ABSTRACT
Inhibition of cytosolic DNA sensing represents a strategy that tumor cells use for immune evasion, but the underlying mechanisms are unclear. Here we have shown that CD47-signal regulatory protein α (SIRPα) axis dictates the fate of ingested DNA in DCs for immune evasion. Although macrophages were more potent in uptaking tumor DNA, increase of DNA sensing by blocking the interaction of SIRPα with CD47 preferentially occurred in dendritic cells (DCs) but not in macrophages. Mechanistically, CD47 blockade enabled the activation of NADPH oxidase NOX2 in DCs, which in turn inhibited phagosomal acidification and reduced the degradation of tumor mitochondrial DNA (mtDNA) in DCs. mtDNA was recognized by cyclic-GMP-AMP synthase (cGAS) in the DC cytosol, contributing to type I interferon (IFN) production and antitumor adaptive immunity. Thus, our findings have demonstrated how tumor cells inhibit innate sensing in DCs and suggested that the CD47-SIRPα axis is critical for DC-driven antitumor immunity.
Subject(s)
Antigens, Differentiation/metabolism , Colonic Neoplasms/immunology , DNA, Mitochondrial/immunology , Dendritic Cells/immunology , Membrane Proteins/metabolism , Receptors, Immunologic/metabolism , Animals , Antibodies, Blocking/therapeutic use , CD47 Antigen/immunology , CD47 Antigen/metabolism , Cells, Cultured , Colonic Neoplasms/genetics , Colonic Neoplasms/therapy , Cross-Priming , Disease Models, Animal , Humans , Interferon Type I/metabolism , Macrophages/immunology , Membrane Glycoproteins/metabolism , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , NADPH Oxidase 2 , NADPH Oxidases/metabolism , Nucleotidyltransferases/metabolism , Signal Transduction , Tumor EscapeABSTRACT
Natriuretic peptide receptor-C (NPR-C) is highly expressed in adipose tissues and regulates obesity-related diseases; however, the detailed mechanism remains unknown. In this research, we aimed to explore the potential role of NPR-C in cold exposure and high-fat/high-sugar (HF/HS) diet-induced metabolic changes, especially in regulating white adipose tissue (WAT) mitochondrial function. Our findings showed that NPR-C expression, especially in epididymal WAT (eWAT), was reduced after cold exposure. Global Npr3 (gene encoding NPR-C protein) deficiency led to reduced body weight, increased WAT browning, thermogenesis, and enhanced expression of genes related to mitochondrial biogenesis. RNA-sequencing of eWAT showed that Npr3 deficiency enhanced the expression of mitochondrial respiratory chain complex genes and promoted mitochondrial oxidative phosphorylation in response to cold exposure. In addition, Npr3 KO mice were able to resist obesity induced by HF/HS diet. Npr3 knockdown in stromal vascular fraction (SVF)-induced white adipocytes promoted the expression of proliferator-activated receptor gamma coactivator 1α (PGC1α), uncoupling protein one (UCP1), and mitochondrial respiratory chain complexes. Mechanistically, NPR-C inhibited cGMP and calcium signaling in an NPR-B-dependent manner but suppressed cAMP signaling in an NPR-B-independent manner. Moreover, Npr3 knockdown induced browning via AKT and p38 pathway activation, which were attenuated by Npr2 knockdown. Importantly, treatment with the NPR-C-specific antagonist, AP-811, decreased WAT mass and increased PGC-1α, UCP1, and mitochondrial complex expression. Our findings reveal that NPR-C deficiency enhances mitochondrial function and energy expenditure in white adipose tissue, contributing to improved metabolic health and resistance to obesity.
Subject(s)
Adipose Tissue, White , Mitochondria , Receptors, Atrial Natriuretic Factor , Animals , Adipose Tissue, White/metabolism , Mice , Receptors, Atrial Natriuretic Factor/metabolism , Receptors, Atrial Natriuretic Factor/genetics , Mitochondria/metabolism , Male , Mice, Knockout , Mice, Inbred C57BL , Cell Respiration , Diet, High-Fat/adverse effects , Obesity/metabolism , Obesity/geneticsABSTRACT
OBJECTIVE: To retrospectively analyze the effect of hyperthermic intraperitoneal chemotherapy (HIPEC) on the progression free survival (PFS) of advanced gastric cancer (GC) and colorectal cancer (CRC). METHOD: We retrospectively collected all the HIPEC data of GC and CRC in the Chongqing University Cancer Hospital from August 2018 to April 2023. Data were extracted from inpatient records and outpatient examination records. The IBM SPSS statistics 23.0 software was used to analyze the data. We mainly compared the PFS of HIPEC cases with that of non-HIPEC cases (both from our center and from the literature). PFS was analyzed with the Kaplan-Meier method. Log Rank (Mantel Cox), Breslow (Generalized Wilcoxon), and Tarone-Ware were used for univariate analyses. RESULT: A total of 342 HIPEC cases were analyzed in this study. Stage IV GC and CRC accounted for 48.5% of the total number of cases. Abdominal pain and distension (47.4%) were the most common side effects from HIPEC. Serious complications were rare (1.8%, including bleeding, perforation, obstruction, and death). The PFS and disease-free survival (DFS) of abdominal malignancy treated with HIPEC were significantly associated with the TNM stage, but not HIPEC numbers nor HIPEC drugs. In stage IV HIPEC cases, adding adjuvant chemotherapy after HIPEC resulted in better PFS. In addition, the association between peritoneal carcinomatosis index (PCI) and PFS of stage IV HIPEC cases was close to significant. Compared with the 33 stage IV (with peritoneal metastases) GC cases without HIPEC in our center from the last 15 years, the PFS of the 56 stage â £ GC cases with HIPEC was not improved significantly (median PFS: 6 ± 2.92 months vs 7 ± 1.63 months for with vs without HIPEC in stage IV GC, respectively; P ≥ 0.05). Compared with the 58 stage IV (with peritoneal metastases) CRC cases without HIPEC in our center from the last 15 years, the PFS of the 86 stage IV CRC cases with HIPEC was not improved significantly either (median PFS: 7 ± 1.68 months vs 7 ± 0.62 months for with vs without HIPEC in stage IV CRC, respectively; P ≥ 0.05). When comparing our HIPEC data with the non-HIPEC data reported by other scholars for the PFS of advanced GC and CRC, the negative results were similar. CONCLUSION: The PFS/DFS of HIPEC cases was associated with the TNM stage, but not with the HIPEC numbers or HIPEC drugs. PCI may be related to the PFS of stage IV HIPEC cases. Adding chemotherapy or targeted therapy after HIPEC may improve the PFS of stage IV cases. HIPEC did not significantly improve the PFS of stage IV GC or CRC cases in our center.
Subject(s)
Colorectal Neoplasms , Hyperthermic Intraperitoneal Chemotherapy , Stomach Neoplasms , Humans , Retrospective Studies , Male , Female , Hyperthermic Intraperitoneal Chemotherapy/methods , Stomach Neoplasms/therapy , Stomach Neoplasms/pathology , Stomach Neoplasms/mortality , Stomach Neoplasms/drug therapy , Middle Aged , Colorectal Neoplasms/pathology , Colorectal Neoplasms/therapy , Aged , Adult , Progression-Free SurvivalABSTRACT
Two new sesterterpenoids, sesterchaetins A and B (1 and 2), and two new diepoxide polyketides, chaetoketoics A and B (3 and 4), were characterized from the culture extract of Chaetomium globosum SD-347, a fungal strain derived from deep sea-sediment. Their structures and absolute configurations were unambiguously determined by detailed NMR, mass spectra, and X-ray crystallographic analysis. Compounds 1 and 2 contained a distinctive 5/8/6/5 tetracyclic carbon-ring-system, which represented a rarely occurring natural product framework. The new isolates 1-4 exhibited selective antimicrobial activities against human and aquatic pathogenic bacteria and plant-pathogenic fungi.
Subject(s)
Anti-Infective Agents , Chaetomium , Polyketides , Sesquiterpenes , Anti-Infective Agents/chemistry , Anti-Infective Agents/isolation & purification , Anti-Infective Agents/pharmacology , Sesquiterpenes/chemistry , Sesquiterpenes/isolation & purification , Sesquiterpenes/pharmacology , Polyketides/chemistry , Polyketides/isolation & purification , Aquatic Organisms/chemistry , Chaetomium/chemistry , Bacteria/drug effects , Crystallography, X-RayABSTRACT
The mechanism governing sulfur cycling in nitrate reduction within sulfate-rich reservoirs during seasonal hypoxic conditions remains poorly understood. This study employs nitrogen and oxygen isotope fractionation in nitrate, along with metagenomic sequencing to elucidate the intricacies of the coupled sulfur oxidation and nitrate reduction process in the water column. In the Aha reservoir, a typical seasonally stratified water body, we observed the coexistence of denitrification, bacterial sulfide oxidation, and bacterial sulfate reduction in hypoxic conditions. This is substantiated by the presence of abundant N/S-related genes (nosZ and aprAB/dsrAB) and fluctuations in N/S species. The lower 15εNO3/18εNO3 ratio (0.60) observed in this study, compared to heterotrophic denitrification, strongly supports the occurrence of sulfur-driven denitrification. Furthermore, we found a robust positive correlation between the metabolic potential of bacterial sulfide oxidation and denitrification (p < 0.05), emphasizing the role of sulfide produced via sulfate reduction in enhancing denitrification. Sulfide-driven denitrification relied on ∑S2- as the primary electron donor preferentially oxidized by denitrification. The pivotal genus, Sulfuritalea, emerged as a central player in both denitrification and sulfide oxidation processes in hypoxic water bodies. Our study provides compelling evidence that sulfides assume a critical role in regulating denitrification in hypoxic water within an ecosystem where their contribution to the overall nitrogen cycle was previously underestimated.
Subject(s)
Denitrification , Metagenomics , Sulfates , Sulfides , Sulfates/metabolism , Sulfides/metabolism , Nitrates/metabolism , Autotrophic Processes , Oxidation-Reduction , Bacteria/metabolismABSTRACT
The capture and separation of CF4 from CF4/N2 mixture gas is a crucial issue in the electronics industry, as CF4 is a commonly used etching gas and the ratio of CF4 to N2 directly affects process efficiency. Utilizing high-throughput computational screening techniques and grand canonical Monte Carlo (GCMC) simulations, we comprehensively screened and assessed 247 types of pure silicon zeolite materials to determine their adsorption and separation performance for CF4/N2 mixtures. Based on screening, the relationships between the structural parameters and adsorption and separation properties were meticulously investigated. Four indicators including adsorption selectivity, working capacity, adsorbent performance score (APS), and regenerability (R%) were used to evaluate the performance of adsorbents. Based on the evaluation, we selected the top three best-performing zeolite structures for vacuum swing adsorption (LEV, AWW and ESV) and pressure swing adsorption (AVL, ZON, and ERI) processes respectively. Also, we studied the preferable adsorption sites of CF4 and N2 in the selected zeolite structures through centroid density distributions at the molecule level. We expect the study may provide some valuable guidance for subsequent experimental investigations on adsorption and separation of CF4/N2.
ABSTRACT
BACKGROUND: Diabetic foot ulcers (DFUs) have become a global health concern, which can lead to diabetic foot infection (DFI), lower leg amputation, and even mortality. Though the standard of care (SOC) practices have been recognized as the "gold standard" for DFU care, SOC alone may not be adequate to heal all DFUs and prevent their recurrence. The use of dermal matrix has emerged as an adjuvant treatment to enhance DFU healing. The current study aimed to evaluate the effectiveness and safety of dermal matrix application as an adjuvant treatment to the SOC. METHODS: The databases of PubMed, Embase and CENTRAL were independently searched by two authors, with the following key terms: "diabetic foot ulcer", "acellular dermal matrix", "wound healing", and so on. Randomized controlled trials (RCTs) evaluated the efficacy and safety of dermal matrix in the treatment of DFUs were eligible for inclusion. The primary outcomes analyzed included time to complete healing and complete healing rate at the final follow-up, while secondary outcomes included wound area, ulcer recurrence rate, amputation risk and complication risk. Meta-analyses were performed using random-effect or fixed-effect models, based on the heterogeneity test. RESULTS: This study included a total of 15 RCTs with a total of 1524 subjects. Of these, 689 patients were treated with SOC alone, while 835 patients received SOC plus dermal matrix. Compared to the SOC group, significantly shorter time (MD = 2.84, 95%CI: 1.37 ~ 4.32, p < 0.001***) was required to achieve complete healing in dermal matrix group. Significantly higher complete healing rate (OR = 0.40, 95%CI: 0.33 ~ 0.49, p < 0.001***) and lower overall (RR = 1.83, 95%CI: 1.15 ~ 2.93, p = 0.011*) and major (RR = 2.64, 95%CI: 1.30 ~ 5.36, p = 0.007**) amputation risks were achieved in dermal matrix group compared to SOC group. No significant difference was found in the wound area, ulcer recurrence rate, and complication risk between the two groups. CONCLUSIONS: The application of dermal matrix as an adjuvant therapy in conjunction with SOC effectively improved the healing process of DFUs and reduced the amputation risk when compared to SOC alone. Furthermore, dermal matrix application was well tolerated by the subjects with no added complication risk.
Subject(s)
Diabetic Foot , Wound Healing , Humans , Acellular Dermis , Amputation, Surgical , Diabetic Foot/therapy , Randomized Controlled Trials as Topic , Treatment OutcomeABSTRACT
Epithelial-mesenchymal transition (EMT) plays a critical role in hypertension-induced renal fibrosis, a final pathway that leads to end-stage renal failure. C-Atrial natriuretic peptide (ANP)4-23, a specific agonist of natriuretic peptide receptor-C (NPR-C), has been reported to have protective effects against hypertension. However, the role of C-ANP4-23 in hypertension-associated renal fibrosis has not yet been elucidated. In this study, mice were randomly divided into SHAM group, DOCA-salt group and DOCA-salt + C-ANP4-23 group. Renal morphology changes, renal function and fibrosis were detected. Human proximal tubular epithelial cells (HK2) stimulated by aldosterone were used for cell function and mechanism study. The DOCA-salt treated mice exhibited hypertension, kidney fibrosis and renal dysfunction, which were attenuated by C-ANP4-23. Moreover, C-ANP4-23 inhibited DOCA-salt treatment-induced renal EMT as evidenced by decrease of the mesenchymal marker alpha-smooth muscle actin (ACTA2) and vimentin and increase of epithelial cell marker E-cadherin. In HK2 cells, aldosterone induced EMT response, which was also suppressed by C-ANP4-23. The key transcription factors (twist, snail, slug and ZEB1) involved in EMT were increased in the kidney of DOCA-salt-treated mice, which were also suppressed by C-ANP4-23. Mechanistically, C-ANP4-23 inhibited the aldosterone-induced translocation of MR from cytosol to nucleus without change of MR expression. Furthermore, C-ANP4-23 rescued the enhanced expression of NADPH oxidase (NOX) 4 and oxidative stress after aldosterone stimulation. Aldosterone-induced Akt and Erk1/2 activation was also suppressed by C-ANP4-23. Our data suggest that C-ANP4-23 attenuates renal fibrosis, likely through inhibition of MR activation, enhanced oxidative stress and Akt and Erk1/2 signaling pathway.
Subject(s)
Desoxycorticosterone Acetate , Hypertension , Kidney Diseases , Mice , Humans , Animals , Atrial Natriuretic Factor/genetics , Atrial Natriuretic Factor/metabolism , Receptors, Atrial Natriuretic Factor/metabolism , Aldosterone/adverse effects , Aldosterone/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Desoxycorticosterone Acetate/adverse effects , Hypertension/chemically induced , Hypertension/metabolism , Kidney/metabolism , Kidney Diseases/chemically induced , Kidney Diseases/prevention & control , Acetates/adverse effects , Acetates/metabolism , FibrosisABSTRACT
To study the heavy metal accumulation and its impact on insect exterior and chromosome morphology, and reveal the molecular mechanism of insects adapting to long-term heavy metal compound pollution habitats, this study, in the Diaojiang river basin, which has been polluted by heavy metals(HMs) for nearly a thousand years, two Eucriotettix oculatus populations was collected from mining and non-mining areas. It was found that the contents of 7 heavy metals (As, Cd, Pb, Zn, Cu, Sn, Sb) in E. oculatus of the mining area were higher than that in the non-mining 1-11 times. The analysis of morphology shows that the external morphology, the hind wing type and the chromosomal morphology of E. oculatus are significant differences between the two populations. Based on the heavy metal accumulationï¼morphological change, and stable population density, it is inferred that the mining area population has been affected by heavy metals and has adapted to the environment of heavy metals pollution. Then, by analyzing the transcriptome of the two populations, it was found that the digestion, immunity, excretion, endocrine, nerve, circulation, reproductive and other systems and lysosomes, endoplasmic reticulum and other cell structure-related gene expression were suppressed. This shows that the functions of the above-mentioned related systems of E. oculatus are inhibited by heavy metal stress. However, it has also been found that through the significant up-regulation of genes related to the above system, such as ATP2B, pepsin A, ubiquitin, AQP1, ACOX, ATPeV0A, SEC61A, CANX, ALDH7A1, DLD, aceE, Hsp40, and catalase, etc., and the down-regulation of MAPK signalling pathway genes, can enhanced nutrient absorption, improve energy metabolism, repair damaged cells and degrade abnormal proteins, maintain the stability of cells and systems, and resist heavy metal damage so that E. oculatus can adapt to the environment of heavy metal pollution for a long time.
Subject(s)
Grasshoppers , Metals, Heavy , Water Pollutants, Chemical , Animals , Metals, Heavy/toxicity , Water Pollutants, Chemical/toxicity , Grasshoppers/drug effects , Grasshoppers/anatomy & histology , Environmental Monitoring/methods , Mining , China , Adaptation, Physiological/drug effects , Transcriptome/drug effects , Rivers/chemistryABSTRACT
OBJECTIVE: To identify tumor-associated macrophages (TAMs) related molecular subtypes and develop a TAMs related prognostic model for prostate cancer (PCa). METHODS: Consensus clustering analysis was used to identify TAMs related molecular clusters. A TAMs related prognostic model was developed using univariate and multivariate Cox analysis. RESULTS: Three TAMs related molecular clusters were identified and were confirmed to be associated with prognosis, clinicopathological characteristics, PD-L1 expression levels and tumor microenvironment. A TAMs related prognostic model was constructed. Patients in low-risk group all showed a more appreciable biochemical recurrence-free survival (BCRFS) than patients in high-risk group in train cohort, test cohort, entire TCGA cohort and validation cohort. SLC26A3 attenuated progression of PCa and prevented macrophage polarizing to TAMs phenotype, which was initially verified. CONCLUSIONS: We successfully identified molecular clusters related to TAMs. Additionally, we developed a prognostic model involving TAMs that exhibits excellent predictive performance for biochemical recurrence-free survival in PCa.
Subject(s)
Prostatic Neoplasms , Tumor-Associated Macrophages , Male , Humans , Prognosis , Prostatic Neoplasms/metabolism , Macrophages , Phenotype , Tumor MicroenvironmentABSTRACT
OBJECTIVES: To investigate the incidence rate, clinical characteristics, and prognosis of neonatal stroke in Shenzhen, China. METHODS: Led by Shenzhen Children's Hospital, the Shenzhen Neonatal Data Collaboration Network organized 21 institutions to collect 36 cases of neonatal stroke from January 2020 to December 2022. The incidence, clinical characteristics, treatment, and prognosis of neonatal stroke in Shenzhen were analyzed. RESULTS: The incidence rate of neonatal stroke in 21 hospitals from 2020 to 2022 was 1/15 137, 1/6 060, and 1/7 704, respectively. Ischemic stroke accounted for 75% (27/36); boys accounted for 64% (23/36). Among the 36 neonates, 31 (86%) had disease onset within 3 days after birth, and 19 (53%) had convulsion as the initial presentation. Cerebral MRI showed that 22 neonates (61%) had left cerebral infarction and 13 (36%) had basal ganglia infarction. Magnetic resonance angiography was performed for 12 neonates, among whom 9 (75%) had involvement of the middle cerebral artery. Electroencephalography was performed for 29 neonates, with sharp waves in 21 neonates (72%) and seizures in 10 neonates (34%). Symptomatic/supportive treatment varied across different hospitals. Neonatal Behavioral Neurological Assessment was performed for 12 neonates (33%, 12/36), with a mean score of (32±4) points. The prognosis of 27 neonates was followed up to around 12 months of age, with 44% (12/27) of the neonates having a good prognosis. CONCLUSIONS: Ischemic stroke is the main type of neonatal stroke, often with convulsions as the initial presentation, involvement of the middle cerebral artery, sharp waves on electroencephalography, and a relatively low neurodevelopment score. Symptomatic/supportive treatment is the main treatment method, and some neonates tend to have a poor prognosis.
Subject(s)
Stroke , Humans , Male , Infant, Newborn , Female , China/epidemiology , Stroke/epidemiology , Prognosis , Electroencephalography , Incidence , Magnetic Resonance ImagingABSTRACT
In our study, 49 key genes significantly associated with renal cell carcinoma (RCC) stemness were obtained. Next, we developed a molecular prognostic signature associated with stemness features of pan-RCC. The difference in overall survival (OS) between the high- and low-risk groups was statistically significant (p < .05). The area under the receiver operating characteristic curve for 1-year OS, 5-year OS, and 10-year OS was 0.759, 0.712, and 0.918, respectively. The results of validation in The Cancer Genome Atlas cohort and International Cancer Genome Consortium cohort revealed the predictive capability of this signature. Furthermore, we selected three genes and further validation showed that these three hub genes were potential hub biomarkers for pan-RCC stemness features.
Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/genetics , Biomarkers , Prognosis , Kidney Neoplasms/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/analysisABSTRACT
Ionizing radiation-mediated tumor regression depends on type I interferon (IFN) and the adaptive immune response, but several pathways control I IFN induction. Here, we demonstrate that adaptor protein STING, but not MyD88, is required for type I IFN-dependent antitumor effects of radiation. In dendritic cells (DCs), STING was required for IFN-? induction in response to irradiated-tumor cells. The cytosolic DNA sensor cyclic GMP-AMP (cGAMP) synthase (cGAS) mediated sensing of irradiated-tumor cells in DCs. Moreover, STING was essential for radiation-induced adaptive immune responses, which relied on type I IFN signaling on DCs. Exogenous IFN-? treatment rescued the cross-priming by cGAS or STING-deficient DCs. Accordingly, activation of STING by a second messenger cGAMP administration enhanced antitumor immunity induced by radiation. Thus radiation-mediated antitumor immunity in immunogenic tumors requires a functional cytosolic DNA-sensing pathway and suggests that cGAMP treatment might provide a new strategy to improve radiotherapy.
Subject(s)
DNA/immunology , Membrane Proteins/genetics , Neoplasms/radiotherapy , Nucleotidyltransferases/immunology , Adaptive Immunity , Adaptor Proteins, Vesicular Transport/genetics , Animals , Antineoplastic Agents/pharmacology , Cells, Cultured , Cross-Priming/immunology , Dendritic Cells/immunology , Immunity, Innate , Interferon-beta/biosynthesis , Interferon-beta/immunology , Interferon-beta/pharmacology , Mice , Mice, Inbred C57BL , Mice, Knockout , Myeloid Differentiation Factor 88/genetics , Neoplasms/immunology , Nucleotides, Cyclic/pharmacology , RNA Interference , RNA, Small Interfering , Radiation, Ionizing , Receptor, Interferon alpha-beta/genetics , Receptor, Interferon alpha-beta/immunology , Signal Transduction/immunology , Xanthones/pharmacologyABSTRACT
PURPOSE: To investigate the risk factors for postoperative lymphorrhea or/and lymphocele (PLL) in patients undergoing radical prostatectomy (RP). MATERIALS AND METHODS: The clinical data of 606 patients were retrospectively collected. The receiver operating characteristic (ROC) curve was utilized to identify the optimal cutoff value. Multivariable logistic regression analysis was used to screen the independent predictors of PLL. RESULTS: Univariate analysis showed that nine factors differed between the PLL and non-PLL group. Multivariable logistic regression analysis showed that low preoperative fibrinogen level, extraperitoneal surgery, robot-assisted laparoscopic radical prostatectomy (RALRP), and hypoalbuminemia were risk factors and the use of fibrin glue was a protective factor. Correlation analysis showed that the scope of LN dissection (LND) and number of lymph nodes (LNs) dissected were positively correlated with PLL in the extraperitoneal approach, but were not significantly correlated with PLL in the transperitoneal approach. The use of fibrin glue was negatively associated with PLL in the overall procedure and the extraperitoneal approach, but not significantly so in the transperitoneal approach. Comparison of LNs clearance between the two surgical approaches revealed that the extent of LND and number of LNs dissected in the extraperitoneal approach were less than in the transperitoneal approach. CONCLUSION: During RALRP, more attention should be paid to fully clotting the broken end of lymphatic vessels. The use of fibrin glue could reduce the probability of PLL. The extent of LND or number of LNs dissected were positively correlated with PLL in the extraperitoneal approach.
Subject(s)
Lymph Node Excision , Lymphocele , Male , Humans , Retrospective Studies , Lymph Node Excision/methods , Lymphocele/epidemiology , Lymphocele/etiology , Case-Control Studies , Fibrin Tissue Adhesive/therapeutic use , Prostatectomy/methods , Postoperative Complications/epidemiology , Postoperative Complications/etiology , Risk FactorsABSTRACT
OBJECTIVE: To identify CD8+ T cell-related molecular clusters and establish a novel gene signature for predicting the prognosis and efficacy of immunotherapy in bladder cancer (BCa). METHODS: Transcriptome and clinical data of BCa samples were obtained from the Cancer Genome Atlas (TCGA) and GEO databases. The CD8+ T cell-related genes were screened through the CIBERSORT algorithm and correlation analysis. Consensus clustering analysis was utilized to identified CD8+ T cell-related molecular clusters. A novel CD8+ T cell-related prognostic model was developed using univariate Cox regression analysis and Lasso regression analysis. Internal and external validations were performed and the validity of the model was validated in a real-world cohort. Finally, preliminary experimental verifications were carried out to verify the biological functions of SH2D2A in bladder cancer. RESULTS: A total of 52 CD8+ T cell-related prognostic genes were screened and two molecular clusters with notably diverse immune cell infiltration, prognosis and clinical features were developed. Then, a novel CD8+ T cell-related prognostic model was constructed. The patients with high-risk scores exhibited a significantly worse overall survival in training, test, whole TCGA and validating cohort. The AUC was 0.766, 0.725, 0.739 and 0.658 in the four cohorts sequentially. Subgroup analysis suggested that the novel prognostic model has a robust clinical application for selecting high-risk patients. Finally, we confirmed that patients in the low-risk group might benefit more from immunotherapy or chemotherapy, and validated the prognostic model in a real-world immunotherapy cohort. Preliminary experiment showed that SH2D2A was capable of attenuating proliferation, migration and invasion of BCa cells. CONCLUSIONS: CD8+ T cell-related molecular clusters were successfully identified. Besides, a novel CD8+ T cell-related prognostic model with an excellent predictive performance in predicting survival rates and immunotherapy efficacy of BCa was developed.
Subject(s)
Immunotherapy , Urinary Bladder Neoplasms , Humans , CD8-Positive T-Lymphocytes , Prognosis , Tumor Microenvironment , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/therapyABSTRACT
The non-volatile resistive switching process of a MoS2based atomristor with a vertical structure is investigated by first-principles calculations. It is found that the monolayer MoS2with a S vacancy defect (VS) could maintain an insulation characteristic and a high resistance state (HRS) is remained. As an electrode metal atom is adsorbed on the MoS2monolayer, the semi-conductive filament is formed with the assistance ofVS. Under this condition, the atomristor presents a low resistance state (LRS). The ON state current of this semi-filament is increased close to two orders of magnitude larger than that without the filament. The energy barrier for an Au-atom to penetrate the monolayer MoS2viaVSis as high as 6.991 eV. When it comes to a double S vacancy (VS2), the energy barrier is still amounted to 3.554 eV, which manifests the bridge-like full conductive filament cannot form in monolayer MoS2based atomristor. The investigation here promotes the atomic level understanding of the resistive switching properties about the monolayer MoS2based memristor. The physics behind should also work in atomristors based on other monolayer transition-metal dichalcogenides, like WSe2and MoTe2. The investigation will be a reference for atomristor-device design or optimization.
ABSTRACT
PURPOSE: Activation of mitogen-activated protein kinases (MAPKs) by pathological stimuli participates in cardiovascular diseases. Dysfunction of adventitial fibroblast has emerged as a critical regulator in vascular remodeling, while the potential mechanism remains unclear. In this study, we sought to determine the effect of different activation of MAPKs in adventitial fibroblast contributing to neointima formation. METHODS: Balloon injury procedure was performed in male 12-week-old Sprague-Dawley rats. After injury, MAPK inhibitors were applied to the adventitia of injured arteries to suppress MAPK activation. Adventitial fibroblasts were stimulated by platelet-derived growth factor-BB (PDGF-BB) with or without MAPK inhibitors. RNA sequencing was performed to investigate the change of pathway and cell function. Wound healing, transwell assay, and flow cytometry were used to analyze adventitial fibroblast function. RESULTS: Phosphorylation of p38, c-Jun N-terminal kinase (JNK), and extracellular regulated kinases 1/2 (ERK1/2) was increased in injured arteries after balloon injury. In primary culture of adventitial fibroblasts, PDGF-BB increased phosphorylation of p38, JNK, ERK1/2, and extracellular regulated kinase 5 (ERK5) in a short time, which was normalized by their inhibitors respectively. Compared with the injury group, perivascular administration of four MAPK inhibitors significantly attenuated neointima formation by quantitative analysis of neointimal area, intima to media (I/M) ratio, and lumen area. RNA sequencing of adventitial fibroblasts treated with PDGF-BB with or without four inhibitors demonstrated differentially expressed genes involved in multiple biological processes, including cell adhesion, proliferation, migration, and inflammatory response. Wound healing and transwell assays showed that four inhibitors suppressed PDGF-BB-induced adventitial fibroblast migration. Cell cycle analysis by flow cytometry demonstrated that JNK, ERK1/2, and ERK5 but not p38 inhibitor blocked PDGF-BB-induced G1 phase release associated with decrease expression of cell cycle protein Cyclin D1 and transcription factor GATA4. Moreover, four inhibitors decreased macrophage infiltration into adventitia and monocyte chemoattractant protein-1 (MCP-1) expression. CONCLUSION: These results suggest that MAPKs differentially regulate activation of adventitial fibroblast through GATA4/Cyclin D1 axis that participates in neointima formation.
ABSTRACT
This meta-analysis compared the efficacy of oblique lumbar interbody fusion (OLIF) and minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF) in the treatment of lumbar degenerative diseases. A computer search for the published literature on OLIF and MIS-TLIF for the treatment of lumbar degenerative diseases in the PubMed, Web of Science, Embase, CINAHL, MEDLINE, Cochrane Library, and other databases was performed, from which 522 related articles were retrieved and 13 were finally included. Two reviewers independently extracted data from the included studies and analyzed them using RevMan 5.4. The quality of the studies was assessed using the Cochrane systematic analysis and the Newcastle-Ottawa scale. Meta-analysis showed that the blood loss [95% confidence intervals (CI) (- 121.01, - 54.56), [Formula: see text]], hospital stay [95% CI (- 1.98, - 0.85), [Formula: see text]], postoperative fusion rate [95%CI (1.04, 3.60), [Formula: see text]], postoperative disc height [95% CI (0.50, 3.63), [Formula: see text]], and postoperative foraminal height [95% CI (0.96, 4.13), [Formula: see text]] were all better in the OLIF group; however, the complication rates were significantly lower in the MIS-TLIF group [95% CI (1.01, 2.06), [Formula: see text]]. However, there were no significant differences between the two in terms of surgery time, patient satisfaction, or postoperative functional scores. The OLIF group had the advantages of lower blood loss, a shorter hospital stay, a higher postoperative fusion rate, and better recovery of the disc and foraminal heights, whereas MIS-TLIF had a relatively lower complication rate.
Subject(s)
Lumbar Vertebrae , Spinal Fusion , Humans , Lumbar Vertebrae/surgery , Minimally Invasive Surgical Procedures , Patient Satisfaction , Lumbosacral Region/surgery , Treatment Outcome , Retrospective StudiesABSTRACT
The pollution of heavy metals in soil to the environment is becoming more and more serious, resulting in the reduction of crop production and the occurrence of medical accidents. In order to remove heavy metal ions from soil and reduce the harm of heavy metals to the environment, modified peanut shell was used to adsorb Cr3+ in this article. The effects of different adsorption conditions on the adsorption rate and adsorption capacity of Cr3+ on ZnCl2 modified peanut shell were studied, the best adsorption conditions were explored, and the relationship of kinetics, thermodynamics and adsorption isotherm properties of adsorption process were explored. The results showed that the optimum adsorption pH value, dosage, initial concentration, adsorption temperature and contact time of ZnCl2 modified peanut shell were 2.5, 2.5â g/L, 75â µg/mL, 25 °C and 40â min, respectively. The prepared materials were characterized and analyzed by scanning electron microscope (SEM) and X-ray diffraction (XRD) analyzer. It was concluded that the modified peanut shell had a good adsorption capacity to Cr3+ . The kinetic study showed that the adsorption process of Cr3+ on peanut shell modified by zinc chloride was in accordance with the quasi-second-order kinetic model. The adsorption process belonged to exothermic reaction and belonged to spontaneous reaction process. In summary, it is proved that zinc chloride modified peanut shell can efficiently adsorb Cr3+ , which can be used for the treatment of heavy metal wastes in industry, which is beneficial to environmental protection and avoid heavy metal pollution.
Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Chromium/analysis , Chromium/chemistry , Arachis , Adsorption , Kinetics , Thermodynamics , Soil , Water Pollutants, Chemical/analysis , Hydrogen-Ion Concentration , Spectroscopy, Fourier Transform InfraredABSTRACT
Most butterflies feed on nectar, while some saprophagous butterflies forage on various non-nectar foods. To date, little is known about the genomic and molecular shifts associated with the evolution of the saprophagous feeding strategy. Here, we assembled the high-quality chromosome-level genome of Hestina assimilis to explore its saprophagous molecular and genetic mechanisms. This chromosome-level genome of H. assimilis is 412.82 Mb, with a scaffold N50 of 15.70 Mb. In total, 98.11% of contigs were anchored to 30 chromosomes. Compared with H. assimilis and other Nymphalidae butterflies, the genes of metabolism and detoxification experienced expansions. We annotated 80 cytochrome P450 (CYP) genes in the H. assimilis genome, among which genes belonging to the CYP4 subfamily were significantly expanded (p < 0.01). These P450 genes were unevenly distributed and mainly concentrated on chromosomes 6-9. We identified 33 olfactory receptor (OR), 20 odorant-binding protein (OBP), and six gustatory receptor (GR) genes in the H. assimilis genome, which were fewer than in the nectarivorous Danaus plexippus. A decreased number of OBP, OR, and GR genes implied that H. assimilis should resort less to olfaction and gustation than their nectarivorous counterparts, which need highly specialized olfactory and gustatory functions. Moreover, we found one site under positive selection occurred in residue 996 (phenylalanine) of GR genes exclusive to H. assimilis, which is conservative in most lineages. Our study provides support for the adaptive evolution of feeding habits in butterflies.