Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Front Microbiol ; 12: 711134, 2021.
Article in English | MEDLINE | ID: mdl-35002989

ABSTRACT

Introduction: The airway microbiota has been linked to specific paediatric respiratory diseases, but studies are often small. It remains unclear whether particular bacteria are associated with a given disease, or if a more general, non-specific microbiota association with disease exists, as suggested for the gut. We investigated overarching patterns of bacterial association with acute and chronic paediatric respiratory disease in an individual participant data (IPD) meta-analysis of 16S rRNA gene sequences from published respiratory microbiota studies. Methods: We obtained raw microbiota data from public repositories or via communication with corresponding authors. Cross-sectional analyses of the paediatric (<18 years) microbiota in acute and chronic respiratory conditions, with >10 case subjects were included. Sequence data were processed using a uniform bioinformatics pipeline, removing a potentially substantial source of variation. Microbiota differences across diagnoses were assessed using alpha- and beta-diversity approaches, machine learning, and biomarker analyses. Results: We ultimately included 20 studies containing individual data from 2624 children. Disease was associated with lower bacterial diversity in nasal and lower airway samples and higher relative abundances of specific nasal taxa including Streptococcus and Haemophilus. Machine learning success in assigning samples to diagnostic groupings varied with anatomical site, with positive predictive value and sensitivity ranging from 43 to 100 and 8 to 99%, respectively. Conclusion: IPD meta-analysis of the respiratory microbiota across multiple diseases allowed identification of a non-specific disease association which cannot be recognised by studying a single disease. Whilst imperfect, machine learning offers promise as a potential additional tool to aid clinical diagnosis.

2.
Front Plant Sci ; 8: 495, 2017.
Article in English | MEDLINE | ID: mdl-28443105

ABSTRACT

The microRNA (miRNA) can regulate the transcripts that are involved in eukaryotic cell proliferation, differentiation, and metabolism. Especially for plants, our understanding of miRNA targets, is still limited. Early attempts of prediction on sequence alignments have been plagued by enormous false positives. It is helpful to improve target prediction specificity by incorporating the other data sources such as the dependency between miRNA and transcript expression or even cleaved transcripts by miRNA regulations, which are referred to as trans-omics data. In this paper, we developed MiRTrans (Prediction of MiRNA targets by Trans-omics data) to explore miRNA targets by incorporating miRNA sequencing, transcriptome sequencing, and degradome sequencing. MiRTrans consisted of three major steps. First, the target transcripts of miRNAs were predicted by scrutinizing their sequence characteristics and collected as an initial potential targets pool. Second, false positive targets were eliminated if the expression of miRNA and its targets were weakly correlated by lasso regression. Third, degradome sequencing was utilized to capture the miRNA targets by examining the cleaved transcripts that regulated by miRNAs. Finally, the predicted targets from the second and third step were combined by Fisher's combination test. MiRTrans was applied to identify the miRNA targets for Capsicum spp. (i.e., pepper). It can generate more functional miRNA targets than sequence-based predictions by evaluating functional enrichment. MiRTrans identified 58 miRNA-transcript pairs with high confidence from 18 miRNA families conserved in eudicots. Most of these targets were transcription factors; this lent support to the role of miRNA as key regulator in pepper. To our best knowledge, this work is the first attempt to investigate the miRNA targets of pepper, as well as their regulatory networks. Surprisingly, only a small proportion of miRNA-transcript pairs were shared between degradome sequencing and expression dependency predictions, suggesting that miRNA targets predicted by a single technology alone may be prone to report false negatives.

3.
Curr Protein Pept Sci ; 15(6): 540-52, 2014.
Article in English | MEDLINE | ID: mdl-25059323

ABSTRACT

Determination of binding sites between proteins is widely applied in many fields, such as drug design and the structural and functional analysis. The protein-protein binding sites can be formed by two subunits in a complex. Understanding energetics and mechanisms of complexes remains one of the essential problems in binding site prediction. We develop a system, P-Binder, for identifying binding sites based on shape complementarity, side-chain conformations and interacting amino acid information. P-Binder utilizes an enumeration method to generate all possible configurations between two proteins, and uses a side-chain packing program to identify the bound states. The system reports the binding sites with the highest ranked configurations, evaluated through a linear combination of four statistical energy items. The experiments show that our method performs better than other prediction methods. A comparison with some existing approaches shows P-Binder to improve the success rate by at least 12.3%. We test P-Binder on 176 protein-protein complexes in Benchmark v4.0. The overall values of accuracy and coverage are 63.8% and 68.8% for the bound state, and 51.0% and 60.9% for the unbound state.


Subject(s)
Protein Interaction Mapping/methods , Proteins/chemistry , Proteins/metabolism , Algorithms , Binding Sites , Databases, Protein , Models, Molecular , Protein Binding , Protein Structure, Secondary , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL