Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 142
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nature ; 630(8016): 346-352, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38811731

ABSTRACT

Vertical three-dimensional integration of two-dimensional (2D) semiconductors holds great promise, as it offers the possibility to scale up logic layers in the z axis1-3. Indeed, vertical complementary field-effect transistors (CFETs) built with such mixed-dimensional heterostructures4,5, as well as hetero-2D layers with different carrier types6-8, have been demonstrated recently. However, so far, the lack of a controllable doping scheme (especially p-doped WSe2 (refs. 9-17) and MoS2 (refs. 11,18-28)) in 2D semiconductors, preferably in a stable and non-destructive manner, has greatly impeded the bottom-up scaling of complementary logic circuitries. Here we show that, by bringing transition metal dichalcogenides, such as MoS2, atop a van der Waals (vdW) antiferromagnetic insulator chromium oxychloride (CrOCl), the carrier polarity in MoS2 can be readily reconfigured from n- to p-type via strong vdW interfacial coupling. The consequential band alignment yields transistors with room-temperature hole mobilities up to approximately 425 cm2 V-1 s-1, on/off ratios reaching 106 and air-stable performance for over one year. Based on this approach, vertically constructed complementary logic, including inverters with 6 vdW layers, NANDs with 14 vdW layers and SRAMs with 14 vdW layers, are further demonstrated. Our findings of polarity-engineered p- and n-type 2D semiconductor channels with and without vdW intercalation are robust and universal to various materials and thus may throw light on future three-dimensional vertically integrated circuits based on 2D logic gates.

2.
Nucleic Acids Res ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38813828

ABSTRACT

Gene expression is temporally and spatially regulated by the interaction of transcription factors (TFs) and cis-regulatory elements (CREs). The uneven distribution of TF binding sites across the genome poses challenges in understanding how this distribution evolves to regulate spatio-temporal gene expression and consequent heritable phenotypic variation. In this study, chromatin accessibility profiles and gene expression profiles were collected from several species including mammals (human, mouse, bovine), fish (zebrafish and medaka), and chicken. Transcription factor binding sites clustered regions (TFCRs) at different embryonic stages were characterized to investigate regulatory evolution. The study revealed dynamic changes in TFCR distribution during embryonic development and species evolution. The synchronization between TFCR complexity and gene expression was assessed across species using RegulatoryScore. Additionally, an explainable machine learning model highlighted the importance of the distance between TFCR and promoter in the coordinated regulation of TFCRs on gene expression. Our results revealed the developmental and evolutionary dynamics of TFCRs during embryonic development from fish, chicken to mammals. These data provide valuable resources for exploring the relationship between transcriptional regulation and phenotypic differences during embryonic development.

3.
J Virol ; 98(1): e0135023, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38169284

ABSTRACT

Epitranscriptomic RNA modifications can regulate the stability of mRNA and affect cellular and viral RNA functions. The N4-acetylcytidine (ac4C) modification in the RNA viral genome was recently found to promote viral replication; however, the mechanism by which RNA acetylation in the host mRNA regulates viral replication remains unclear. To help elucidate this mechanism, the roles of N-acetyltransferase 10 (NAT10) and ac4C during the infection and replication processes of the alphavirus, Sindbis virus (SINV), were investigated. Cellular NAT10 was upregulated, and ac4C modifications were promoted after alphavirus infection, while the loss of NAT10 or inhibition of its N-acetyltransferase activity reduced alphavirus replication. The NAT10 enhanced alphavirus replication as it helped to maintain the stability of lymphocyte antigen six family member E mRNA, which is a multifunctional interferon-stimulated gene that promotes alphavirus replication. The ac4C modification was thus found to have a non-conventional role in the virus life cycle through regulating host mRNA stability instead of viral mRNA, and its inhibition could be a potential target in the development of new alphavirus antivirals.IMPORTANCEThe role of N4-acetylcytidine (ac4C) modification in host mRNA and virus replication is not yet fully understood. In this study, the role of ac4C in the regulation of Sindbis virus (SINV), a prototype alphavirus infection, was investigated. SINV infection results in increased levels of N-acetyltransferase 10 (NAT10) and increases the ac4C modification level of cellular RNA. The NAT10 was found to positively regulate SINV infection in an N-acetyltransferase activity-dependent manner. Mechanistically, the NAT10 modifies lymphocyte antigen six family member E (LY6E) mRNA-the ac4C modification site within the 3'-untranslated region (UTR) of LY6E mRNA, which is essential for its translation and stability. The findings of this study demonstrate that NAT10 regulated mRNA stability and translation efficiency not only through the 5'-UTR or coding sequence but also via the 3'-UTR region. The ac4C modification of host mRNA stability instead of viral mRNA impacting the viral life cycle was thus identified, indicating that the inhibition of ac4C could be a potential target when developing alphavirus antivirals.


Subject(s)
Alphavirus Infections , Antigens, Surface , GPI-Linked Proteins , N-Terminal Acetyltransferases , Sindbis Virus , Virus Replication , Humans , Alphavirus Infections/genetics , Antigens, Surface/genetics , Cytidine/analogs & derivatives , GPI-Linked Proteins/genetics , RNA, Messenger/genetics , Sindbis Virus/physiology , Cell Line , N-Terminal Acetyltransferases/genetics , RNA Stability
4.
Nucleic Acids Res ; 51(21): 11568-11583, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-37850650

ABSTRACT

The cistrome consists of all cis-acting regulatory elements recognized by transcription factors (TFs). However, only a portion of the cistrome is active for TF binding in a specific tissue. Resolving the active cistrome in plants remains challenging. In this study, we report the assay sequential extraction assisted-active TF identification (sea-ATI), a low-input method that profiles the DNA sequences recognized by TFs in a target tissue. We applied sea-ATI to seven plant tissues to survey their active cistrome and generated 41 motif models, including 15 new models that represent previously unidentified cis-regulatory vocabularies. ATAC-seq and RNA-seq analyses confirmed the functionality of the cis-elements from the new models, in that they are actively bound in vivo, located near the transcription start site, and influence chromatin accessibility and transcription. Furthermore, comparing dimeric WRKY CREs between sea-ATI and DAP-seq libraries revealed that thermodynamics and genetic drifts cooperatively shaped their evolution. Notably, sea-ATI can identify not only positive but also negative regulatory cis-elements, thereby providing unique insights into the functional non-coding genome of plants.


Subject(s)
Plants , Transcription Factors , Vocabulary , Chromatin , Protein Binding/genetics , Regulatory Sequences, Nucleic Acid , Transcription Factors/genetics , Transcription Factors/metabolism , Plants/genetics
5.
J Med Virol ; 96(2): e29400, 2024 02.
Article in English | MEDLINE | ID: mdl-38293843

ABSTRACT

Serum hepatitis B virus (HBV) spliced RNAs (spRNAs) are ubiquitous in HBV-infected patients; however, their clinical significance remains unknown. Therefore, we aimed to explore the relationship between HBV spRNAs and liver disease progression in chronic hepatitis B (CHB) patients; in vitro cell line assessment was also performed. The serum HBV wild-type RNA (wtRNA) and spRNA levels were individually quantified in a cohort of 279 treatment-naïve, hepatitis B e antigen positive CHB patients with or without cirrhosis. The spRNA proportion was determined as (spRNA × 100%)/(spRNAs + wtRNA). 20 patients' serum samples underwent spRNA species profiling using next-generation sequencing. Serum spRNA species 1, 2, 3, 4, and 5 were the most common variants. The spRNA proportion varied from 0.00% to 19.02%, with higher levels in HBV genotype C patients than in those with genotype B (1.76% vs. 0.84%, p < 0.001). The spRNA proportion was positively associated with the alanine aminotransferase levels (r = 0.144, p = 0.053) and significantly higher in cirrhotic than in non-cirrhotic patients (1.69% vs. 1.04%, p = 0.001). Multivariate analysis revealed a 2.566-fold higher risk of cirrhosis in patients with elevated spRNA proportion (p = 0.024). In vitro experiments confirmed that spRNAs contributed to hepatic stellate cell activation, which is critical in liver fibrosis development. Therefore, increased HBV spRNA expression poses a risk for liver disease progression. Quantifying serum HBV spRNAs can aid in monitoring liver disease progression. Furthermore, the therapeutic targeting of spRNAs may improve the prognosis of patients with CHB.


Subject(s)
Hepatitis B virus , Hepatitis B, Chronic , Humans , Hepatitis B virus/genetics , Hepatitis B, Chronic/drug therapy , RNA/therapeutic use , Liver Cirrhosis/complications , Hepatitis B e Antigens , Disease Progression , DNA, Viral/genetics
6.
J Invertebr Pathol ; 204: 108115, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38719180

ABSTRACT

To explore the relationship between the intestinal flora of Exopalaemon Carinicauda and infection by Enterocytozoo Hepatopenaei (EHP), we analyzed the species and richness of gut microbiota in infected individuals in different EHP load groups [i.e., control (C), high load (H), and low load (L)] using gene sequencing after infection. The results showed that the abundance of intestinal flora in the high-load EHP group was significantly lower than that in the healthy group. Based on the UPGMA cluster tree and PCoA analysis, with comparisons to healthy shrimp, the gut microbiota of the EHP high load and low load groups were clustered into one branch, which indicated that EHP infection changed the composition of the gut microbiota of infected shrimps. The heat map analysis of species abundance clustering revealed that the dominant bacteria in the low EHP load group and the control group were beneficial genera such as Lactococcus, Ligilactobacillius, and Bifidobacterium, but the dominant bacteria in the high EHP load group were harmful genera such as Pseudomonas, Photobacterium, and Candidatus hepatincola. The functions of the intestinal flora predicted that most genes related to metabolism were more abundant in healthy shrimp, most genes related to metabolism and the organisms' system were more abundant in the low EHP load group, and most genes related to diseases and environmental information processing were more abundant in the high EHP load group. After separation and purification, the dominant bacteria (Bifidobacterium animalis in healthy shrimp and Lactococcus garvieae in the low EHP load group) and the non-dominant bacteria (Macrococus caseolyticus in the low EHP load group) were obtained. Each of these isolated strains were used together with EHP to infect E. carinicauda, and the results showed that Bifidobacterium animali and Lactococcus garvieae significantly reduced the EHP load in EHP-infected individuals. At the same time, the morphology and structure of the hepatopancreas and intestinal tissue of EHP-infected E. carinicauda were improved. No improvement was seen in tissue that was infected with Macrococus caseolyticus.


Subject(s)
Enterocytozoon , Gastrointestinal Microbiome , Palaemonidae , Animals , Palaemonidae/microbiology , Enterocytozoon/genetics , Enterocytozoon/physiology , Penaeidae/microbiology
7.
Genomics ; 115(4): 110643, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37217084

ABSTRACT

MYB family is one of the largest transcription factor families in plants and plays a crucial role in regulating plant biochemical and physiological processes. However, R2R3-MYBs in patchouli have not been systematically investigated. Here, based on the gene annotation of patchouli genome sequence, 484 R2R3-MYB transcripts were detected. Further in-depth analysis of the gene structure and expression of R2R3-MYBs supported the tetraploid hybrid origin of patchouli. When combined with R2R3-MYBs from Arabidopsis, a phylogenetic tree of patchouli R2R3-MYBs was constructed and divided into 31 clades. Interestingly, a patchouli-specific R2R3-MYB clade was found and confirmed by homologous from other Lamiaceae species. The syntenic analysis demonstrated that tandem duplication contributed to its evolution. This study systematically analysed the R2R3-MYB family in patchouli, providing information on its gene characterization, functional prediction, and species evolution.


Subject(s)
Arabidopsis , Pogostemon , Pogostemon/genetics , Pogostemon/metabolism , Plant Proteins/genetics , Phylogeny , Arabidopsis/genetics , Transcription Factors/metabolism
8.
Nano Lett ; 23(21): 9928-9935, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37862098

ABSTRACT

Memristors have attracted considerable attention in the past decade, holding great promise for future neuromorphic computing. However, the intrinsic poor stability and large device variability remain key limitations for practical application. Here, we report a simple method to directly visualize the origin of poor stability. By mechanically removing the top electrodes of memristors operated at different states (such as SET or RESET), the memristive layer could be exposed and directly characterized through conductive atomic force microscopy, providing two-dimensional area information within memristors. Based on this technique, we observed the existence of multiple conducting filaments during the formation process and built up a physical model between filament numbers and the cycle-to-cycle variation. Furthermore, by improving the interface quality through the van der Waals top electrode, we could reduce the filament number down to a single filament during all switching cycles, leading to much controlled switching behavior and reliable device operation.

9.
Histochem Cell Biol ; 160(1): 51-61, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37115319

ABSTRACT

Acute lung injury is a critical acute respiratory distress syndrome (ARDS) with high morbidity and mortality. MicroRNAs (miRNAs) have been demonstrated to play important roles regulating acute lung injury development. In this study, we found that the expression of miR-598 was significantly upregulated in the lung tissues of mice with lipopolysaccharide (LPS)-induced acute lung injury. Both loss-of-function and gain-of-function studies were performed to evaluate the function of miR-598 in acute lung injury. The results showed that inhibition of miR-598 attenuated inflammatory response, oxidative stress, and lung injury in mice treated with LPS, while overexpression of miR-598 exacerbated the LPS-induced acute lung injury. Mechanistically, transcription factor Early B-cell Factor-1 (Ebf1) was predicted and validated as a downstream target of miR-598. Overexpression of Ebf1 attenuated LPS-induced production of inflammatory cytokine TNF-α and IL-6, ameliorated LPS-induced oxidative stress, promoted proliferation, and inhibited apoptosis in murine lung epithelial-15 (MLE-15) cells. Moreover, we demonstrated that Ebf1 knockdown abolished the protective effect of miR-598 inhibition in LPS-treated MLE-15 cells. In summary, miR-598 inhibition ameliorates LPS-induced acute lung injury in mice through upregulating Ebf1 expression, which might provide potential therapeutic treatment for acute lung injury.


Subject(s)
Acute Lung Injury , MicroRNAs , Animals , Mice , Acute Lung Injury/chemically induced , Acute Lung Injury/genetics , Acute Lung Injury/prevention & control , Apoptosis , Cytokines , Lipopolysaccharides/adverse effects , MicroRNAs/genetics , MicroRNAs/metabolism , NF-kappa B/metabolism , Trans-Activators
10.
BMC Musculoskelet Disord ; 24(1): 931, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38041039

ABSTRACT

OBJECTIVE: To investigate the optimal duration of applying a venous foot pump (VFP) in the prevention of venous thromboembolism (VTE) following hip and knee arthroplasty. METHODS: A total of 230 patients undergoing hip and knee arthroplasty between March 2021 and March 2022 in orthopaedic departments of four major teaching hospitals were prospectively enrolled. Patients were randomly divided into five groups based on the duration of the VFP application. Postoperative deep vein thromboses (DVT), including proximal, distal, and intermuscular DVT, were recorded for analysis. Postoperative blood coagulation examinations, such as D-dimer and active partial thromboplastin time (APTT), pain outcome, and degree of comfort were also collected. RESULTS: Two of the 230 patients withdrew due to early discharge from the hospital, and 228 patients were included in the final analysis. The mean age was 60.38 ± 13.33 years. The baseline characteristics were comparable among the five groups. Compared with the other groups, patients treated with 6-hour VFP had the lowest incidence of DVT (8.7%, 4/46), followed by those treated with 1-hour VFP (15.2%, 7/46), 12-hour VFP (15.6%, 7/45), 18-hour VFP(17.8%, 8/45) and 20-hour VFP(21.7%, 10/46), but with no significant difference (P = 0.539). Regarding postoperative blood coagulation examinations, patients treated with 6-hour VFP had the lowest D-dimer (P = 0.658) and the highest APTT (P = 0.262) compared with the other four groups. 6-hour VFP also had the lowest pain score (P = 0.206) and the highest comfort score (P = 0.288) compared with the other four groups. CONCLUSIONS: Six hours may be the optimal duration of applying VFP for the prevention of VTE in patients undergoing hip and knee arthroplasty in terms of VTE incidence, postoperative blood coagulation examinations, pain outcomes, and comfort scores.


Subject(s)
Arthroplasty, Replacement, Hip , Arthroplasty, Replacement, Knee , Venous Thromboembolism , Venous Thrombosis , Humans , Middle Aged , Aged , Venous Thromboembolism/diagnosis , Venous Thromboembolism/epidemiology , Venous Thromboembolism/etiology , Prospective Studies , Arthroplasty, Replacement, Knee/adverse effects , Venous Thrombosis/epidemiology , Venous Thrombosis/etiology , Venous Thrombosis/prevention & control , Postoperative Complications/diagnosis , Postoperative Complications/epidemiology , Postoperative Complications/etiology , Pain/etiology , Arthroplasty, Replacement, Hip/adverse effects , Anticoagulants/therapeutic use
11.
Ecotoxicol Environ Saf ; 261: 115111, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37295304

ABSTRACT

Arsenic pollution in groundwater remains a serious public health concern around the world. Recent years, arsenic-related neurological and psychiatric disorders have been reported increasingly. However, the exact mechanisms of it remains elusive. In this study, arsenic exposure through drinking water resulted in depression-/anxiety-like behaviors in mice accompanied by oxidative stress and NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome activation in prefrontal cortex (PFC) and hippocampus, two main affected areas found in neurobehavioral disorders. Intervention by NAC, a ROS scavenger, diminished the social behavior impairments in mice as well as ROS generation and NLRP3 inflammasome activation. Further study revealed that it was p38 MAPK signaling pathway that mediated ROS-induced NLRP3 inflammasome activation. Overall, our findings suggested that ROS/p38 MAPK/NLRP3 inflammasome cascade was involved in arsenic-induced depression-/anxiety-disorders. Furthermore, NAC might be a potential therapeutic agent for arsenic-induced depression-/anxiety-disorders by inhibiting both ROS generation and ROS-induced NLRP3 inflammasome activation.


Subject(s)
Arsenic , Inflammasomes , Mice , Animals , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Reactive Oxygen Species/metabolism , Arsenic/toxicity , Depression/chemically induced , Disease Models, Animal , Anxiety/chemically induced , p38 Mitogen-Activated Protein Kinases/genetics
12.
Nano Lett ; 22(11): 4429-4436, 2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35616710

ABSTRACT

Schottky diode is the fundamental building blocks for modern electronics and optoelectronics. Reducing the semiconductor layer thickness could shrink the vertical size of a Schottky diode, improving its speed and integration density. Here, we demonstrate a new approach to fabricate a Schottky diode with ultrashort physical length approaching atomic limit. By mechanically laminating prefabricated metal electrodes on both-sides of two-dimensional MoS2, the intrinsic metal-semiconductor interfaces can be well retained. As a result, we demonstrate the thinnest Schottky diode with a length of 2.6 nm and decent rectification behavior. Furthermore, with a diode length smaller than the semiconductor depletion length, the carrier transport mechanisms are investigated and explained by thickness-dependent and temperature-dependent electrical measurements. Our study not only pushes the scaling limit of a Schottky diode but also provides a general double-sided electrodes integration approach for other ultrathin vertical devices.

13.
Int J Mol Sci ; 24(13)2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37446145

ABSTRACT

As an important medicinal and aromatic plant, patchouli is distributed throughout most of Asia. However, current research on patchouli's genetic diversity is limited and lacks genome-wide studies. Here, we have collected seven representative patchouli accessions from different localities and performed whole-genome resequencing on them. In total, 402,650 single nucleotide polymorphisms (SNPs) and 153,233 insertions/deletions (INDELs) were detected. Based on these abundant genetic variants, patchouli accessions were primarily classified into the Chinese group and the Southeast Asian group. However, the accession SP (Shipai) collected from China formed a distinct subgroup within the Southeast Asian group. As SP has been used as a genuine herb in traditional Chinese medicine, its unique molecular markers have been subsequently screened and verified. For 26,144 specific SNPs and 16,289 specific INDELs in SP, 10 of them were validated using Polymerase Chain Reaction (PCR) following three different approaches. Further, we analyzed the effects of total genetic variants on genes involved in the sesquiterpene synthesis pathway, which produce the primary phytochemical compounds found in patchouli. Eight genes were ultimately investigated and a gene encoding nerolidol synthetase (PatNES) was chosen and confirmed through biochemical assay. In accession YN, genetic variants in PatNES led to a loss of synthetase activity. Our results provide valuable information for understanding the diversity of patchouli germplasm resources.


Subject(s)
Pogostemon , Pogostemon/genetics , Sequence Analysis, DNA , Polymorphism, Single Nucleotide , Genome, Plant , Asia
14.
J Infect Dis ; 226(5): 881-890, 2022 09 13.
Article in English | MEDLINE | ID: mdl-34931674

ABSTRACT

BACKGROUND: Whether serum hepatitis B virus (HBV) RNA associates with hepatocellular carcinoma (HCC) development in chronic hepatitis B (CHB) patients has not been fully elucidated. METHODS: We enrolled 2974 patients receiving nucleos(t)ide analogues (NAs) from a prospective, observational CHB cohort to investigate the effect of serum HBV RNA, measured at study entry (baseline), on HCC development, using Cox regression analyses. RESULTS: During median follow-up of 4.4 years, 90 patients developed HCC. Patients with detectable baseline HBV RNA (n = 2072) exhibited significantly higher HCC risk than those with undetectable level (5-year HCC incidence estimated by Kaplan-Meier method: 4.1% versus 1.8%, P = .009; adjusted hazard ratio [aHR] = 2.21, P = .005). HBV RNA levels of 609-99 999 and ≥100 000 copies/mL were associated with incrementally increasing HCC risk (aHR = 2.15 and 3.05, respectively; P for trend = .003), compared to undetectable level (<609 copies/mL). Moreover, patients with single-detectable either HBV DNA or RNA and double-detectable DNA and RNA had 1.57- and 4.02-fold higher HCC risk, respectively, than those with double-undetectable DNA and RNA (P for trend = .001). CONCLUSIONS: High-level HBV RNA is associated with increased HCC risk in NAs-treated patients. Achieving undetectable HBV RNA may contribute to better clinical outcomes, indicating it could be a valuable endpoint of anti-HBV treatment.


Subject(s)
Carcinoma, Hepatocellular , Hepatitis B, Chronic , Liver Neoplasms , Antiviral Agents/pharmacology , Carcinoma, Hepatocellular/epidemiology , DNA, Viral , Hepatitis B virus/genetics , Hepatitis B, Chronic/complications , Hepatitis B, Chronic/drug therapy , Humans , Liver Neoplasms/epidemiology , Nucleosides/pharmacology , Prospective Studies , RNA
15.
Lancet ; 397(10293): 2467-2475, 2021 06 26.
Article in English | MEDLINE | ID: mdl-34004177

ABSTRACT

BACKGROUND: Improving symptoms is a primary treatment goal in patients with obstructive hypertrophic cardiomyopathy. Currently available pharmacological options for hypertrophic cardiomyopathy are not disease-specific and are often inadequate or poorly tolerated. We aimed to assess the effect of mavacamten, a first-in-class cardiac myosin inhibitor, on patients' health status-ie, symptoms, physical and social function, and quality of life. METHODS: We did a health status analysis of EXPLORER-HCM, a phase 3, double-blind, randomised, placebo-controlled trial. The study took place at 68 clinical cardiovascular centres in 13 countries. Adult patients (≥18 years) with symptomatic obstructive hypertrophic cardiomyopathy (gradient ≥50 mm Hg and New York Heart Association class II-III) were randomly assigned (1:1) to mavacamten or placebo for 30 weeks, followed by an 8-week washout period. Both patients and staff were masked to study treatment. The primary outcome for this secondary analysis was the Kansas City Cardiomyopathy Questionnaire (KCCQ), a well validated disease-specific measure of patients' health status. It was administered at baseline and weeks 6, 12, 18, 30 (end of treatment), and 38 (end of study). Changes from baseline to week 30 in KCCQ overall summary (OS) score and all subscales were analysed using mixed model repeated measures. This study is registered with ClinicalTrials.gov, NCT03470545. FINDINGS: Between May 30, 2018, and July 12, 2019, 429 adults were assessed for eligibility, of whom 251 (59%) were enrolled and randomly assigned. Of 123 patients randomly assigned to mavacamten, 92 (75%) completed the KCCQ at baseline and week 30 and of the 128 patients randomly assigned to placebo 88 (69%) completed the KCCQ at baseline and week 30. At 30 weeks, the change in KCCQ-OS score was greater with mavacamten than placebo (mean score 14·9 [SD 15·8] vs 5·4 [13·7]; difference +9·1 [95% CI 5·5-12·8]; p<0·0001), with similar benefits across all KCCQ subscales. The proportion of patients with a very large change (KCCQ-OS ≥20 points) was 36% (33 of 92) in the mavacamten group versus 15% (13 of 88) in the placebo group, with an estimated absolute difference of 21% (95% CI 8·8-33·4) and number needed to treat of five (95% CI 3-11). These gains returned to baseline after treatment was stopped. INTERPRETATION: Mavacamten markedly improved the health status of patients with symptomatic obstructive hypertrophic cardiomyopathy compared with placebo, with a low number needed to treat for marked improvement. Given that the primary goals of treatment are to improve symptoms, physical and social function, and quality of life, mavacamten represents a new potential strategy for achieving these goals. FUNDING: MyoKardia, a Bristol Myers Squibb company.


Subject(s)
Benzylamines/therapeutic use , Cardiomyopathy, Hypertrophic/drug therapy , Health Status , Uracil/analogs & derivatives , Adult , Aged , Double-Blind Method , Female , Humans , Male , Middle Aged , Quality of Life , Uracil/therapeutic use
16.
Small ; 18(14): e2107104, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35174957

ABSTRACT

2D Semiconductors are promising in the development of next-generation photodetectors. However, the performances of 2D photodetectors are largely limited by their poor light absorption (due to ultrathin thickness) and small detection range (due to large bandgap). To overcome the limitations, a strain-plasmonic coupled 2D photodetector is designed by mechanically integrating monolayer MoS2 on top of prefabricated Au nanoparticle arrays. Within this structure, the large biaxial tensile strain can greatly reduce the MoS2 bandgap for broadband photodetection, and at the same time, the nanoparticles can significantly enhance the light intensity around MoS2 with much improved light absorption. Together, the strain-plasmonic coupled photodetector can broaden the detection range by 60 nm and increase the signal-to-noise ratio by 650%, representing the ultimate optimization of detection range and detection intensity at the same time. The strain-plasmonic coupling effect is further systematically characterized and confirmed by using Raman and photoluminescence spectrophotometry. Furthermore, the existence of built-in potential and photo-switching behavior is demonstrated between the strained and unstrained region, constructing a self-powered homojunction photodetector. This approach provides a simple strategy to couple strain effect and plasmonic effect, which can provide a new strategy for designing high-performance and broadband 2D optoelectronic devices.

17.
Brief Bioinform ; 21(4): 1397-1410, 2020 07 15.
Article in English | MEDLINE | ID: mdl-31504171

ABSTRACT

Essential genes are those whose loss of function compromises organism viability or results in profound loss of fitness. Recent gene-editing technologies have provided new opportunities to characterize essential genes. Here, we present an integrated analysis that comprehensively and systematically elucidates the genetic and regulatory characteristics of human essential genes. First, we found that essential genes act as 'hubs' in protein-protein interaction networks, chromatin structure and epigenetic modification. Second, essential genes represent conserved biological processes across species, although gene essentiality changes differently among species. Third, essential genes are important for cell development due to their discriminate transcription activity in embryo development and oncogenesis. In addition, we developed an interactive web server, the Human Essential Genes Interactive Analysis Platform (http://sysomics.com/HEGIAP/), which integrates abundant analytical tools to enable global, multidimensional interpretation of gene essentiality. Our study provides new insights that improve the understanding of human essential genes.


Subject(s)
Genes, Essential , Internet , Embryonic Development/genetics , Epigenesis, Genetic , Humans , Transcription, Genetic
18.
BMC Cancer ; 22(1): 712, 2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35764974

ABSTRACT

BACKGROUND: CXCL1 belongs to a member of the ELR + CXC chemokine subgroups that also known as GRO-alpha. It has been recognized that several types of human cancers constitutively express CXCL1, which may serve as a crucial mediator involved in cancer development and metastasis via an autocrine and/or paracrine fashion. However, the expression pattern and clinical significance of CXCL1 in human uterine cervix cancer (UCC), as well as its roles and mechanisms in UCC tumor biology remains entirely unclear. METHODS: The expression and clinical significance of CXCL1 in UCC tissues was explored using immunohistochemistry and bioinformatics analyses. The expression and effects of CXCL1 in HeLa UCC cells were assessed using ELISA, CCK-8 and transwell assays. Western blotting experiments were performed to evaluate the potential mechanism of CXCL1 on malignant behaviors of HeLa UCC cells. RESULTS: The current study demonstrated that CXCL1 was expressed in HeLa UCC cells, PHM1-41 human immortalized cervical stromal cells, as well as cervical tissues, with UCC tissues having an evidently high level of CXCL1. This high level of CXCL1 in cancer tissues was notably related to poor clinical stages and worse survival probability, rather than tumor infiltration and patient age. In addition, CXCL1 expression was extremely correlated with CCL20, CXCL8 and CXCL3 cancer-associated chemokines expression. In vitro, the growth and migration abilities of HeLa cells were significantly enhanced in the presence of exogenous CXCL1. Gain-function assay revealed that CXCL1 overexpression significantly promoted growth and migration response in HeLa cells in both autocrine and paracrine manners. Finally, we found that CXCL1 overexpression in HeLa cells influenced the expression of ERK signal-related genes, and HeLa cell malignant behaviors derived from CXCL1 overexpression were further interrupted in the presence of the ERK1/2 blocker. CONCLUSION: Our findings demonstrate the potential roles of CXCL1 as a promoter and a novel understanding of the functional relationship between CXCL1 and the ERK signaling pathway in UCC.


Subject(s)
Chemokine CXCL1 , Uterine Cervical Neoplasms , Chemokine CXCL1/biosynthesis , Chemokine CXCL1/genetics , Chemokines , Female , HeLa Cells , Humans , Neoplasm Staging , Signal Transduction , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/pathology
19.
Inorg Chem ; 61(28): 11011-11021, 2022 Jul 18.
Article in English | MEDLINE | ID: mdl-35795917

ABSTRACT

Ruthenium, which is relatively cheap in precious metals, has become a popular alternative for a hydrogen evolution reaction (HER) catalyst because of its corrosion resistance and appropriate metal-H bond strength. Convenient synthesis and active site regulation are conducive to stimulating the excellent catalytic performance of Ru as much as possible. Herein, using the mature mesoporous nitrogen-doped carbon material as the support, the catalytic materials containing both single atom Ru and Ru nanoparticles were synthesized by impregnation using the solid-phase reduction method. The effect of reduction temperature on the dispersion state and electronic structure of Ru species has been fully studied using electronic and spectroscopic characterizations. The sample reduced at 300 °C has excellent HER activity with overpotentials of 10.8 and 53.8 mV to deliver 10 mA/cm2 in alkaline and acidic media, respectively, which is among the best activities in the reported results. Electrochemical impedance analysis shows that the reduction temperature has a great influence on the number of active sites and charge transfer impedance of the catalyst.

20.
Immunopharmacol Immunotoxicol ; 44(1): 110-118, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34898349

ABSTRACT

BACKGROUND: Ulcerative colitis (UC) is dramatically increasing worldwide, cannot be thoroughly cured, and reduces patients' quality of life. Excessive activation of macrophages and over-production of cytokines play an important role in the pathogenesis of UC. Therefore, for its treatment, inhibiting macrophages' hyperactivation would be effective to develop new treatment approaches. Ginsenosides, extracted from ginseng, show an anti-inflammatory effect on the immunologic process. Our study used ginsenosides Rd monomer (GRd) to intervene in DSS-induced colitis mouse models and tested the immunological effect of macrophages. METHOD: We observed body weights, weights of colons, colonic lengths, and inflammatory scores, as well as histological changes of DSS/DSS-GRd mice. We also isolated intestinal and peritoneal macrophages, performed qRT-PCR and ELISA to detect cytokines production by macrophages, and screened possible involved pathways by Western blotting. RESULTS: Administering 20 mg/Kg GRd to DSS mice for 7-14 days reduced colonic inflammation. Moreover, both in vivo and in vitro, levels of TNF-α, IFN-γ, IL-6, IL-12/23p40, and IL-17A were all inhibited by GRd at 14 days in intestinal macrophages, and 20 µmol/L GRd at 12 h in peritoneal macrophages, respectively, but longer time made no more benefit. Western blotting showed GRd could decrease expression of pJNK, p-p38, pIκBα, and P65 in nuclear. CONCLUSIONS: Our data indicate that GRd could down-regulate cytokines production in macrophages and alleviate DSS-colitis in mice, which may be related to NF-κB and P38MAPK pathways. These results suggest that GRd has an anti-inflammatory effect on experimental colitis and may have potential efficacy in the treatment of UC alone or in combination.


Subject(s)
Colitis, Ulcerative , Colitis , Ginsenosides , Animals , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Colitis, Ulcerative/chemically induced , Colon/pathology , Cytokines/metabolism , Dextran Sulfate , Ginsenosides/adverse effects , Ginsenosides/metabolism , Humans , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , Quality of Life , p38 Mitogen-Activated Protein Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL