Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
Amino Acids ; 55(2): 263-273, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36539546

ABSTRACT

Comprehensive knowledge of the intracellular protein interactions of cell-surface receptors will greatly advance our comprehension of the underlying trafficking mechanisms. Hence, development of effective and high-throughput approaches is highly desired. In this work, we presented a strategy aiming to tailor toward the analysis of intracellular protein interactome of cell-surface receptors. We used α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors subunit GluA1 as an example to illustrate the methodological application. To capture intracellular proteins that interact with GluA1, after surface biotinylation of the prepared hippocampal neurons and slices, the non-biotinylated protein components as intracellular protein-enriched fraction were unconventionally applied for the following co-immunoprecipitation. The co-immuno-precipitated proteins were then analyzed through mass spectrometry-based proteomics and bioinformatics platforms. The detailed localizations indicated that intracellular proteins accounted for up to 93.7 and 90.3% of the analyzed proteins in the neurons and slices, respectively, suggesting that our protein preparation was highly effective to characterize intracellular interactome of GluA1. Further, we systematically revealed the protein functional profile of GluA1 intracellular interactome, thereby providing complete overview and better comprehension of diverse intracellular biological processes correlated with the complex GluA1 trafficking. All experimental results demonstrated that our methodology would be applicable and useful for intracellular interaction proteomics of general cell-surface receptors.


Subject(s)
Neurons , Proteomics , Neurons/metabolism , Hippocampus/metabolism , Receptors, Cell Surface
2.
Chembiochem ; 22(2): 340-344, 2021 01 15.
Article in English | MEDLINE | ID: mdl-32790056

ABSTRACT

Anti-apoptotic B cell lymphoma 2 (BCL-2) family proteins are proven targets for human cancers. Targeting the BH3-binding pockets of these anti-apoptotic proteins could reactivate apoptosis in BCL-2-depedent cancers. BFL-1 is a BCL-2 family protein overexpressed in various chemoresistant cancers. A unique cysteine at the binding interface of the BH3 and BFL-1 was previously proven to be an intriguing targeting site to irreversibly inhibit BFL-1 functions with stabilized cyclic peptide bearing a covalent warhead. Recently, we developed a sulfonium-tethered peptide cyclization strategy to construct peptide ligands that could selectively and efficiently react with the cysteine(s) of target proteins near the interacting interface. Using this method, we constructed a BFL-1 peptide inhibitor, B4-MC, that could selectively conjugate with BFL-1 both in vitro and in cell. B4-MC showed good cellular uptake, colocalized with BFL-1 on mitochondria, and showed obvious growth inhibition of BFL-1 over-expressed cancer cell lines.


Subject(s)
Apoptosis Regulatory Proteins/antagonists & inhibitors , Peptides/pharmacology , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Sulfhydryl Compounds/pharmacology , Apoptosis Regulatory Proteins/chemistry , Cell Line, Tumor , Humans , Minor Histocompatibility Antigens/chemistry , Peptides/chemistry , Proto-Oncogene Proteins c-bcl-2/chemistry , Sulfhydryl Compounds/chemistry
3.
Amino Acids ; 53(9): 1339-1350, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34363538

ABSTRACT

Mounting studies have demonstrated that RAB3GAP1 expression is modified in brain diseases with multiple neurobiological functions and processes and acts as a potentially significant target. However, the cellular and molecular events arising from RAB3GAP1 dysexpression are still incompletely understood. In this work, underexpression and overexpression of RAB3GAP1 were first induced into cultured mouse cortical neurons by transfection with lentivirus plasmids. Then we globally explored the effects of RAB3GAP1 dysexpression on the proteome of the neurons through the use of isobaric tag for relative and absolute quantitation (iTRAQ)-based quantitative proteomics with bioinformatics. A total of 364 proteins in the RAB3GAP1-underexpression group and 314 proteins in the RAB3GAP1-overexpression group were identified to be differentially expressed. Subsequent bioinformatics analysis indicated that the proteome functional expression profiles induced by RAB3GAP1 underexpression and overexpression were different, suggesting the potential differences in biological processes and cellular effects. Subsequent intergroup cross-comparison revealed some candidate target proteins regulated directly by RAB3GAP1. Further parallel reaction monitoring (PRM) analysis illustrated that Sub1, Ssrp1, and Top1 proteins might serve as new potentially important linkers in the RAB3GAP1-mediated autophagy pathway in the cortical neurons. Collectively, the current proteomics data furnished new valuable insights to better understand the regulatory molecular mechanism of neuronal RAB3GAP1.


Subject(s)
Cerebral Cortex/metabolism , Neurons/metabolism , Proteome/metabolism , Proteomics/methods , rab3 GTP-Binding Proteins/metabolism , Animals , Computational Biology/methods , Mice , Proteome/analysis , rab3 GTP-Binding Proteins/antagonists & inhibitors , rab3 GTP-Binding Proteins/genetics
4.
Mycopathologia ; 186(1): 1-13, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33184749

ABSTRACT

BACKGROUND: Allergic bronchopulmonary aspergillosis (ABPA) constantly develops in asthmatics, which has not been fully investigated. OBJECTIVES: This study aimed to investigate serum differentially expressed proteins (DEPs) between ABPA and asthma using the new approach isobaric tags by relative and absolute quantitation (iTRAQ). METHODS: Each 16 serum samples from ABPA or asthmatic subjects were pooled and screened using iTRAQ. After bioinformatic analysis, five candidate DEPs were validated in the enlarged serum samples from additional 21 ABPA, 31 asthmatic and 20 healthy subjects using ELISA. A receiver operating characteristic (ROC) curve was used to estimate the diagnostic power of carnosine dipeptidase 1 (CNDP1). RESULTS: A total of 29 DEPs were screened out between ABPA and asthmatic groups. Over half of them were enriched in proteolysis and regulation of protein metabolic process. Further verification showed serum levels of immunoglobulin heavy constant gamma 1, α-1-acid glycoprotein 1, corticosteroid-binding globulin and vitronectin were neither differentially altered between ABPA and asthma nor consistent with the proteomic analysis. Only serum CNDP1 was significantly decreased in ABPA patients, compared with asthmatics and healthy controls (P < 0.01 and P < 0.05). The ROC analysis determined 10.73 ng/mL as the cutoff value of CNDP1, which could distinguish ABPA among asthmatics (AUC 0.770, 95%CI 0.632-0.875, P < 0.001). CONCLUSIONS: This study firstly identified serological DEPs between ABPA and asthma using the new technique iTRAQ. Serum CNDP1 might assist the differential diagnosis of ABPA from asthma and serve as a new pathogenetic factor in fungal colonization and sensitization.


Subject(s)
Aspergillosis, Allergic Bronchopulmonary , Asthma , Aspergillus fumigatus/immunology , Asthma/diagnosis , Diagnosis, Differential , Humans , Immunoglobulin E , Proteomics
5.
Fish Shellfish Immunol ; 94: 149-156, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31465873

ABSTRACT

Anti-lipopolysaccharide factors (ALFs) are important host-defense molecules of crustaceans. They all contain a lipopolysaccharide-binding domain (LBD) and some ALFs exhibit strong antimicrobial activity. In this research, a Group G ALF from Penaeus monodon (ALFPm11) was studied. It is an anionic peptide specifically having a cationic and highly amphipathic LBD, with five positively charged residues separated by aromatic residues. It was abundantly expressed in the hepatopancreas of P. monodon normally but the expression level in other tissues was relatively low or undetectable. However, in the shrimps challenged by Vibrio, expression of ALFPm11 could be detected in all tissues. Chemically synthesized ALFPm11-LBD displayed high inhibitory activity (minimum inhibition concentration≤ 4 µM) against various bacteria, e.g. Exiguobacterium sp. L33, Bacillus sp. T2, and Acinetobacter sp. L32. It also displayed apparent activity in the agar well diffusion assay. Furthermore, it could efficiently induce agglutination of both Gram-positive and Gram-negative bacteria and cause significant membrane permeabilization of the bacteria. As a comparative study, ALFPm11-LBD showed a better or equal antimicrobial function to ALFPm3-LBD which was reported to possess strong antimicrobial activity against Gram-positive, Gram-negative bacteria and fungi. Thus, this research found a new effective ALF in P. monodon and demonstrated its antimicrobial mechanism, suggesting its potential applications in the future.


Subject(s)
Antimicrobial Cationic Peptides/genetics , Antimicrobial Cationic Peptides/immunology , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Immunity, Innate/genetics , Penaeidae/genetics , Penaeidae/immunology , Amino Acid Sequence , Animals , Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/chemistry , Arthropod Proteins/chemistry , Arthropod Proteins/genetics , Arthropod Proteins/immunology , Base Sequence , Gene Expression Profiling , Microbial Sensitivity Tests , Sequence Alignment
6.
Fish Shellfish Immunol ; 89: 384-392, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30951853

ABSTRACT

Antimicrobial peptides (AMPs) are an essential component of innate immunity of invertebrates. Anti-lipopolysaccharide factor (ALF), as a main type of AMPs in crustaceans, attends in the disease prevention in general. In this research, a novel Group D ALF was identified and characterized from Penaeus monodon, named PenmonALF8. It was an anionic peptide, with both the full-length peptide and lipopolysaccharide binding domain (LBD) a low isoelectric point. PenmonALF8, composed of a signal peptide of 26 amino acids and a mature peptide of 98 amino acids, probably contained three alpha helixes and four beta sheets. Moreover, PenmonALF8 was detected in all tested tissues of P. monodon, and the expression level in hemocyte and intestine was relatively high. When challenged by Vibrio parahaemolyticus, PenmonALF8 showed 30-100 times higher expression level in all the tissues except in hemocyte and intestine, indicating that PenmonALF8 played a very important role in the immune response of P. monodon. By fusing to a SUMO protein, PenmonALF8 was successfully over-expressed in E. coli and purified by affinity chromatography. Additionally, the reconstituted PenmonALF8 and its LBD region displayed modest antimicrobial activity. This is the first research about the Group D ALF in P. monodon, which provides more information for humoral immunity study of shrimps.


Subject(s)
Antimicrobial Cationic Peptides/genetics , Antimicrobial Cationic Peptides/immunology , Gene Expression Regulation/immunology , Immunity, Innate/genetics , Penaeidae/genetics , Penaeidae/immunology , Amino Acid Sequence , Animals , Antimicrobial Cationic Peptides/chemistry , Arthropod Proteins/chemistry , Arthropod Proteins/genetics , Arthropod Proteins/immunology , Gene Expression Profiling , Phylogeny , Sequence Alignment , Vibrio/immunology
7.
BMC Cardiovasc Disord ; 19(1): 21, 2019 01 17.
Article in English | MEDLINE | ID: mdl-30654760

ABSTRACT

BACKGROUND: Kawasaki disease (KD) is an acute febrile childhood systemic vasculitis that disturbs coronary arteries. The pathogenesis remains unknown. The study of phosphorylated proteins helps to elucidate the relevant pathophysiological mechanisms of cardiovascular disease. However, few researches explored phosphorylated proteins in KD patients. METHODS: We compared phosphoprotein profiles of HCAECs stimulated by the serum of KD patients and normal children using iTRAQ technology, TiO2 enrichment phosphorylated peptide and MS analysis. Then we conducted the functional analysis by ClueGO and the biological interaction networking analysis by ReactomeFIViz. Western blotting was performed to identify the hub proteins. RESULTS: Our results revealed that phosphorylation of 148 proteins showed different intensities between the two HCAECs groups, which are enriched in MAPK, VEGFR, EGFR, Angiopoietin receptor, mTOR, FAK signaling pathway and so on. Through the Network Analyzer analysis, the hub proteins are CDKN1A, MAPK1 and POLR2A, which were experimentally validated. CONCLUSION: In summary, we provided evidence addressing the valuable phosphorylation signaling that could be useful resource to understand the molecular mechanism and the potential targets for novel therapy of KD.


Subject(s)
Coronary Vessels/metabolism , Endothelial Cells/metabolism , Mucocutaneous Lymph Node Syndrome/blood , Proteins/metabolism , Proteomics/methods , Case-Control Studies , Cells, Cultured , Child, Preschool , Chromatography, High Pressure Liquid , Chromatography, Reverse-Phase , Female , Humans , Infant , Male , Mucocutaneous Lymph Node Syndrome/diagnosis , Phosphorylation , Protein Interaction Maps , Signal Transduction , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry
8.
Lab Invest ; 98(12): 1627-1641, 2018 12.
Article in English | MEDLINE | ID: mdl-30089852

ABSTRACT

Transcriptional factor SOX2 regulates stem cell pluripotency, cell differentiation and tumorigenesis. As a key factor, the expression of SOX2 is tightly regulated at transcriptional and post-translational levels. However, the underlying mechanism of SOX2 protein stability remains to be elucidated. Here we show that the histone-lysine N-methyltransferase MLL1/WDR5 complexes physically interact with SOX2 and evoke SOX2 proteolysis, possibly through methylation on a potential site lysine 42 (K42). Small interfering RNA (siRNA)-mediated gene silencing of the components of the MLL1/WDR5 complexes WDR5, MLL1, RBBP5, and ASH2L lead to the accumulation of SOX2, while forced expression of WDR5 promotes SOX2 ubiquitination and proteolysis. Conversely, PHD finger protein 20-like protein 1 (PHF20L1) associates with SOX2, antagonizes SOX2 ubiquitination and the sequential degradation induced by the MLL1/WDR5 complexes. RNA interferences of PHF20L1 promote the degradation of SOX2, while forced expression of PHF20L1 stabilizes SOX2. Co-silencing of MLL1/WDR5 components and PHF20L1 preclude degradation of SOX2 induced by knockdown of PHF20L1. Moreover, co-expression of PHF20L1 and WDR5 prevent ubiquitination of SOX2 triggered by WDR5 over-expression. However, SOX2 mutant K42R is non-sensitive to the MLL1/WDR5 complexes or PHF20L1. In addition, PHF20L1 may regulate the stability of SOX2 through its malignant brain tumor (MBT) domain, since the degradation of SOX2 is accelerated by UNC1215 and UNC669, inhibitors that bind to the MBT domain. Furthermore, abundant expression of SOX2 is highly correlated to immature ovarian teratoma. Loss of PHF20L1 weakened the tumor initiation ability of PA-1 cells while ablation of MLL1 promoted the growth of tumors. Thus, our studies reveal an antagonistic mechanism by which the protein stability of SOX2 is regulated by the MLL1/WDR5 complexes and PHF20L1, possibly through methylation of SOX2 protein, and provide a novel perspective on SOX2-positive cancer treatment.


Subject(s)
Chromosomal Proteins, Non-Histone/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Myeloid-Lymphoid Leukemia Protein/metabolism , Ovarian Neoplasms/metabolism , SOXB1 Transcription Factors/metabolism , Teratoma/metabolism , Animals , Cell Line, Tumor , Female , HEK293 Cells , Humans , Intracellular Signaling Peptides and Proteins , Methylation , Mice, Inbred NOD , Mice, SCID , Protein Stability , Proteolysis , Ubiquitination
9.
J Proteome Res ; 16(7): 2393-2409, 2017 07 07.
Article in English | MEDLINE | ID: mdl-28525284

ABSTRACT

Intrinsically disordered proteins (IDPs) play a variety of important physiological roles in all living organisms. However, there is no comprehensive analysis of the abundance of IDPs associated with environmental stress in plants. Here, we show that a set of heat-stable proteins (i.e., proteins that do not denature after boiling at 100 °C for 10 min) was present in R0mm and R15mm radicles (i.e., before radicle emergence and 15 mm long radicles) of soybean (Glycine max) seeds. This set of 795 iTRAQ-quantified heat-stable proteins contained a high proportion of wholly or highly disordered proteins (15%), which was significantly higher than that estimated for the whole soybean proteome containing 55,787 proteins (9%). The heat-stable proteome of soybean radicles that contain many IDPs could protect lactate dehydrogenase (LDH) during freeze-thaw cycles. Comparison of the 795 heat-stable proteins in the R0mm and R15mm soybean radicles revealed that many of these proteins changed abundance during seedling growth with 170 and 89 proteins being more abundant in R0mm and R15mm, respectively. KEGG analysis identified 18 proteins from the cysteine and methionine metabolism pathways and nine proteins from the phenylpropanoid biosynthesis pathway. As an important type of IDP related to stress, 30 late embryogenesis abundant proteins were also found. Ten selected proteins with high levels of predicted intrinsic disorder were able to efficiently protect LDH from the freeze-thaw-induced inactivation, but the protective ability was not correlated with the disorder content of these proteins. These observations suggest that protection of the enzymes and other proteins in a stressed cell can be one of the biological functions of plant IDPs.


Subject(s)
Gene Expression Regulation, Plant , Glycine max/genetics , Intrinsically Disordered Proteins/genetics , Molecular Chaperones/genetics , Plant Proteins/genetics , Proteome/genetics , Seeds/genetics , Cysteine/metabolism , Desiccation , Gene Ontology , Hot Temperature , Intrinsically Disordered Proteins/metabolism , L-Lactate Dehydrogenase/metabolism , Methionine/metabolism , Molecular Chaperones/metabolism , Molecular Sequence Annotation , Plant Proteins/metabolism , Propanols/metabolism , Protein Stability , Proteome/metabolism , Seedlings/genetics , Seedlings/growth & development , Seedlings/metabolism , Seeds/growth & development , Seeds/metabolism , Glycine max/growth & development , Glycine max/metabolism , Stress, Physiological
10.
Biochim Biophys Acta Proteins Proteom ; 1865(11 Pt A): 1291-1303, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28867216

ABSTRACT

Enzymatically driven post-translated modifications (PTMs) usually happen within the intrinsically disordered regions of a target protein and can modulate variety of protein functions. Late embryogenesis abundant (LEA) proteins are a family of the plant intrinsically disordered proteins (IDPs). Despite their important roles in plant stress response, there is currently limited knowledge on the presence and functional and structural effects of phosphorylation on LEA proteins. In this study, we identified three phosphorylation sites (Ser90, Tyr136, and Thr266) in the soybean PM18 protein that belongs to the group-3 LEA proteins. In yeast expression system, PM18 protein increased the salt tolerance of yeast, and the phosphorylation of this protein further enhanced its protective function. Further analysis revealed that Ser90 and Tyr136 are more important than Thr266, and these two sites might work cooperatively in regulating the salt resistance function of PM18. The circular dichroism analysis showed that PM18 protein was disordered in aqueous media, and phosphorylation did not affect the disordered status of this protein. However, phosphorylation promoted formation of more helical structure in the presence of sodium dodecyl sulfate (SDS) or trifluoroethanol (TFE). Furthermore, in dedicated in vitro experiments, phosphorylated PM18 protein was able to better protect lactate dehydrogenase (LDH) from the inactivation induced by the freeze-thaw cycles than its un- or dephosphorylated forms. All these data indicate that phosphorylation may have regulatory effects on the stress-tolerance-related function of LEA proteins. Therefore, further studies are needed to shed more light on functional and structural roles of phosphorylation in LEA proteins.


Subject(s)
Glycine max/chemistry , Intrinsically Disordered Proteins/chemistry , Plant Proteins/chemistry , Salt Tolerance/genetics , Amino Acid Sequence , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Intrinsically Disordered Proteins/genetics , Intrinsically Disordered Proteins/metabolism , L-Lactate Dehydrogenase/chemistry , Mutation , Phosphorylation/drug effects , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/chemistry , Plant Roots/metabolism , Protein Conformation, alpha-Helical , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Seeds/chemistry , Seeds/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Sodium Chloride/pharmacology , Sodium Dodecyl Sulfate/chemistry , Glycine max/metabolism , Transgenes , Trifluoroethanol/chemistry
11.
Dig Dis Sci ; 62(10): 2801-2811, 2017 10.
Article in English | MEDLINE | ID: mdl-28815345

ABSTRACT

BACKGROUND: Impaired intestinal motility may lead to the disruption of gut microbiota equilibrium, which in turn facilitates bacterial translocation (BT) and endotoxemia in cirrhosis. We evaluated the influence of mosapride, a prokinetic agent, on BT and DNA fingerprints of gut microbiota in cirrhotic rats. METHODS: A rat model of cirrhosis was set up via subcutaneous injection of carbon tetrachloride (CCl4). The portal pressure, liver and intestinal damage, plasma endotoxin, BT, and intestinal transit rate (ITR) of cirrhotic rats were determined. Fecal DNA fingerprints were obtained by ERIC-PCR. The expressions of tight junction proteins were evaluated by western blotting. RESULTS: Mosapride treatment to cirrhotic rats significantly reduced the plasma endotoxin level and incidence of BT, accompanied by increased ITR. Cirrhotic rats (including those treated with mosapride) suffered from BT exhibited significantly lower ITR than those who are free of BT. Pearson coefficient indicated a significant and negative correlation between the plasma endotoxin level and ITR. The genomic fingerprints of intestinal microbiota from the three groups fell into three distinctive clusters. In the mosapride-treated group, Shannon's index was remarkably increased compared to the model group. Significantly positive correlation was detected between Shannon's index and ITR. Mosapride did not improve hepatic and intestinal damages and ileal expressions of occludin and ZO-1. CONCLUSIONS: Mosapride significantly increases intestinal motility in cirrhotic rats, thus to recover the disordered intestinal microbiota, finally resulting in decreased plasma endotoxin and BT.


Subject(s)
Bacterial Translocation/drug effects , Benzamides/pharmacology , Carbon Tetrachloride , Chemical and Drug Induced Liver Injury/prevention & control , Endotoxemia/prevention & control , Gastrointestinal Agents/pharmacology , Gastrointestinal Microbiome/drug effects , Intestines/drug effects , Liver Cirrhosis, Experimental/prevention & control , Liver/drug effects , Morpholines/pharmacology , Animals , Chemical and Drug Induced Liver Injury/blood , Chemical and Drug Induced Liver Injury/microbiology , Chemical and Drug Induced Liver Injury/pathology , DNA, Bacterial/genetics , Endotoxemia/blood , Endotoxemia/chemically induced , Endotoxemia/microbiology , Endotoxemia/pathology , Feces/microbiology , Gastrointestinal Motility/drug effects , Intestinal Mucosa/metabolism , Intestines/microbiology , Intestines/pathology , Liver/metabolism , Liver/microbiology , Liver/pathology , Liver Cirrhosis, Experimental/blood , Liver Cirrhosis, Experimental/microbiology , Liver Cirrhosis, Experimental/pathology , Male , Rats, Sprague-Dawley , Tight Junction Proteins/metabolism
12.
Int J Mol Sci ; 17(4): 469, 2016 Apr 12.
Article in English | MEDLINE | ID: mdl-27077851

ABSTRACT

Oxidative stress is a key event in the onset and progression of neurodegenerative diseases, including Alzheimer's disease (AD). To investigate the role of oxidative stress in AD and to search for potential biomarkers in peripheral blood, serums were collected in this study from the 3-, 6-, and 12-month-old triple transgenic AD mice (3×Tg-AD mice) and the age- and sex-matched non-transgenic (non-Tg) littermates. The serum oxidized proteins were quantified by slot-blot analysis and enzyme-linked immunosorbent assay (ELISA) to investigate the total levels of serum protein carbonyl groups. Western blotting, in conjunction with two-dimensional gel electrophoresis (2D-Oxyblot), was employed to identify and quantify the specifically-carbonylated proteins in the serum of 3×Tg-AD mice. The results showed that the levels of serum protein carbonyls were increased in the three month old 3×Tg-AD mice compared with the non-Tg control mice, whereas no significant differences were observed in the six and 12 months old AD mice, suggesting that oxidative stress is an early event in AD progression. With the application of 2D-Oxyblot analysis, (immunoglobin) Ig gamma-2B chain C region (IGH-3), Ig lambda-2 chain C region (IGLC2), Ig kappa chain C region (IGKC), and Ig kappa chain V-V region HP R16.7 were identified as significantly oxidized proteins compared with the control. Among them IGH-3 and IGKC were validated via immunoprecipitation and Western blot analysis. Identification of oxidized proteins in the serums of 3×Tg-AD mice can not only reveal potential roles of those proteins in the pathogenesis of AD but also provide potential biomarkers of AD at the early stage.


Subject(s)
Alzheimer Disease/metabolism , Oxidative Stress , Proteome/metabolism , Proteomics/methods , Alzheimer Disease/blood , Animals , Disease Models, Animal , Gene Expression Regulation , Humans , Mice , Mice, Transgenic , Protein Carbonylation
13.
Mar Drugs ; 13(4): 1798-818, 2015 Mar 30.
Article in English | MEDLINE | ID: mdl-25830683

ABSTRACT

Alginate is a natural polysaccharide extracted from various species of marine brown algae. Alginate-derived guluronate oligosaccharide (GOS) obtained by enzymatic depolymerization has various pharmacological functions. Previous studies have demonstrated that GOS can trigger the production of inducible nitric oxide synthase (iNOS)/nitric oxide (NO), reactive oxygen species (ROS) and tumor necrosis factor (TNF)-α by macrophages and that it is involved in the nuclear factor (NF)-κB and mitogen-activated protein (MAP) kinase signaling pathways. To expand upon the current knowledge regarding the molecular mechanisms associated with the GOS-induced immune response in macrophages, comparative proteomic analysis was employed together with two-dimensional electrophoresis (2-DE), matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/TOF MS) and Western blot verification. Proteins showing significant differences in expression in GOS-treated cells were categorized into multiple functional pathways, including the NF-κB signaling pathway and pathways involved in inflammation, antioxidant activity, glycolysis, cytoskeletal processes and translational elongation. Moreover, GOS-stimulated changes in the morphologies and actin cytoskeleton organization of RAW264.7 cells were also investigated as possible adaptations to GOS. This study is the first to reveal GOS as a promising agent that can modulate the proper balance between the pro- and anti-inflammatory immune responses, and it provides new insights into pharmaceutical applications of polysaccharides.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antioxidants/pharmacology , Drug Design , Gene Expression Regulation/drug effects , Macrophages/drug effects , Oligosaccharides/pharmacology , Polysaccharides, Bacterial/pharmacology , Alginates/metabolism , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/metabolism , Antioxidants/chemistry , Antioxidants/metabolism , Carbohydrate Sequence , Cell Nucleus/drug effects , Cell Nucleus/immunology , Cell Nucleus/metabolism , Cell Nucleus Size/drug effects , Cell Size/drug effects , Glucuronic Acid/metabolism , Hexuronic Acids/metabolism , Hydrolysis , MAP Kinase Signaling System/drug effects , Macrophage Activation/drug effects , Macrophages/cytology , Macrophages/immunology , Macrophages/metabolism , Mice , Molecular Weight , Oligosaccharides/chemistry , Oligosaccharides/metabolism , Peptide Mapping , Polysaccharide-Lyases/metabolism , Polysaccharides, Bacterial/chemistry , Polysaccharides, Bacterial/metabolism , Proteomics/methods , RAW 264.7 Cells
14.
Int J Mol Sci ; 16(11): 25982-98, 2015 Oct 30.
Article in English | MEDLINE | ID: mdl-26528969

ABSTRACT

Avian influenza A viruses are serious veterinary pathogens that normally circulate among avian populations, causing substantial economic impacts. Some strains of avian influenza A viruses, such as H5N1, H9N2, and recently reported H7N9, have been occasionally found to adapt to humans from other species. In order to replicate efficiently in the new host, influenza viruses have to interact with a variety of host factors. In the present study, H7N9 nucleoprotein was transfected into human HEK293T cells, followed by immunoprecipitated and analyzed by proteomics approaches. A series of host proteins co-immunoprecipitated were identified with high confidence, some of which were found to be acetylated at their lysine residues. Bioinformatics analysis revealed that spliceosome might be the most relevant pathway involved in host response to nucleoprotein expression, increasing our emerging knowledge of host proteins that might be involved in influenza virus replication activities.


Subject(s)
Carrier Proteins/metabolism , Influenza A Virus, H7N9 Subtype/metabolism , Influenza, Human/metabolism , Influenza, Human/virology , RNA-Binding Proteins/metabolism , Viral Core Proteins/metabolism , Acetylation , Computational Biology , Gene Expression , HEK293 Cells , Humans , Immunoprecipitation , Influenza A Virus, H7N9 Subtype/genetics , Lysine , Nucleocapsid Proteins , Protein Binding , Protein Interaction Mapping , Protein Interaction Maps , Tandem Mass Spectrometry
15.
Toxicol Mech Methods ; 25(6): 459-66, 2015.
Article in English | MEDLINE | ID: mdl-26018768

ABSTRACT

Trichloroethylene (TCE) is an environmental and occupational toxicant that has been shown to cause serious hepatotoxicity. However, the mechanisms underlying the hepatotoxicity of TCE remain unclear. Previously, we identified several apoptosis-related proteins in TCE-induced hepatic cytotoxicity. This study is aimed to analyze the changes in phosphoproteins in L-02 liver cells exposed to TCE using iTRAQ labeling, IMAC enrichment and LC-MS/MS. We identified 1878 phosphorylation sites in 107 proteins and found that 20 sites in 16 phosphoproteins were differentially phosphorylated in L-02 cells after TCE treatment. Among these phosphoproteins, 20% were protein localization and formation processes-related proteins, 38% were metabolism-related proteins and 42% were cellular process-related proteins, including transcriptional regulation and biogenesis. Moreover, two phosphoproteins, 4E-BP1 (37T) and MCM2 (139S), were validated as TCE-induced alteration of phosphorylation at specific sites by Western-blot analysis. Taken together, our study demonstrated that TCE exposure changed the levels of multiple phosphoproteins in L-02 liver cells, and the functional analysis suggested that these differentially expressed phosphoproteins might be involved in TCE-induced hepatic cytotoxicity.


Subject(s)
Chemical and Drug Induced Liver Injury/etiology , Environmental Pollutants/toxicity , Hepatocytes/drug effects , Liver/drug effects , Phosphoproteins/metabolism , Proteomics , Trichloroethylene/toxicity , Biomarkers/metabolism , Cell Line , Chemical and Drug Induced Liver Injury/metabolism , Chromatography, Liquid , Hepatocytes/metabolism , Humans , Liver/metabolism , Phosphorylation , Proteomics/methods , Reproducibility of Results , Tandem Mass Spectrometry
16.
Cell Biosci ; 14(1): 68, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824577

ABSTRACT

BACKGROUND: Mammalian or mechanistic target of rapamycin complex 1 (mTORC1) is an effective therapeutic target for diseases such as cancer, diabetes, aging, and neurodegeneration. However, an efficient tool for monitoring mTORC1 inhibition in living cells or tissues is lacking. RESULTS: We developed a genetically encoded mTORC1 sensor called TORSEL. This sensor changes its fluorescence pattern from diffuse to punctate when 4EBP1 dephosphorylation occurs and interacts with eIF4E. TORSEL can specifically sense the physiological, pharmacological, and genetic inhibition of mTORC1 signaling in living cells and tissues. Importantly, TORSEL is a valuable tool for imaging-based visual screening of mTORC1 inhibitors. Using TORSEL, we identified histone deacetylase inhibitors that selectively block nutrient-sensing signaling to inhibit mTORC1. CONCLUSIONS: TORSEL is a unique living cell sensor that efficiently detects the inhibition of mTORC1 activity, and histone deacetylase inhibitors such as panobinostat target mTORC1 signaling through amino acid sensing.

17.
Opt Express ; 21(21): 25381-8, 2013 Oct 21.
Article in English | MEDLINE | ID: mdl-24150380

ABSTRACT

Current crowding effects (CCEs) on light extraction efficiency (LEE) of conventional GaN-based light-emitting diodes (LEDs) are analyzed through Monte Carlo ray-tracing simulation. The non-uniform radiative power distribution of the active layer of the Monte Carlo model is obtained based on the current spreading theory and rate equation. The simulation results illustrate that CCE around n-pad (n-CCE) has little effect on LEE, while CCE around p-pad (p-CCE) results in a notable LEE droop due to the significant absorption of photons emitted under p-pad. LEE droop is alleviated by a SiO2 current blocking layer (CBL) and reflective p-pad. Compared to the conventional LEDs without CBL, the simulated LEE of LEDs with CBL at 20 A/cm² and 70 A/cm² is enhanced by 7.7% and 19.0%, respectively. It is further enhanced by 7.6% and 11.4% after employing a reflective p-pad due to decreased absorption. These enhancements are in accordance with the experimental results. Output power of LEDs with CBL is enhanced by 8.7% and 18.2% at 20 A/cm² and 70 A/cm², respectively. And the reflective p-pad results in a further enhancement of 8.9% and 12.7%.

18.
Article in Zh | MEDLINE | ID: mdl-24818389

ABSTRACT

In order to understand pinworm infection of kindergarten children in Jurong City, Jiangsu Province, a total of 1 088 children were sampled for the survey from September 2011 to October 2012. The cellophane tape swab technique was used to examine pinworm eggs. The infection rate of pinworm was 1.1% (12/1 088). The rate in boys and girls was 1.3% (7/551) and 0.9% (5/537), respectively. Higher infection rate was in the senior class (1.4%, 5/370), and no significant difference was found with gender, as well as among different classes (P > 0.05). Evidently, pinworm prevalence is at a low level in the kindergarten children of Jurong.


Subject(s)
Enterobiasis/epidemiology , Animals , Child , Child, Preschool , China/epidemiology , Enterobiasis/parasitology , Enterobius , Female , Humans , Male , Parasite Egg Count , Schools, Nursery
19.
Int J Chron Obstruct Pulmon Dis ; 18: 1713-1728, 2023.
Article in English | MEDLINE | ID: mdl-37581107

ABSTRACT

Background: Frequent exacerbation (FE) and infrequent exacerbation (IE) are two phenotypes of chronic obstructive pulmonary disease (COPD), of which FE is associated with a higher incidence of exacerbation and a serious threat to human health. Because the pathogenesis mechanisms of FE are unclear, this study aims to identify FE-related proteins in the plasma via proteomics for use as predictive, diagnostic, and therapeutic biomarkers of COPD. Methods: A cross-sectional study was conducted in which plasma protein profiles were analyzed in COPD patients at stable stage, and differentially expressed proteins (DEPs) were screened out between the FE and IE patients. FE-related DEPs were identified using data-independent acquisition-based proteomics and bioinformatics analyses. In addition, FE-related candidates were verified by enzyme-linked immunosorbent assay. Results: In this study, 47 DEPs were screened out between the FE and IE groups, including 20 upregulated and 27 downregulated proteins. Key biological functions (eg, neutrophil degranulation, extracellular exosome, protein homodimerization activity) and signaling pathways (eg, arginine and proline metabolism) were enriched in association with the FE phenotype. Receiver operating characteristic (ROC) analysis of the 11 combined DEPs revealed an area under the curve of 0.985 (p <0.05) for discriminating FE from IE. Moreover, correlation and ROC curve analyses indicated that creatine kinase, M-type (CKM) and fat storage-inducing transmembrane protein 1 (FITM1) might be clinically significant in patients with the FE phenotype. In addition, plasma expression levels of CKM and FITM1 were validated to be significantly decreased in the FE group compared with the IE group (CKM: p <0.01; FITM1: p <0.05). Conclusion: In this study, novel insights into COPD pathogenesis were provided by investigating and comparing plasma protein profiles between the FE and IE patients. CKM, FITM1, and a combinative biomarker panel may serve as useful tools for assisting in the precision diagnosis and effective treatment of the FE phenotype of COPD.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Humans , Proteomics , Cross-Sectional Studies , Phenotype , Biomarkers , Blood Proteins , Disease Progression
20.
J Med Chem ; 66(22): 15409-15423, 2023 11 23.
Article in English | MEDLINE | ID: mdl-37922441

ABSTRACT

Lysine-specific demethylase 1 (LSD1) is a promising therapeutic target, especially in cancer treatment. Despite several LSD1 inhibitors being discovered for the cofactor pocket, none are FDA-approved. We aimed to develop stabilized peptides for irreversible LSD1 binding, focusing on unique cysteine residue Cys360 in LSD1 and SNAIL1. We created LSD1 C360-targeting peptides, like cyclic peptide S9-CMC1, using our Cysteine-Methionine cyclization strategy. S9-CMC1 effectively inhibited LSD1 at the protein level, as confirmed by MS analysis showing covalent bonding to Cys360. In cells, S9-CMC1 inhibited LSD1 activity, increasing H3K4me1 and H3K4me2 levels, leading to G1 cell cycle arrest and apoptosis and inhibiting cell proliferation. Remarkably, S9-CMC1 showed therapeutic potential in A549 xenograft animal models, regulating LSD1 activity and significantly inhibiting tumor growth with minimal organ damage. These findings suggest LSD1 C360 as a promising site for covalent LSD1 inhibitors' development.


Subject(s)
Cysteine , Neoplasms , Animals , Humans , Peptides/pharmacology , Peptides, Cyclic/pharmacology , Peptides, Cyclic/therapeutic use , Cell Proliferation , Histone Demethylases/metabolism , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Cell Line, Tumor
SELECTION OF CITATIONS
SEARCH DETAIL