Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 189
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Anal Chem ; 96(23): 9379-9389, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38805056

ABSTRACT

Over the years, a number of state-of-the-art data analysis tools have been developed to provide a comprehensive analysis of data collected from gas chromatography-mass spectrometry (GC-MS). Unfortunately, the time shift problem remains unsolved in these tools. Here, we developed a novel comprehensive data analysis strategy for GC-MS-based untargeted metabolomics (AntDAS-GCMS) to perform total ion chromatogram peak detection, peak resolution, time shift correction, component registration, statistical analysis, and compound identification. Time shift correction was specifically optimized in this work. The information on mass spectra and elution profiles of compounds was used to search for inherent landmarks within analyzed samples to resolve the time shift problem across samples efficiently and accurately. The performance of our AntDAS-GCMS was comprehensively investigated by using four complex GC-MS data sets with various types of time shift problems. Meanwhile, AntDAS-GCMS was compared with advanced GC-MS data analysis tools and classic time shift correction methods. Results indicated that AntDAS-GCMS could achieve the best performance compared to the other methods.


Subject(s)
Gas Chromatography-Mass Spectrometry , Metabolomics , Gas Chromatography-Mass Spectrometry/methods , Metabolomics/methods , Animals , Time Factors , Data Analysis
2.
J Neuroinflammation ; 21(1): 167, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956605

ABSTRACT

BACKGROUND: Deposition of amyloid ß, which is produced by amyloidogenic cleavage of APP by ß- and γ-secretase, is one of the primary hallmarks of AD pathology. APP can also be processed by α- and γ-secretase sequentially, to generate sAPPα, which has been shown to be neuroprotective by promoting neurite outgrowth and neuronal survival, etc. METHODS: The global expression profiles of miRNA in blood plasma samples taken from 11 AD patients as well as from 14 age and sex matched cognitively normal volunteers were analyzed using miRNA-seq. Then, overexpressed miR-140 and miR-122 both in vivo and in vitro, and knock-down of the endogenous expression of miR-140 and miR-122 in vitro. Used a combination of techniques, including molecular biology, immunohistochemistry, to detect the impact of miRNAs on AD pathology. RESULTS: In this study, we identified that two miRNAs, miR-140-3p and miR-122-5p, both targeting ADAM10, the main α-secretase in CNS, were upregulated in the blood plasma of AD patients. Overexpression of these two miRNAs in mouse brains induced cognitive decline in wild type C57BL/6J mice as well as exacerbated dyscognition in APP/PS1 mice. Although significant changes in APP and total Aß were not detected, significantly downregulated ADAM10 and its non-amyloidogenic product, sAPPα, were observed in the mouse brains overexpressing miR-140/miR-122. Immunohistology analysis revealed increased neurite dystrophy that correlated with the reduced microglial chemotaxis in the hippocampi of these mice, independent of the other two ADAM10 substrates (neuronal CX3CL1 and microglial TREM2) that were involved in regulating the microglial immunoactivity. Further in vitro analysis demonstrated that both the reduced neuritic outgrowth of mouse embryonic neuronal cells overexpressing miR-140/miR-122 and the reduced Aß phagocytosis in microglia cells co-cultured with HT22 cells overexpressing miR-140/miR-122 could be rescued by overexpressing the specific inhibitory sequence of miR-140/miR-122 TuD as well as by addition of sAPPα, rendering these miRNAs as potential therapeutic targets. CONCLUSIONS: Our results suggested that neuroprotective sAPPα was a key player in the neuropathological progression induced by dysregulated expression of miR-140 and miR-122. Targeting these miRNAs might serve as a promising therapeutic strategy in AD treatment.


Subject(s)
Alzheimer Disease , Chemotaxis , Mice, Inbred C57BL , MicroRNAs , Microglia , MicroRNAs/metabolism , MicroRNAs/genetics , Animals , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/genetics , Mice , Humans , Microglia/metabolism , Microglia/pathology , Male , Chemotaxis/physiology , Female , ADAM10 Protein/metabolism , ADAM10 Protein/genetics , Amyloid Precursor Protein Secretases/metabolism , Amyloid Precursor Protein Secretases/genetics , Mice, Transgenic , Aged , Gene Expression Regulation
3.
Inorg Chem ; 63(24): 10943-10948, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38818955

ABSTRACT

Investigating novel nonlinear optical (NLO) active units serves as a valuable method for broadening the research landscape of NLO materials. This study showcases the potential of the cytosinium cation (C4H6N3O)+ as a novel NLO-active motif through theoretical calculations. The title compound exhibited a wide band gap of 3.85 eV, along with a moderate second harmonic generation (SHG) response of 1.65 times that of KH2PO4 (KDP) and significant birefringence of 0.47. Its exceptional optical properties are primarily attributed to the synergy interaction between cations and anionic groups in the asymmetric unit.

4.
Inorg Chem ; 63(10): 4487-4491, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38416696

ABSTRACT

We herein report an unprecedented organic-inorganic hybrid borate incorporating a novel nonlinear-optical (NLO) active unit, namely, [C(NH2)3][B(C2O2H4)2]. The novel NLO active unit was derived from the condensation reaction between two glycol molecules and one (BO4)5- group. The title compound exhibits a moderate second-harmonic-generation effect (0.7 × KDP), a significant band gap (5.76 eV), and a suitable birefringence (0.078 at 550 nm). The optical properties are determined by the synergistic interaction between the C(NH2)3+ cation and the [B(C2O2H4)2]- group, as indicated by theoretical calculations.

5.
Inorg Chem ; 63(8): 3948-3954, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38350031

ABSTRACT

The key to searching novel nonlinear optical (NLO) crystals was effectively combining the NLO-active units to obtain a noncentrosymmetric structure. Nevertheless, the present predicament lies in the growing challenge of discovering novel crystals within conventional inorganic frameworks that surpass the properties of the current NLO materials. In view of this, researchers expanded their research focus to the organic-inorganic hybridization system; it is foreseeable to concentrate the advantages from several kinds of NLO-active units to acquire novel NLO crystals with superior properties. We herein report an organic-inorganic hybrid molybdate crystal, namely, [C(NH2)3]6Mo7O24 (GMO). It was successfully obtained via combining inorganic NLO-active MoO6 octahedra and organic π-conjugated [C(NH2)3]+ groups. GMO demonstrates a moderate second-harmonic-generation response, specifically measuring about 1.3 times the value of KDP. Additionally, it exhibits a significant birefringence value of 0.203 at the wavelength of 550 nm and possesses a wide band gap of 3.31 eV. Theoretical calculations suggest that the optical properties of the GMO are primarily influenced by the synergy effect of [C(NH2)3]+ groups between MoO6 octahedra.

6.
J Asthma ; : 1-10, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38767583

ABSTRACT

OBJECTIVE: To investigate the role of 14-3-3ß in acute asthma exacerbations in children and analyze the risk factors for asthma exacerbations. METHODS: This study recruited 101 children with acute asthma exacerbations, 101 children with stable asthma, and 65 healthy children. Serum 14-3-3ß was compared among the three groups. Factors such as asthma family history, skin prick test, serum-specific IgE test, coinfections, and clinical indicators (FeNO, FEV1, white blood cells, eosinophils, and serum IgE level) were compared between the asthma groups. Risk factors associated with acute asthma exacerbations were identified using multivariate logistic regression models. ROC curve was drawn to determine the diagnostic sensitivity and specificity of 14-3-3ß. RESULTS: Serum 14-3-3ß was significantly greater in the acute asthma group than in the stable asthma and control groups. Serum 14-3-3ß was higher in severe acute asthma group than in mild-moderate asthma group. There were no significant differences in serum 14-3-3ß levels between stable asthma and control groups (p > .05). Multivariate logistic regression analysis revealed that serum 14-3-3ß level, FeNO, coinfection, and FEV1 z-score significantly increased the odds of acute asthma exacerbations in children. The optimal 14-3-3ß cutoff value (39.79 ng/mL), had a sensitivity of 69.3% and specificity of 94.1% for predicting acute asthma exacerbations. CONCLUSIONS: 14-3-3ß is elevated in children with acute exacerbations of asthma, and increases with exacerbation severity. 14-3-3ß, FeNO, FEV1, and coinfection could be independent risk factors for predicting asthma exacerbations. The optimal 14-3-3ß cutoff value for predicting asthma exacerbations was 39.79 ng/mL.

7.
J Assist Reprod Genet ; 41(1): 127-133, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37991656

ABSTRACT

OBJECTIVE: Spinal muscular atrophy (SMA) is an autosomal recessive disorder mainly affecting the neuromuscular system, which seriously threatens the life and health of patients. But few studies have reported the acceptance rate of SMA gene screening and SMA carrier rate in China. The present study aimed to clarify the two issues in China through a retrospective analysis of 18,818 reproductive age women in Wuhan area of China. METHODS: The copy number (CN) of exons 7 and 8 in survival motor neuron 1 (SMN1) gene was detected by real-time quantitative PCR, and the results were verified by multiplex ligation-dependent probe amplification. RESULTS: Carrier screening was offered to 44,953 women of childbearing age in our medical center from March, 2018, to February, 2022, of whom 18,818 were enrolled in the program. A total of 336 women were identified as carriers (1.73%; 326/18,808; without fertility history of the children with SMA). Among 18,818 reproductive age women, 286 spouses (85.12%; 286/336) were successfully recalled for screening. The results showed 17 couples at high risk of having children with SMA, of whom prenatal diagnosis was implemented in 11, and 6 fetuses were identified with SMA. All the 5 pregnant women bearing the 6 SMA fetuses chose to terminate the pregnancy by artificial abortion. CONCLUSION: Reproductive age women and their spouses in Wuhan area showed a positive attitude toward general screening for SMA carriers. Given the high early mortality of children with SMA, screening for SMA carriers in women of reproductive age is necessary and feasible.


Subject(s)
Muscular Atrophy, Spinal , Child , Humans , Female , Pregnancy , Retrospective Studies , Genetic Carrier Screening/methods , Muscular Atrophy, Spinal/diagnosis , Muscular Atrophy, Spinal/epidemiology , Muscular Atrophy, Spinal/genetics , China/epidemiology , Motor Neurons , Survival of Motor Neuron 1 Protein/genetics
8.
J Craniofac Surg ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38687033

ABSTRACT

AIM: To investigate the clinical nursing effect of bispectral index (BIS) monitoring for paroxysmal sympathetic hyperactivity (PSH) patients in the neurosurgical intensive care unit (NICU). METHODS: From January 2022 to June 2023, a total of 30 patients with PSH secondary to moderate to severe craniocerebral injury in the NICU were monitored for BIS. The patients' paroxysmal sympathetic hyperactivity-assessment measure (PSH-AM) scores were recorded. PSH patients generally appear in 3 states: calm state, seizure state, and postmedication state. Thirty PSH patients' BIS values were recorded during the calm period, during the seizure state, and postmedication state, and these 3 different stages' BIS values were divided into groups A, B, and C, using the Kruskal-Wallis H test to compare groups. RESULTS: The Kruskal-Wallis H test yielded a value of H=22.599, P<0.001. H0 was rejected against the test standard of α=0.05, and the BIS values of groups A, B, and C differed. The BIS values of group A and group B differed after a pairwise comparison, and the difference was statistically significant (adjusted P=0.001). Group B and group C had different BIS values, and the difference was statistically significant (adjusted P=0.001); group A and Group C had no difference in BIS values, and the difference was not statistically significant (adjusted P=1.00). CONCLUSIONS: Taking BIS value as the nursing observation index for PSH patients can make nursing work more objective, reasonable, and accurate, reduce the inducing factors of PSH attack, further reduce the attack of PSH, save nursing resources, and help guide the safety assessment of sedative use.

9.
Anal Chem ; 95(2): 638-649, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36599407

ABSTRACT

Data-dependent acquisition (DDA) mode in ultra-high-performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS) can provide massive amounts of MS1 and MS/MS information of compounds in untargeted metabolomics and can thus facilitate compound identification greatly. In this work, we developed a new platform called AntDAS-DDA for the automatic processing of UHPLC-HRMS data sets acquired under the DDA mode. Several algorithms, including extracted ion chromatogram extraction, feature extraction, MS/MS spectrum construction, fragment ion identification, and MS1 spectrum construction, were developed within the platform. The performance of AntDAS-DDA was investigated comprehensively with a mixture of standard and complex plant data sets. Results suggested that features in complex sample matrices can be extracted effectively, and the constructed MS1 and MS/MS spectra can benefit in compound identification greatly. The efficiency of compound identification can be improved by about 20%. AntDAS-DDA can take full advantage of MS/MS information in multiple sample analyses and provide more MS/MS spectra than single sample analysis. A comparison with advanced data analysis tools indicated that AntDAS-DDA may be used as an alternative for routine UHPLC-HRMS-based untargeted metabolomics. AntDAS-DDA is freely available at http://www.pmdb.org.cn/antdasdda.


Subject(s)
Metabolomics , Tandem Mass Spectrometry , Tandem Mass Spectrometry/methods , Metabolomics/methods , Chromatography, High Pressure Liquid/methods , Ions , Data Analysis
10.
Crit Rev Biotechnol ; 43(1): 121-141, 2023 Feb.
Article in English | MEDLINE | ID: mdl-34865578

ABSTRACT

Glycoside hydrolases (GHs) exhibit high activity and stability under harsh conditions, such as high temperatures and extreme pHs, given their wide use in industrial biotechnology. However, strategies for improving the acidophilic and alkalophilic adaptations of GHs are poorly summarized due to the complexity of the mechanisms of these adaptations. This review not only highlights the adaptation mechanisms of acidophilic and alkalophilic GHs under extreme pH conditions, but also summarizes the recent advances in engineering the pH performances of GHs with a focus on four strategies of protein engineering, enzyme immobilization, chemical modification, and medium engineering (additives). The examples described here summarize the methods used in modulating the pH performances of GHs and indicate that methods integrated in different protein engineering techniques or methods are efficient to generate industrial biocatalysts with the desired pH performance and other adapted enzyme properties.


Subject(s)
Glycoside Hydrolases , Protein Engineering , Glycoside Hydrolases/chemistry , Biotechnology , Enzymes, Immobilized/chemistry
11.
Biotechnol Bioeng ; 120(6): 1521-1530, 2023 06.
Article in English | MEDLINE | ID: mdl-36799475

ABSTRACT

Carbonyl reductase (CR)-catalyzed bioreduction in the organic phase and the neat substrate reaction system is a lasting challenge, placing higher requirements on the performance of enzymes. Protein engineering is an effective method to enhance the properties of enzymes for industrial applications. In the present work, a single point mutation E145A on our previously constructed CR mutant LsCRM3 , coevolved thermostability, and activity. Compared with LsCRM3 , the catalytic efficiency kcat /KM of LsCRM3 -E145A (LsCRM4 ) was increased from 6.6 to 21.9 s-1 mM-1 . Moreover, E145A prolonged the half-life t1/2 at 40°C from 4.1 to 117 h, T m ${T}_{m}$ was increased by 5°C, T 50 30 ${T}_{50}^{30}$ was increased by 14.6°C, and Topt was increased by 15°C. Only 1 g/L of lyophilized Escherichia coli cells expressing LsCRM4 completely reduced up to 600 g/L 2-chloro-1-(3,4-difluorophenyl)ethanone (CFPO) within 13 h at 45°C, yielding the corresponding (1S)-2-chloro-1-(3,4-difluorophenyl)ethanol ((S)-CFPL) in 99.5% eeP , with a space-time yield of 1.0 kg/L d, the substrate to catalyst ratios (S/C) of 600 g/g. Compared with LsCRM3 , the substrate loading was increased by 50%, with the S/C increased by 14 times. Compared with LsCRWT , the substrate loading was increased by 6.5 times. In contrast, LsCRM4 completely converted 600 g/L CFPO within 12 h in the neat substrate bioreaction system.


Subject(s)
Point Mutation , Protein Engineering , Catalysis , Ethanol , Substrate Specificity
12.
Inorg Chem ; 62(28): 11009-11015, 2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37384798

ABSTRACT

The urgent need to promote the development of sustainable energy conversion requires exploration of highly efficient oxygen evolution reaction (OER) electrocatalysts. Defect engineering is a promising approach to address the inherent low electrical conductivity of metal oxides and limited reaction sites, for use in clean air applications and as electrochemical energy-storage electrocatalysts. In this article, oxygen defects are introduced into La2CoMnO6-δ perovskite oxides through the A-site cation defect strategy. By tuning the content of the A-site cation, oxygen defect concentration and corresponding electrochemical OER performance have been greatly improved. As a result, the defective La1.8CoMnO6-δ (L1.8CMO) catalyst exhibits exceptional OER activity with an overpotential of 350 mV at 10 mA cm-2, approximately 120 mV lower than that of the pristine perovskite. This enhancement can be attributed to the increase in surface oxygen vacancies, optimized eg occupation of transition metal at the B-site, and enlarged Brunauer-Emmett-Teller surface area. The reported strategy facilitates the development of novel defect-mediated perovskites in electrocatalysis.

13.
Inorg Chem ; 62(28): 11233-11239, 2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37409591

ABSTRACT

Developing economical, efficient, and durable oxygen evolution catalysts is crucial for achieving sustainable energy conversion and storage. Ruddlesden-Popper-type perovskite oxides are at the forefront of oxygen evolution reaction (OER) research. However, their activity and stability are far from satisfactory. Therefore, we emphasize the paradigm shift in designing efficient perovskite-type OER catalysts through anion defect engineering. The Cl anion-doped A2BO4-type perovskite oxides, SrLaCoO4-xClx (SLCOClx), were employed as highly efficient OER catalysts, wherein Cl could tune the electronic structure of SrLaCoO4 (SLCO) to enhance the OER activity effectively. Especially, SLCOCl0.15 demonstrates significantly enhanced OER activity, and the overpotential is only 370 mV at 10 mA·cm-2, which is significantly better than that of SLCO (510 mV). As confirmed by experience results and density functional theory (DFT) calculation, due to the doping of Cl, obviously increasing the ratio of Co2+/Co3+, more abundant oxygen vacancies (O22-/O-) are generated, and the electrical conductivity is increased, which together promote the improvement of OER activity.

14.
Inorg Chem ; 62(4): 1323-1327, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36657021

ABSTRACT

Herein, we report an unprecedented asymmetric guanidinium polyiodate, namely, C(NH2)3(I3O8)(HI3O8)(H2I2O6)(HIO3)4·3H2O (1). The title compound was obtained via the hybridization of polyiodate anions and planar π-conjugated C(NH2)3+; meanwhile, its strong second-harmonic-generation (SHG) response (2.1 × KDP, where KDP = KH2PO4) and wide band gap (3.89 eV) were mainly dominated by the synergy effect of the aforementioned structural units.

15.
Inorg Chem ; 62(12): 4757-4761, 2023 Mar 27.
Article in English | MEDLINE | ID: mdl-36916671

ABSTRACT

We herein report a mixed organic cationic hybrid nitrate, namely, [C(NH2)2NHNO2][C(NH2)3](NO3)2 (1). It was successfully achieved via combining three different planar groups: [(C(NH2)2NHNO2]+, C(NH2)3+, and NO3-. First-principles calculations confirm that the [(C(NH2)2NHNO2]+ group is an excellent cationic nonlinear-optical (NLO)-active unit. The title compound exhibits a moderate second-harmonic-generation (SHG) response (1.5 × KDP), a wide band gap (3.58 eV), and a suitable birefringence of 0.071 at 550 nm. Theoretical calculations indicate that the synergy effect between the [(C(NH2)2NHNO2]+ and C(NH2)3+ groups dominates the SHG process.

16.
BMC Infect Dis ; 23(1): 620, 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37735363

ABSTRACT

BACKGROUND: COVID-19 is a global pandemic. Understanding the immune responses in pregnant women recovering from COVID-19 may suggest new therapeutic approaches. METHODS: We performed a cross-sectional study between March 1, 2020, and September 1, 2020. Participants were assigned into the convalescent COVID-19 group if they had a previous COVID-19 infection during pregnancy or the healthy control group. RNA-Seq was performed on human umbilical cord mesenchymal stem cells (hUMSCs) and human amniotic mesenchymal stem cells (hAMSCs). Immunohistochemical staining, cytokine testing, lymphocyte subset analysis, RNA-Seq, and functional analyses were performed on the placental and umbilical cord blood (UCB) and compared between the two groups. RESULTS: A total of 40 pregnant women were enrolled, with 13 in the convalescent group and 27 in the control group. There were 1024, 46, and 32 differentially expressed genes (DEGs) identified in the placental tissue, hUMSCs, and hAMSCs between the convalescent and control groups, respectively. Enrichment analysis showed those DEGs were associated with immune homeostasis, antiviral activity, cell proliferation, and tissue repair. Levels of IL-6, TNF-α, total lymphocyte counts, B lymphocytes, Tregs percentages, and IFN-γ expressing CD4+ and CD8+ T cells were statistically different between two groups (p ≤ 0.05). ACE2 and TMPRSS2 expressed on the placenta were not different between the two groups (p > 0.05). CONCLUSION: Multiple changes in immune responses occurred in the placental tissue, hUMSCs, and hAMSCs after maternal recovery from COVID-19, which might imply their protective roles against COVID-19 infection.


Subject(s)
COVID-19 , Cytokines , Pregnancy , Female , Humans , CD8-Positive T-Lymphocytes , Cross-Sectional Studies , Pregnant Women , Placenta , RNA
17.
J Med Genet ; 59(4): 351-357, 2022 04.
Article in English | MEDLINE | ID: mdl-33811136

ABSTRACT

BACKGROUND: Progressive cavitating leukoencephalopathy (PCL) is thought to result from mutations in nuclear genes affecting mitochondrial function and energy metabolism. To date, mutations in two subunits of complex I, NDUFS1 and NDUFV1, have been reported to be related to PCL. METHODS: Patients underwent clinical examinations, brain MRI, skin biopsy and muscle biopsy. Whole-genome or whole-exome sequencing was performed on the index patients from two unrelated families with PCL. The effects of the mutations were examined through complementation of the NDUFV2 mutation by cDNA expression. RESULTS: The common clinical features of the patients in this study were recurring episodes of acute or subacute developmental regression that appeared in the first years of life, followed by gradual remissions and prolonged periods of stability. MRI showed leukoencephalopathy with multiple cavities. Three novel NDUFV2 missense mutations were identified in these families. Complex I deficiency was confirmed in affected individuals' fibroblasts and a muscle biopsy. Functional and structural analyses revealed that these mutations affect the structural stability and function of the NDUFV2 protein, indicating that defective NDUFV2 function is responsible for the phenotypes in these individuals. CONCLUSIONS: Here, we report the clinical presentations, neuroimaging and molecular and functional analyses of novel mutations in NDUFV2 in two sibling pairs of two Chinese families presenting with PCL. We hereby expand the knowledge on the clinical phenotypes associated with mutations in NDUFV2 and the genotypes causative for PCL.


Subject(s)
Leukoencephalopathies , Mitochondrial Diseases , NADH Dehydrogenase , Exome , Humans , Leukoencephalopathies/diagnostic imaging , Leukoencephalopathies/genetics , Mitochondrial Diseases/genetics , Mutation , NADH Dehydrogenase/genetics , Exome Sequencing
18.
Am J Emerg Med ; 73: 166-170, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37696074

ABSTRACT

BACKGROUND: The emergency department (ED) triage process serves as a crucial first step for patients seeking acute care, This initial assessment holds crucial implications for patient survival and prognosis. In this study, a systematic review of the existing literature was performed to investigate the performance of machine learning (ML) models in recognizing and predicting the need for intensive care among ED patients. METHODS: Four prominent databases (PubMed, Embase, Cochrane Library and Web of Science) were searched for relevant literature published up to April 28, 2023. The Prediction model study Risk of Bias Assessment Tool (PROBAST) was employed to evaluate the risk of bias and feasibility of prediction models. RESULTS: In ten studies, the main algorithms used were Gradient Boostin, Logistic Regressio, Neural Network, Support Vector Machines, Random Forest. The performance of each model was as follows: Gradient Boosting had a sensitivity range of 0.3 to 0.96, specificity range of 0.6 to 0.99, accuracy range of 0.37 to 0.99, precision range of 0.3 to 0.96, and AUC value range of 0.68 to 0.93; Logistic Regression had a sensitivity range of 0.46 to 0.97, specificity range of 0.28 to 0.99, accuracy range of 0.66 to 0.97, precision range of 0.27 to 0.63, and AUC value range of 0.72 to 0.97; Neural Networks had a sensitivity range of 0.45 to 0.96, specificity range of 0.58 to 0.99, accuracy range of 0.36 to 0.97, precision range of 0.27 to 0.96, and AUC value range of 0.67 to 0.91; Support Vector Machines had a sensitivity range of 0.49 to 0.83, specificity range of 0.94 to 0.98, accuracy range of 0.33 to 0.97, precision range of 0.53 to 0.94, and AUC values were not reported; Random Forests had a sensitivity range of 0.75 to 0.91, specificity range of 0.77 to 0.94, accuracy range of 0.35 to 0.77, precision range of 0.36 to 0.94, and AUC value of 0.83. CONCLUSION: ML models have demonstrated good performance in identifying and predicting critically ill patients in ED triage. However, because of the limited number of studies on each model, further high-quality prospective research is needed to validate these findings.

19.
Int J Mol Sci ; 24(12)2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37372989

ABSTRACT

Collagens serve essential mechanical functions throughout the body, particularly in the connective tissues. In articular cartilage, collagens provide most of the biomechanical properties of the extracellular matrix essential for its function. Collagen plays a very important role in maintaining the mechanical properties of articular cartilage and the stability of the ECM. Noteworthily, many pathogenic factors in the course of osteoarthritis and rheumatoid arthritis, such as mechanical injury, inflammation, and senescence, are involved in the irreversible degradation of collagen, leading to the progressive destruction of cartilage. The degradation of collagen can generate new biochemical markers with the ability to monitor disease progression and facilitate drug development. In addition, collagen can also be used as a biomaterial with excellent properties such as low immunogenicity, biodegradability, biocompatibility, and hydrophilicity. This review not only provides a systematic description of collagen and analyzes the structural characteristics of articular cartilage and the mechanisms of cartilage damage in disease states but also provides a detailed characterization of the biomarkers of collagen production and the role of collagen in cartilage repair, providing ideas and techniques for clinical diagnosis and treatment.


Subject(s)
Arthritis, Rheumatoid , Cartilage, Articular , Osteoarthritis , Humans , Osteoarthritis/etiology , Osteoarthritis/therapy , Osteoarthritis/metabolism , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/etiology , Arthritis, Rheumatoid/metabolism , Collagen/metabolism , Extracellular Matrix/metabolism , Cartilage, Articular/metabolism
20.
Molecules ; 28(17)2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37687116

ABSTRACT

Hericium erinaceus (HE), a widely utilized natural remedy and dietary source, has garnered significant attention for its therapeutic potential in various diseases. In this study, we employed supercritical fluid extraction (SFE) technology to isolate the bioactive compounds from HE's fruiting body. Comprehensive assessments of the antioxidant and antibacterial activities were conducted, along with in vitro investigations on the human colon cancer cell line (HCT-8). The SFE rate served as the evaluation metric, while the variables of extraction time, pressure, and temperature were systematically examined. By integrating the response surface center composite design, we successfully optimized the extraction process, yielding optimal parameters of 80 min, 30 MPa, and 35 °C, thus resulting in an extraction rate of 2.51%. These optimized conditions exhibited considerable antioxidant capacity, anticancer activity, and antibacterial potential. Furthermore, we employed graded alcohol extraction to refine the crude extracts, thereby confirming superior anticancer effects under a 70% alcohol precipitation. To elucidate the composition, Fourier-transform infrared spectroscopy (FT-IR) and gas chromatography-mass spectrometry (GC-MS) were employed to analyze the crude extracts and isolates of HE, facilitating a comparative analysis of six HE varieties. Our findings suggest that sterol derivatives hold promise as the active component against the colon cancer HCT-8 cell line. In conclusion, this study underscores the potential of HE SFE in the development of functional foods or alternative drugs for colon cancer treatment, thus opening new avenues for therapeutic interventions.


Subject(s)
Colonic Neoplasms , Humans , Antioxidants/pharmacology , Spectroscopy, Fourier Transform Infrared , Colonic Neoplasms/drug therapy , Anti-Bacterial Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL