain reference basis for the theoretical research and technological development of biochar.


Subject(s)
Charcoal , Ecosystem , Soil , Charcoal/chemistry , Soil/chemistry , Risk Assessment , Soil Pollutants , Ecology
7.
BMC Genomics ; 24(1): 232, 2023 May 03.
Article in English | MEDLINE | ID: mdl-37138267

ABSTRACT

BACKGROUND: The purpose of this study is to investigate the association of rotating night shift work, CLOCK, MTNR1A, MTNR1B genes polymorphisms and their interactions with type 2 diabetes among steelworkers. METHODS: A case-control study was conducted in the Tangsteel company in Tangshan, China. The sample sizes of the case group and control group were 251 and 451, respectively. The logistic regression, log-linear model and generalized multifactor dimensionality (GMDR) method were used to investigate the interaction between circadian clock gene, melatonin receptor genes and rotating night shift work on type 2 diabetes among steelworkers. Relative excess risk due to interaction (RERI) and attributable proportions (AP) were used to evaluate additive interactions. RESULTS: Rotating night shift work, current shift status, duration of night shifts, and average frequency of night shifts were associated with an increased risk of type 2 diabetes after adjustment for confounders. Rs1387153 variants in MTNR1B was found to be associated with an increased risk of type 2 diabetes, which was not found between MTNR1A gene rs2119882 locus, CLOCK gene rs1801260 locus and the risk of type 2 diabetes. The association between rotating night shift work and risk of type 2 diabetes appeared to be modified by MTNR1B gene rs1387153 locus (RERI = 0.98, (95% CI, 0.40-1.55); AP = 0.60, (95% CI, 0.07-1.12)). The interaction between MTNR1A gene rs2119882 locus and CLOCK gene rs1801260 locus was associated with the risk of type 2 diabetes (RERI = 1.07, (95% CI, 0.23-1.91); AP = 0.77, (95% CI, 0.36-1.17)). The complex interaction of the MTNR1A-MTNR1B-CLOCK-rotating night shift work model based on the GMDR methods may increase the risk of type 2 diabetes (P = 0.011). CONCLUSIONS: Rotating night shift work and rs1387153 variants in MTNR1B were associated with an increased risk of type 2 diabetes among steelworkers. The complex interaction of MTNR1A-MTNR1B-CLOCK-rotating night shift work may increase the risk of type 2 diabetes.


Subject(s)
Circadian Clocks , Diabetes Mellitus, Type 2 , Shift Work Schedule , Humans , Case-Control Studies , Circadian Clocks/genetics , Circadian Rhythm/genetics , Diabetes Mellitus, Type 2/genetics , Polymorphism, Genetic , Receptor, Melatonin, MT1/genetics , Receptor, Melatonin, MT2/genetics , Shift Work Schedule/adverse effects
8.
Small ; 19(31): e2206667, 2023 08.
Article in English | MEDLINE | ID: mdl-36651015

ABSTRACT

Obesity is a major global health problem that significantly increases the risk of many other diseases. Herein, a facile method of suppressing lipogenesis and obesity using L-arginine-functionalized carbon dots (L-Arg@CDots) is reported. The prepared CDots with a negative surface charge form stronger bonds than D-arginine and lysine with L-Arg in water. The L-Arg@CDots in the aqueous solution offer a high photoluminescence quantum yield of 23.6% in the red wavelength region. The proposed L-Arg functionalization strategy not only protects the red emission of the CDots from quenching by water molecules but also enhances the intracellular uptake of L-Arg to reduce lipogenesis. Injection of L-Arg@CDots can reduce the body weight increase in ob/ob mice by suppressing their food intake and shrinking the white adipose tissue cells, thereby significantly inhibiting obesity.


Subject(s)
Carbon , Quantum Dots , Mice , Animals , Carbon/chemistry , Obesity , Arginine , Quantum Dots/chemistry
9.
Planta ; 257(5): 94, 2023 Apr 09.
Article in English | MEDLINE | ID: mdl-37031436

ABSTRACT

MAIN CONCLUSION: In maize, intrinsic hormone activities and sap fluxes facilitate organogenesis patterning and plant holistic development; these hormone movements should be a primary focus of developmental biology and agricultural optimization strategies. Maize (Zea mays) is an important crop plant with distinctive life history characteristics and structural features. Genetic studies have extended our knowledge of maize developmental processes, genetics, and molecular ecophysiology. In this review, the classical life cycle and life history strategies of maize are analyzed to identify spatiotemporal organogenesis properties and develop a definitive understanding of maize development. The actions of genes and hormones involved in maize organogenesis and sex determination, along with potential molecular mechanisms, are investigated, with findings suggesting central roles of auxin and cytokinins in regulating maize holistic development. Furthermore, investigation of morphological and structural characteristics of maize, particularly node ubiquity and the alternate attachment pattern of lateral organs, yields a novel regulatory model suggesting that maize organ initiation and subsequent development are derived from the stimulation and interaction of auxin and cytokinin fluxes. Propositions that hormone activities and sap flow pathways control organogenesis are thoroughly explored, and initiation and development processes of distinctive maize organs are discussed. Analysis of physiological factors driving hormone and sap movement implicates cues of whole-plant activity for hormone and sap fluxes to stimulate maize inflorescence initiation and organ identity determination. The physiological origins and biogenetic mechanisms underlying maize floral sex determination occurring at the tassel and ear spikelet are thoroughly investigated. The comprehensive outline of maize development and morphogenetic physiology developed in this review will enable farmers to optimize field management and will provide a reference for de novo crop domestication and germplasm improvement using genome editing biotechnologies, promoting agricultural optimization.


Subject(s)
Indoleacetic Acids , Zea mays , Zea mays/metabolism , Indoleacetic Acids/metabolism , Inflorescence/genetics , Cytokinins/metabolism , Hormones/metabolism
10.
Theor Appl Genet ; 136(5): 122, 2023 May 04.
Article in English | MEDLINE | ID: mdl-37142873

ABSTRACT

KEY MESSAGE: A metal transporter ZmNRAMP6 was identified by using a trait-associated co-expression network analysis at a genome-wide level. ZmNRAMP6 confers maize sensitivity to Pb by accumulating it to maize shoots. ZmNRAMP6 knockout detains Pb in roots, activates antioxidant enzymes, and improves Pb tolerance. Lead (Pb) is one of the most toxic heavy metal pollutants, which can penetrate plant cells via root absorption and thus cause irreversible damages to the human body through the food chain. To identify the key gene responsible for Pb tolerance in maize, we performed a trait-associated co-expression network analysis at a genome-wide level, using two maize lines with contrasting Pb tolerances. Finally, ZmNRAMP6 that encodes a metal transporter was identified as the key gene among the Pb tolerance-associated co-expression module. Heterologous expression of ZmNRAMP6 in yeast verified its role in Pb transport. Combined Arabidopsis overexpression and maize mutant analysis suggested that ZmNRAMP6 conferred plant sensitivity to Pb stress by mediating Pb distribution across the roots and shoots. Knockout of ZmNRAMP6 caused Pb retention in the roots and activation of the antioxidant enzyme system, resulting in an increased Pb tolerance in maize. ZmNRAMP6 was likely to transport Pb from the roots to shoots and environment. An integration of yeast one-hybrid and dual-luciferase reporter assay uncovered that ZmNRAMP6 was negatively regulated by a known Pb tolerance-related transcript factor ZmbZIP54. Collectively, knockout of ZmNRAMP6 will aid in the bioremediation of contaminated soil and food safety guarantee of forage and grain corn.


Subject(s)
Plant Roots , Soil Pollutants , Humans , Plant Roots/metabolism , Zea mays/physiology , Antioxidants/metabolism , Lead/toxicity , Lead/metabolism , Saccharomyces cerevisiae , Soil Pollutants/metabolism
11.
Cell Biol Int ; 47(7): 1209-1221, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36883909

ABSTRACT

Abnormal spindle-like microcephaly-associated (ASPM) protein is crucial to the mitotic spindle function during cell replication and tumor progression in multiple tumor types. However, the effect of ASPM in anaplastic thyroid carcinoma (ATC) has not yet been understood. The present study is to elucidate the function of ASPM in the migration and invasion of ATC. ASPM expression is incrementally upregulated in ATC tissues and cell lines. Knockout (KO) of ASPM pronouncedly attenuates the migration and invasion of ATC cells. ASPM KO significantly reduces the transcript levels of Vimentin, N-cadherin, and Snail and increases E-cadherin and Occludin, thereby inhibiting epithelial-to-mesenchymal transition (EMT). Mechanistically, ASPM regulates the movement of ATC cells by inhibiting the ubiquitin degradation of KIF11 and thus stabilizing it via direct binding to it. Moreover, xenograft tumors in nude mice proved that KO of ASPM could ameliorate tumorigenesis and tumor growth accompanied by a decreased protein expression of KIF11 and an inhibition of EMT. In conclusion, ASPM is a potentially useful therapeutic target for ATC. Our results also reveal a novel mechanism by which ASPM inhibits the ubiquitin process in KIF11.


Subject(s)
Thyroid Carcinoma, Anaplastic , Thyroid Neoplasms , Animals , Mice , Humans , Thyroid Carcinoma, Anaplastic/genetics , Thyroid Carcinoma, Anaplastic/metabolism , Thyroid Carcinoma, Anaplastic/pathology , Thyroid Neoplasms/metabolism , Mice, Nude , Cell Line, Tumor , Mice, Knockout , Nerve Tissue Proteins , Ubiquitins/pharmacology , Cell Movement , Cell Proliferation , Kinesins/genetics
12.
Org Biomol Chem ; 21(41): 8273-8278, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37812037

ABSTRACT

Herein, we report a novel regioselective [2 + 1] cyclization reaction of 2-pyridones with carbenes generated in situ via visible light irradiation, without the requirement for catalysts or additives. The diverse functional groups of 2-pyridones and diazo compounds exhibit good tolerance, enabling the rapid synthesis of highly valuable cyclopropanated dihydro-2-pyridone scaffolds with exceptional regio- and stereoselectivity. Furthermore, DFT calculations provide a comprehensive explanation for the regio- and stereoselectivity observed in the reaction.

13.
Biol Pharm Bull ; 46(10): 1385-1393, 2023.
Article in English | MEDLINE | ID: mdl-37779039

ABSTRACT

Cutaneous melanoma is an aggressive cancer, which is the most common type of melanoma. In our previous studies, gambogenic acid (GNA) inhibited the proliferation and migration of melanoma cells. Maternally expressed gene 3 (MEG3) is a long noncoding RNA (lncRNA) that has been shown to have inhibitory effects in a variety of cancers. However, the mechanisms in melanoma progression need to be further investigated. In the current study, we investigated the inhibitory effect of GNA on melanoma and its molecular mechanism through a series of cell and animal experiments. We found that GNA could improve epithelial mesenchymal transition by up-regulating the expression of the lncRNA MEG3 gene, thereby inhibiting melanoma metastasis in vitro and in vivo.


Subject(s)
Melanoma , MicroRNAs , RNA, Long Noncoding , Skin Neoplasms , Animals , Melanoma/drug therapy , Melanoma/genetics , Melanoma/metabolism , Skin Neoplasms/drug therapy , Skin Neoplasms/genetics , Skin Neoplasms/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , Cell Movement/genetics , MicroRNAs/metabolism , Epithelial-Mesenchymal Transition
14.
Proc Natl Acad Sci U S A ; 117(34): 20538-20548, 2020 08 25.
Article in English | MEDLINE | ID: mdl-32788364

ABSTRACT

Tumor suppressor PTEN (phosphatase and tensin homologue deleted on chromosome 10) levels are frequently found reduced in human cancers, but how PTEN is down-regulated is not fully understood. In addition, although a compelling connection exists between PRL (phosphatase of regenerating liver) 2 and cancer, how this phosphatase induces oncogenesis has been an enigma. Here, we discovered that PRL2 ablation inhibits PTEN heterozygosity-induced tumorigenesis. PRL2 deficiency elevates PTEN and attenuates AKT signaling, leading to decreased proliferation and increased apoptosis in tumors. We also found that high PRL2 expression is correlated with low PTEN level with reduced overall patient survival. Mechanistically, we identified PTEN as a putative PRL2 substrate and demonstrated that PRL2 down-regulates PTEN by dephosphorylating PTEN at Y336, thereby augmenting NEDD4-mediated PTEN ubiquitination and proteasomal degradation. Given the strong cancer susceptibility to subtle reductions in PTEN, the ability of PRL2 to down-regulate PTEN provides a biochemical basis for its oncogenic propensity. The results also suggest that pharmacological targeting of PRL2 could provide a novel therapeutic strategy to restore PTEN, thereby obliterating PTEN deficiency-induced malignancies.


Subject(s)
Carcinogenesis , Immediate-Early Proteins/physiology , PTEN Phosphohydrolase/metabolism , Protein Tyrosine Phosphatases/metabolism , Protein Tyrosine Phosphatases/physiology , Animals , Female , HEK293 Cells , Humans , Longevity , Male , Mice, Inbred C57BL , Mice, Knockout , Nedd4 Ubiquitin Protein Ligases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Ubiquitination
15.
Mol Cancer ; 21(1): 70, 2022 03 10.
Article in English | MEDLINE | ID: mdl-35272681

ABSTRACT

BACKGROUND: Pancreatic cancer is one of the most lethal cancers worldwide. The IAPs function as E3 ubiquitin ligases and contribute to pancreatic cancer initiation, progression, and metastasis. Although IAP-targeted therapies have been developed and shown anticancer efficacy in preclinical settings, none of them has been approved yet. METHODS: Transcriptome data from public datasets were used to analyze the correlation of IAPs and E2s, and the biological function of E2 UbcH5c in pancreatic cancer. A structure-based virtual screen was used to identify UbcH5c inhibitor, and surface plasmon resonance analysis and cellular thermal shift assays were employed to evaluate the binding affinity. The anticancer activities were demonstrated through in vitro and in vivo assays, while the related mechanisms were explored through transcriptomic and proteomic analyses and confirmed by western blot, immunofluorescence, and qRT-PCR. RESULTS: UbcH5c is positively correlated with the expression of IAPs in pancreatic cancer. We further found that UbcH5c is overexpressed and associated with a poor prognosis in pancreatic cancer. We identified a small-molecule UbcH5c inhibitor, termed DHPO, which directly bound to UbcH5c protein. DHPO inhibited cell viability and colony formation, induced apoptosis, and suppressed migration and invasion of pancreatic cancer cells in vitro. The compound inhibited UbcH5c-mediated IκBα degradation and NF-κB activation, which is critical for its anticancer activity. Furthermore, DHPO suppressed the tumor growth and metastasis in two orthotopic pancreatic tumor mouse models. CONCLUSIONS: These results indicated that inhibiting UbcH5c is a novel and effective strategy for treating pancreatic cancer and DHPO represents a new class of UbcH5c inhibitor and may be further developed as an anti-pancreatic cancer therapeutic agent.


Subject(s)
Pancreatic Neoplasms , Ubiquitin-Conjugating Enzymes , Animals , Cell Line, Tumor , Humans , Mice , NF-kappa B/metabolism , Pancreatic Neoplasms/pathology , Proteomics , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Protein Ligases/metabolism , Pancreatic Neoplasms
16.
Small ; 18(25): e2201343, 2022 06.
Article in English | MEDLINE | ID: mdl-35608317

ABSTRACT

The electrocatalytic nitrogen reduction reaction (NRR) is a promising approach for renewable ammonia synthesis but remains significantly challenging due to the low yield and poor selectivity. Herein, a facile N and S dual anions substitution strategy is developed to tune the Ti oxidation states of TiO2 nanohybrid catalyst (NS-TiO2 /C), in which anatase TiO2 nanoplates with dense Ti3+ active sites are uniformly dispersed on porous carbon derived from 2D Ti3 C2 Tx nanosheets. The catalyst NS-TiO2 /C exhibits a superior ambient NRR efficiency with an NH3 yield rate of 19.97 µg h-1 mg-1cat and Faradaic efficiency of 25.49% and is coupled with a remarkable 50 h long-term stability at -0.25 V versus RHE. Both experimental and theoretical results reveal that the N and S dual-substitution effectively regulate the Ti oxidation state and electronical properties of the NS-TiO2 /C via simultaneously forming interstitial and substitutional TiS and TiN bonds in the anatase TiO2 lattice, inducing oxygen vacancies and dense Ti3+ active species as well as better electronic conductivity, which substantially facilitates N2 chemisorption and activation, and reduces the energy barrier of the rate-determining step, thereby essentially boosting NRR efficiency. This work provides a valuable approach to the rational design of advanced materials by modulating oxidation states for efficient electrocatalysis.


Subject(s)
Carbon , Titanium , Anions , Carbon/chemistry , Catalysis , Nitrogen/chemistry
17.
Acta Pharmacol Sin ; 43(3): 577-587, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34035484

ABSTRACT

Major depression disorder is a severe and recurrent neuropsychological disorder characterized by lowered mood and social activity and cognitive impairment. Owing to unclear molecular mechanisms of depression, limited interventions are available in clinic. In this study we investigated the role of dynorphin/κ opioid receptor system in the development of depression. Mice were subjected to chronic social defeat stress for 14 days. Chronic social defeat stress induced significant social avoidance in mice characterized by decreased time duration in the interaction zone and increased time duration in the corner zone. Pre-administration of a κ opioid receptor antagonist norBNI (10 mg/kg, i.p.) could prevent the development of social avoidance induced by chronic social defeat stress. Social avoidance was not observed in κ opioid receptor knockout mice subjected to chronic social defeat stress. We further revealed that social defeat stress activated c-fos and ERK signaling in the amygdala without affecting the NAc, hippocampus and hypothalamus, and ERK activation was blocked by systemic injection of norBNI. Finally, the expression of dynorphin A, the endogenous ligand of κ opioid receptor, was significantly increased in the amygdala following social defeat stress; microinjection of norBNI into the amygdala prevented the development of depressive-like behaviors caused by social defeat stress. The present study demonstrates that upregulated dynorphin/κ opioid receptor system in the amygdala leads to the emergence of depression following chronic social defeat stress, and sheds light on κ opioid receptor antagonists as potential therapeutic agents for the prevention and treatment of depression following chronic stress.


Subject(s)
Amygdala/metabolism , Depressive Disorder, Major/pathology , Dynorphins/metabolism , Receptors, Opioid, kappa/antagonists & inhibitors , Social Behavior , Social Defeat , Animals , Behavior, Animal , Extracellular Signal-Regulated MAP Kinases/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Naltrexone/analogs & derivatives , Naltrexone/pharmacology , Proto-Oncogene Proteins c-fos/metabolism
18.
Environ Res ; 206: 112303, 2022 04 15.
Article in English | MEDLINE | ID: mdl-34756913

ABSTRACT

Greenhouse gas (GHG) emissions from soil carbon and nitrogen cycles during freeze-thaw cycles (FTCs) provide positive feedback to climate warming. Biochar is a new type of soil conditioner that shows potential in soil GHG emissions reduction. To explore the mechanisms of the effects of biochar on soil GHG emissions in seasonally frozen soil areas, this study focused on farmland soil in the Songnen Plain. Variations in soil environmental factors, available carbon and nitrogen and microbial biomass were analyzed using an indoor simulation of soil FTCs. A structural equation model (SEM) was established to reveal the key driving factors and potential mechanism of biochar on soil GHG emissions under FTCs. The results showed that biochar increased carbon dioxide (CO2) emissions by 3.40% and methane (CH4) absorption by 2.52% and decreased nitrous oxide (N2O) emissions by 35.90%. SEM showed that soil temperature (ST) was the main environmental factor determining CO2 emissions and that soil moisture (SM) was the main environmental factor determining CH4 and N2O emissions. Soil available carbon and nitrogen and microbial biomass are important for soil GHG emissions as the reaction substrates and main participants in the biochemical transformation of soil carbon and nitrogen, respectively. This study showed that the application of biochar in farmland is a feasible choice to address climate change in the long term via soil carbon sequestration and GHG emissions reduction. The research results provide a theoretical basis and scientific guidance for soil GHG emissions reduction during FTCs in middle to high latitudes.


Subject(s)
Greenhouse Gases , Carbon Dioxide/analysis , Charcoal , Farms , Humans , Methane/analysis , Nitrous Oxide , Soil/chemistry
19.
Biol Pharm Bull ; 45(1): 63-70, 2022.
Article in English | MEDLINE | ID: mdl-34980780

ABSTRACT

Gambogenic acid (GNA) is extracted from plant Gamboge, has a wide range of anti-tumor effects. In this paper, we study the inhibitory effect of GNA on the BEL-7402/ADM of hepatoma resistant cell lines and further study the mechanism of action. Cell viability test represented that GNA could improve the sensitivity of hepatoma drug-resistant cell line BEL-7402/ADM to Adriamycin (ADM), and further study by 4',6-diamidino-2-phenylindole (DAPI) staining and flow cytometry found that GNA could improve the effect of ADM on promoting apoptosis in BEL-7402/ADM cells, and the activation of apoptosis-related protein was significantly increased, and the ratio of Bax to Bcl-2 was significantly increased. Monodansylcadaverine staining and transmission electron microscopy showed that the basal autophagy level of BEL-7402/ADM cells was higher than that of BEL-7402 cells. Further detection of protein expression found that the intracellular LC3-II to LC3-I ratio and Beclin 1 protein expression increased in the combination of GNA and ADM, but the protein level of p62 increased significantly. GNA inhibit protective autophagy in BEL-7402/ADM cells and promote the role of ADM in inducing apoptosis, thereby increasing ADM sensitivity to BEL-7402/ADM cells, and the effect of GNA inhibition of autophagy may be achieved by inhibiting the degradation of autophagosomes.


Subject(s)
Carcinoma, Hepatocellular , Doxorubicin , Apoptosis , Autophagy , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Doxorubicin/pharmacology , Humans , Xanthenes
20.
Int Arch Occup Environ Health ; 95(10): 1935-1944, 2022 12.
Article in English | MEDLINE | ID: mdl-35716174

ABSTRACT

OBJECTIVE: The association between shift schedules and liver enzymes is unclear. This study aims to explore the effect of rotating night shift work on increased liver enzymes. METHODS: The in-service workers of Tangsteel Company who participated in occupational health examination in Tangshan in 2017 were selected as the research objects. Multifaceted exposure metrics of night shift work and comprehensive liver enzymes were used to evaluate rotating night shift work and liver enzymes-associated abnormalities, respectively. RESULTS: There were positive associations between the odds of all liver enzymes-associated abnormalities and duration of night shifts. Different exposure metrics of night shift work were significantly associated with higher odds of elevated alanine aminotransferase (ALT), elevated gamma-glutamyl transaminase (GGT) and increased liver enzymes. Compared with those who never worked night shift, the groups of current night shift, duration of night shifts ≤ 18 years, duration of night shifts > 18 years, cumulative number of night shifts ≤ 1643 nights, cumulative number of night shifts > 1643 nights and average frequency of night shifts > 7 nights/month had an OR of increased liver enzymes of 1.31 (95% CI 1.08-1.58), 1.28 (95% CI 1.05-1.58), 1.27 (95% CI 1.04-1.55), 1.28 (95% CI 1.04-1.58), 1.27 (95% CI 1.04-1.55), 1.32 (95% CI 1.08-1.60) after adjusting for all confounders, respectively. No significant association was found between rotating night shift work and liver enzymes-associated abnormalities among female steelworkers. CONCLUSIONS: Rotating night shift work is associated with elevated ALT, elevated GGT and increased liver enzymes in male steelworkers.


Subject(s)
Shift Work Schedule , Male , Female , Humans , Shift Work Schedule/adverse effects , Cross-Sectional Studies , Work Schedule Tolerance , Liver , China/epidemiology , Circadian Rhythm
SELECTION OF CITATIONS
SEARCH DETAIL