Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 116
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
J Neurosci ; 44(29)2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38886059

ABSTRACT

Anxiety-related disorders respond to cognitive behavioral therapies, which involved the medial prefrontal cortex (mPFC). Previous studies have suggested that subregions of the mPFC have different and even opposite roles in regulating innate anxiety. However, the specific causal targets of their descending projections in modulating innate anxiety and stress-induced anxiety have yet to be fully elucidated. Here, we found that among the various downstream pathways of the prelimbic cortex (PL), a subregion of the mPFC, PL-mediodorsal thalamic nucleus (MD) projection, and PL-ventral tegmental area (VTA) projection exhibited antagonistic effects on anxiety-like behavior, while the PL-MD projection but not PL-VTA projection was necessary for the animal to guide anxiety-related behavior. In addition, MD-projecting PL neurons bidirectionally regulated remote but not recent fear memory retrieval. Notably, restraint stress induced high-anxiety state accompanied by strengthening the excitatory inputs onto MD-projecting PL neurons, and inhibiting PL-MD pathway rescued the stress-induced anxiety. Our findings reveal that the activity of PL-MD pathway may be an essential factor to maintain certain level of anxiety, and stress increased the excitability of this pathway, leading to inappropriate emotional expression, and suggests that targeting specific PL circuits may aid the development of therapies for the treatment of stress-related disorders.


Subject(s)
Anxiety , Neural Pathways , Prefrontal Cortex , Stress, Psychological , Animals , Anxiety/psychology , Anxiety/physiopathology , Male , Stress, Psychological/psychology , Stress, Psychological/physiopathology , Prefrontal Cortex/physiopathology , Neural Pathways/physiopathology , Neural Pathways/physiology , Mice , Fear/physiology , Fear/psychology , Mice, Inbred C57BL , Ventral Tegmental Area/physiopathology , Thalamus/physiopathology , Mediodorsal Thalamic Nucleus/physiology , Mediodorsal Thalamic Nucleus/physiopathology
2.
Glia ; 72(9): 1646-1662, 2024 09.
Article in English | MEDLINE | ID: mdl-38801194

ABSTRACT

The adult brain retains a high repopulation capacity of astrocytes after deletion, and both mature astrocytes in the neocortex and neural stem cells in neurogenic regions possess the potential to generate astrocytes. However, the origin and the repopulation dynamics of the repopulating astrocytes after deletion remain largely unclear. The number of astrocytes is reduced in the medial prefrontal cortex (mPFC) of patients with depression, and selective elimination of mPFC astrocytes is sufficient to induce depression-like behaviors in rodents. However, whether astrocyte repopulation capacity is impaired in depression is unknown. In this study, we used different transgenic mouse lines to genetically label different cell types and demonstrated that in the mPFC of normal adult mice of both sexes, mature astrocytes were a major source of the repopulating astrocytes after acute deletion induced by an astrocyte-specific toxin, L-alpha-aminoadipic acid (L-AAA), and astrocyte regeneration was accomplished within two weeks accompanied by reversal of depression-like behaviors. Furthermore, re-ablation of mPFC astrocytes post repopulation led to reappearance of depression-like behaviors. In adult male mice subjected to 14-day chronic restraint stress, a well-validated mouse model of depression, the number of mPFC astrocytes was reduced; however, the ability of mPFC astrocytes to repopulate after L-AAA-induced deletion was largely unaltered. Our study highlights a potentially beneficial role for repopulating astrocytes in depression and provides novel therapeutic insights into enhancing local mature astrocyte generation in depression.


Subject(s)
Astrocytes , Depression , Mice, Transgenic , Prefrontal Cortex , Animals , Astrocytes/metabolism , Prefrontal Cortex/metabolism , Male , Depression/genetics , Depression/pathology , Female , Mice, Inbred C57BL , Mice , Disease Models, Animal , Restraint, Physical , 2-Aminoadipic Acid , Stress, Psychological/pathology , Stress, Psychological/metabolism
3.
Pharmacol Res ; 199: 107042, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38142878

ABSTRACT

Drugs acting on dopamine D2 receptors are widely used for the treatment of several neuropsychiatric disorders, including schizophrenia and depression. Social deficits are a core symptom of these disorders. Pharmacological manipulation of dopamine D2 receptors (Drd2), a Gi-coupled subtype of dopamine receptors, in the medial prefrontal cortex (mPFC) has shown that Drd2 is implicated in social behaviors. However, the type of neurons expressing Drd2 in the mPFC and the underlying circuit mechanism regulating social behaviors remain largely unknown. Here, we show that Drd2 were mainly expressed in pyramidal neurons in the mPFC and that the activation of the Gi-pathway in Drd2+ pyramidal neurons impaired social behavior in male mice. In contrast, the knockdown of D2R in pyramidal neurons in the mPFC enhanced social approach behaviors in male mice and selectively facilitated the activation of mPFC neurons projecting to the nucleus accumbens (NAc) during social interaction. Remarkably, optogenetic activation of mPFC-to-NAc-projecting neurons mimicked the effects of conditional D2R knockdown on social behaviors. Altogether, these results demonstrate a cell type-specific role for Drd2 in the mPFC in regulating social behavior, which may be mediated by the mPFC-to-NAc pathway.


Subject(s)
Pyramidal Cells , Receptors, Dopamine D2 , Mice , Male , Animals , Receptors, Dopamine D2/metabolism , Pyramidal Cells/physiology , Neurons/metabolism , Prefrontal Cortex/metabolism , Nucleus Accumbens/physiology , Social Behavior
4.
J Neurosci ; 42(11): 2356-2370, 2022 03 16.
Article in English | MEDLINE | ID: mdl-35105676

ABSTRACT

Anxiety disorders are debilitating psychiatric diseases that affect ∼16% of the world's population. Although it has been proposed that the central nucleus of the amygdala (CeA) plays a role in anxiety, the molecular and circuit mechanisms through which CeA neurons modulate anxiety-related behaviors are largely uncharacterized. Soluble epoxide hydrolase (sEH) is a key enzyme in the metabolism of polyunsaturated fatty acids (PUFAs), and has been shown to play a role in psychiatric disorders. Here, we reported that sEH was enriched in neurons in the CeA and regulated anxiety-related behaviors in adult male mice. Deletion of sEH in CeA neurons but not astrocytes induced anxiety-like behaviors. Mechanistic studies indicated that sEH was required for maintaining the the excitability of sEH positive neurons (sEHCeA neurons) in the CeA. Using chemogenetic manipulations, we found that sEHCeA neurons bidirectionally regulated anxiety-related behaviors. Notably, we identified that sEHCeA neurons directly projected to the bed nucleus of the stria terminalis (BNST; sEHCeA-BNST). Optogenetic activation and inhibition of the sEHCeA-BNST pathway produced anxiolytic and anxiogenic effects, respectively. In summary, our studies reveal a set of molecular and circuit mechanisms of sEHCeA neurons underlying anxiety.SIGNIFICANCE STATEMENT Soluble epoxide hydrolase (sEH), a key enzyme that catalyzes the degradation of EETs, is shown to play a key role in mood disorders. It is well known that sEH is mostly localized in astrocytes in the prefrontal cortex and regulates depressive-like behaviors. Notably, sEH is also expressed in central nucleus of the amygdala (CeA) neurons. While the CeA has been studied for its role in the regulation of anxiety, the molecular and circuit mechanism is quite complex. In the present study, we explored a previously unknown cellular and circuitry mechanism that guides sEHCeA neurons response to anxiety. Our findings reveal a critical role of sEH in the CeA, sEHCeA neurons and CeA-bed nucleus of the stria terminalis (BNST) pathway in regulation of anxiety-related behaviors.


Subject(s)
Central Amygdaloid Nucleus , Septal Nuclei , Amygdala/metabolism , Animals , Anxiety/psychology , Central Amygdaloid Nucleus/metabolism , Cerebellar Nuclei/metabolism , Epoxide Hydrolases , Humans , Male , Mice , Septal Nuclei/physiology
5.
Mol Psychiatry ; 27(2): 873-885, 2022 02.
Article in English | MEDLINE | ID: mdl-34642458

ABSTRACT

Long-term potentiation (LTP) in the hippocampus is the most studied form of synaptic plasticity. Temporal integration of synaptic inputs is essential in synaptic plasticity and is assumed to be achieved through Ca2+ signaling in neurons and astroglia. However, whether these two cell types play different roles in LTP remain unknown. Here, we found that through the integration of synaptic inputs, astrocyte inositol triphosphate (IP3) receptor type 2 (IP3R2)-dependent Ca2+ signaling was critical for late-phase LTP (L-LTP) but not early-phase LTP (E-LTP). Moreover, this process was mediated by astrocyte-derived brain-derived neurotrophic factor (BDNF). In contrast, neuron-derived BDNF was critical for both E-LTP and L-LTP. Importantly, the dynamic differences in BDNF secretion play a role in modulating distinct forms of LTP. Moreover, astrocyte- and neuron-derived BDNF exhibited different roles in memory. These observations enriched our knowledge of LTP and memory at the cellular level and implied distinct roles of astrocytes and neurons in information integration.


Subject(s)
Astrocytes , Brain-Derived Neurotrophic Factor , Astrocytes/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Hippocampus/metabolism , Long-Term Potentiation/physiology , Neuronal Plasticity/physiology , Neurons/metabolism
6.
Mol Psychiatry ; 27(2): 896-906, 2022 02.
Article in English | MEDLINE | ID: mdl-34697452

ABSTRACT

Neuroplasticity in the medial prefrontal cortex (mPFC) is essential for fear extinction, the process of which forms the basis of the general therapeutic process used to treat human fear disorders. However, the underlying molecules and local circuit elements controlling neuronal activity and concomitant induction of plasticity remain unclear. Here we show that sustained plasticity of the parvalbumin (PV) neuronal network in the infralimbic (IL) mPFC is required for fear extinction in adult male mice and identify the involvement of neuregulin 1-ErbB4 signalling in PV network plasticity-mediated fear extinction. Moreover, regulation of fear extinction by basal medial amygdala (BMA)-projecting IL neurons is dependent on PV network configuration. Together, these results uncover the local molecular circuit mechanisms underlying mPFC-mediated top-down control of fear extinction, suggesting alterative therapeutic approaches to treat fear disorders.


Subject(s)
Extinction, Psychological , Fear , Animals , Extinction, Psychological/physiology , Fear/physiology , Male , Mice , Neuregulin-1 , Neuronal Plasticity/physiology , Parvalbumins , Prefrontal Cortex/physiology , Receptor, ErbB-4
7.
Clin Exp Immunol ; 206(1): 1-11, 2021 10.
Article in English | MEDLINE | ID: mdl-33998675

ABSTRACT

Anti-neurofascin-155 (NF155) antibodies have been observed in two cases with neuromyelitis optica spectrum disorders (NMOSD). This study investigated the prevalence of anti-NF155 antibodies in patients with NMOSD and the clinical features of anti-NF155 antibody-positive patients. Sera from 129 patients with NMOSD were screened with anti-NF155 antibodies by cell-based assay (CBA) and re-examined using immunostaining of teased mouse sciatic nerve fibres. Fifty-six patients with multiple sclerosis (MS) and 50 healthy controls (HC) were also enrolled for detecting anti-NF155 antibodies. A total of 12.40% (16 of 129) of patients with NMOSD were positive for anti-NF155 antibodies confirmed by both CBA and immunostaining. Immunoglobulin (Ig) G1 was the predominant subclass. However, none of 56 MS patients or 50 HC were positive for anti-NF155 antibodies. Anti-NF155 antibody-positive NMOSD patients had a higher proportion of co-existing with autoimmune diseases (p < 0.001) and higher positive rates of serum non-organ-specific autoantibodies, including anti-SSA antibodies (p < 0.001), anti-SSB antibodies (p = 0.008), anti-Ro-52 antibodies (p < 0.001) and rheumatoid factor (p < 0.001). Five anti-NF155 antibody-positive NMOSD patients who took part in the nerve conduction study showed mildly abnormal results. Differences in some nerve conduction study parameters were observed between anti-NF155 antibody-positive and negative patients. Anti-NF155 antibodies occurred in a small proportion of NMOSD patients. Anti-NF155 antibody-positive NMOSD patients tended to co-exist with autoimmune diseases.


Subject(s)
Autoantibodies , Cell Adhesion Molecules , Nerve Growth Factors , Neuromyelitis Optica/blood , Neuromyelitis Optica/immunology , Adult , Aged , Autoantibodies/blood , Autoantibodies/immunology , Cell Adhesion Molecules/blood , Cell Adhesion Molecules/immunology , Female , Humans , Male , Middle Aged , Nerve Growth Factors/blood , Nerve Growth Factors/immunology , Neuromyelitis Optica/epidemiology , Prevalence
8.
Surg Innov ; 28(1): 71-78, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32873180

ABSTRACT

Liver surgery has entered the era of precision surgery. Therefore, how to optimize the resection of lesions and reduce the unnecessary time of liver ischemia and hypoxia have become the focus. A total of 11 patients who underwent fluorescence laparoscopic liver mass resection and preoperative three-dimensional (3D) reconstruction between August 2018 and July 2020 were evaluated. Liver cirrhosis occurred in 3 patients. The mean intraoperative blood loss was 166.8 ± 105.7 mL. The average length of the operation time was 152.0 ± 45.3 minutes. The average intraoperative hilar occlusion time was 9.3 minutes (except for hilar cholangiocarcinoma). The liver function of all patients, except patients with hilar bile duct carcinoma, returned to the preoperative level at 72 hours, and no serious complications occurred. 3D reconstruction combined with fluorescence laparoscopic imaging is safe and effective for precision liver resection.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Laparoscopy , Bile Duct Neoplasms/surgery , Cholangiocarcinoma/surgery , Fluorescence , Hepatectomy , Humans , Imaging, Three-Dimensional , Liver/diagnostic imaging , Liver/surgery , Retrospective Studies
9.
Cereb Cortex ; 29(10): 4334-4346, 2019 09 13.
Article in English | MEDLINE | ID: mdl-30590426

ABSTRACT

erbb4 is a known susceptibility gene for schizophrenia. Chandelier cells (ChCs, also known as axo-axonic cells) are a distinct GABAergic interneuron subtype that exclusively target the axonal initial segment, which is the site of pyramidal neuron action potential initiation. ChCs are a source of ErbB4 expression and alterations in ChC-pyramidal neuron connectivity occur in the medial prefrontal cortex (mPFC) of schizophrenic patients and animal models of schizophrenia. However, the contribution of ErbB4 in mPFC ChCs to the pathogenesis of schizophrenia remains unknown. By conditional deletion or knockdown of ErbB4 from mPFC ChCs, we demonstrated that ErbB4 deficits led to impaired ChC-pyramidal neuron connections and cognitive dysfunctions. Furthermore, the cognitive dysfunctions were normalized by L-838417, an agonist of GABAAα2 receptors enriched in the axonal initial segment. Given that cognitive dysfunctions are a core symptom of schizophrenia, our results may provide a new perspective for understanding the etiology of schizophrenia and suggest that GABAAα2 receptors may be potential pharmacological targets for its treatment.


Subject(s)
Cognitive Dysfunction/physiopathology , GABAergic Neurons/physiology , Interneurons/physiology , Prefrontal Cortex/physiology , Pyramidal Cells/physiology , Receptor, ErbB-4/physiology , Schizophrenia/physiopathology , Animals , Behavior, Animal , Male , Membrane Potentials , Mice, Knockout , Receptor, ErbB-4/genetics
10.
BMC Vet Res ; 15(1): 476, 2019 Dec 30.
Article in English | MEDLINE | ID: mdl-31888625

ABSTRACT

BACKGROUND: Babesia spp. are important emerging tick-borne protozoan hemoparasites, and pose a great impact on companion animals. Canine babesiosis has been well described worldwide, while felis babesiosis has primarily been reported from South Africa. To the best of our knowledge, Babesia spp. infections in dogs have been well elucidated in pet dog population in China, no report about Babesia spp. infection in cat population in mainland China. RESULTS: In this study, a total of 203 blood samples were collected from pet cats in Shenzhen city, and detected the presence of Babesia spp. with nested-PCR. Sequence comparison based on the 18S rRNA gene and ITS region revealed that three cats (1.48%) were infected with Babesia. vogeli. Notably, the sequences of ITS region obtained in this study shared the highest nucleotide identity with the sequence of B. vogeli strain isolated in cat from Taiwan. CONCLUSIONS: This study is the first report about babesiosis in domestic cats, and also provides molecular evidence of Babesia spp. infection in cat in mainland China. The data present in this study suggest B. vogeli may be circulating in cat population in mainland China. Further study to investigate the epidemiology of Babesia infection in cat nationwide is warranted.


Subject(s)
Babesia/isolation & purification , Babesiosis/epidemiology , Cat Diseases/parasitology , Animals , Babesia/classification , Babesiosis/blood , Cat Diseases/epidemiology , Cats , China/epidemiology , DNA, Protozoan , Female , Male , Polymerase Chain Reaction/veterinary , RNA, Ribosomal, 18S/genetics
11.
BMC Vet Res ; 15(1): 131, 2019 May 06.
Article in English | MEDLINE | ID: mdl-31060564

ABSTRACT

BACKGROUND: Hepatitis E virus (HEV) is one of most important zoonotic viruses, and it can infect a wide range of host species. Avian HEV has been identified as the aetiological agent of big liver and spleen disease or hepatitis-splenomegaly syndrome in chickens. HEV infection is common among chicken flocks in China, and there are currently no practical measures for preventing the spread of the disease. The predominant avian HEV genotype circulating in China have been identified as genotype 3 strains, although some novel genotypes have also been identified from chicken flocks in China. RESULTS: In this study, we used a meta-transcriptomics approach to identify a new subtype of genotype 3 avian HEV in broiler chickens at a poultry farm located in Shenzhen, Guangdong Province, China. The complete genome sequence of the avian HEV, designated CaHEV-GDSZ01, is 6655-nt long, including a 5' UTR of 24 nt and a 3' UTR of 125 nt (excluding the poly(A) tail), and contains three open reading frames (ORFs). Sequence analysis indicated that the complete ORF1 (4599 nt/1532 aa), ORF2 (1821 nt/606 aa) and ORF3 (264 nt/87 aa) of CaHEV-GDSZ01 share the highest nucleotide sequence identity (85.8, 86.7 and 95.8%, respectively) with the corresponding ORFs of genotype 3 avian HEV. Phylogenetic analyses further demonstrated that the avian HEV identified in this study is a new subtype of genotype 3 avian HEV. CONCLUSIONS: Our results demonstrate that a new subtype of genotype 3 avian HEV is endemic in Guangdong, China, and could cause high mortality in infected chickens. This study also provides full genomic data for better understanding the evolutionary relationships of avian HEV circulating in China. Altogether, the results presented in this study suggest that more attention should be paid to avian HEV and its potential disease manifestation.


Subject(s)
Gene Expression Profiling/veterinary , Hepatitis, Viral, Animal/virology , Hepevirus/genetics , Poultry Diseases/virology , Animals , Chickens , China/epidemiology , Genotype , Hepatitis, Viral, Animal/epidemiology , Poultry Diseases/epidemiology , Poultry Diseases/mortality , RNA Virus Infections/epidemiology , RNA Virus Infections/veterinary , RNA Virus Infections/virology
12.
BMC Vet Res ; 15(1): 143, 2019 May 10.
Article in English | MEDLINE | ID: mdl-31077188

ABSTRACT

BACKGROUND: Novel Muscovy duck reovirus (N-MDRV), emerged in southeast China in 2002, which can infect a wide range of waterfowl and induces clinical signs and cytopathic effects that are distinct from those of classical MDRV, and continues to cause high morbidity and 5-50% mortality in ducklings. The present study aimed to investigate the characteristics of two novel reoviruses isolated from Muscovy ducklings in Guangdong, China. RESULTS: Two novel MDRV strains, designated as MDRV-SH12 and MDRV-DH13, were isolated from two diseased Muscovy ducklings in Guangdong province, China in June 2012 and September 2013, respectively. Sequencing of the complete genomes of these two viruses showed that they consisted of 23,418 bp and were divided into 10 segments, ranging from 1191 bp (S4) to 3959 bp (L1) in length, and all segments contained conserved sequences in the 5' non-coding region (GCUUUU) and 3' non-coding region (UCAUC). Pairwise sequence comparisons demonstrated that MDRV-SH12 and MDRV-DH13 showed the highest similarity with novel MDRVs. Phylogenetic analyses of the nucleotide sequences of all 10 segments revealed that MDRV-SH12 and MDRV-DH13 were clustered together with other novel waterfowl-origin reoviruses and were distinct from classical waterfowl-origin and chicken-origin reoviruses. The analyses also showed possible genetic re-assortment events in segment M2 between waterfowl-origin and chicken-origin reoviruses and the segments encoding λA, µA, µNS, σA, and σNS between classical and novel waterfowl-origin reoviruses. Potential recombination events detection in segment S2 suggests that MDRV-SH12 and MDRV-DH13 may be recombinants of classical and novel WRVs. CONCLUSIONS: The results presented in this study, the full genomic data for two novel MDRV strains, will improve our understanding of the evolutionary relationships among the waterfowl-origin reoviruses circulating in China, and may aid in the development of more effective vaccines against various waterfowl-origin reoviruses.


Subject(s)
Bird Diseases/virology , Orthoreovirus, Avian/classification , Orthoreovirus, Avian/genetics , Phylogeny , Reoviridae Infections/veterinary , Animals , China , Conserved Sequence , Ducks , Genome, Viral/genetics , Reoviridae Infections/virology , Sequence Analysis, DNA
13.
Zhongguo Dang Dai Er Ke Za Zhi ; 20(8): 613-617, 2018 Aug.
Article in Zh | MEDLINE | ID: mdl-30111468

ABSTRACT

OBJECTIVE: To study the effect of golden-hour body temperature bundle management strategy on admission temperature and clinical outcome in preterm infants with a gestational age of <34 weeks after birth. METHODS: The preterm infants who were born in the delivery room of the West China Second University Hospital of Sichuan University and admitted to the department of neonatology of this hospital within 1 hour after birth from December 2015 to June 2016 and from January to May, 2017 were enrolled. The 173 preterm infants who were admitted from January to May, 2017 were enrolled as the intervention group and were given golden-hour body temperature bundle management. The 164 preterm infants who were admitted from December 2015 to June 2016 were enrolled as the control group and were given conventional body temperature management. RESULTS: The intervention group had a significantly higher mean admission temperature than the control group (36.4±0.4°C vs 35.3±0.6°C; P<0.001). The incidence rate of hypothermia on admission in the intervention group was significantly lower than that in the control group (56.6% vs 97.6%; P<0.001). The intervention group had a significantly lower incidence rate of intracranial hemorrhage within one week after admission than the control group (15.0% vs 31.7%; P<0.05). CONCLUSIONS: Golden-hour body temperature bundle management for preterm infants within one hour after birth can reduce the incidence of hypothermia on admission and improve clinical outcome.


Subject(s)
Body Temperature , Hypothermia/therapy , Infant, Premature, Diseases/therapy , China , Female , Gestational Age , Hospitalization , Humans , Infant, Newborn , Infant, Premature , Infant, Premature, Diseases/physiopathology , Male , Time Factors
14.
Yao Xue Xue Bao ; 51(5): 797-805, 2016 05.
Article in Zh | MEDLINE | ID: mdl-29878728

ABSTRACT

In order to clarify the chemical constituents in Yangxue Qingnao granule, we established a rapid ultra-performance liquid chromatography/orthogonal acceleration time-of-flight mass spectrometry (UPLC-Q-TOF/MS(E)) method. According to the high resolution MS spectra data, fragmentation ion information and retention time,142 peaks were identified or tentatively presumed by comparison with reference standards data and literature reports. The herbal sources of these peaks were assigned. The results implied that phenolic acids, alkaloids, anthraquinones, phthalides, monoterpene glycosides were included in the main components of Yangxue Qingnao granule. The method is rapid for systematically elucidation of the constituents of Yangxue Qingnao granule and the results would facilitate the quality control of Yangxue Qingnao granule for safe and efficacious use.


Subject(s)
Drugs, Chinese Herbal/analysis , Alkaloids/analysis , Anthraquinones/analysis , Benzofurans/analysis , Chromatography, High Pressure Liquid , Glycosides/analysis , Hydroxybenzoates/analysis , Monoterpenes/analysis , Quality Control , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry
15.
Zhongguo Zhong Yao Za Zhi ; 40(23): 4645-9, 2015 Dec.
Article in Zh | MEDLINE | ID: mdl-27141677

ABSTRACT

Isolation and purification of chemical constituents from solid culture of endophyte Chaetomium globosum in Imperata cylindrical was performed through silica gel column chromatography, gel filtration over Sephadex LH-20 and preparative HPLC. Nine compounds were obtained and their structures were determined as chaetoglobosin F(1), chaetoglobosin Fex(2), chaetoglobosin E(3) cytoglobosin A(4), penochalasin C(S), isochaetoglobosin D (6), N-benzoylphenylalaninyl-N-benzoyphenylalaninate(7), uracil(8) and 5-methyluracil(9), respectively, based on HR-MS and NMR data and comparison with literatures. Compound 7 was isolated from Chaeeomium sp. for the first time. In vitro cytotoxicity of compounds was evaluated using MTT mothed and 1,3,4 and 5 showed inhibition activity to the human cervical carcinoma cell HeLa with IC50 values of 99.43, 23.77, 97.92, 86.25 micromol x L(-1), while positive cotolocisnin Ad apno1ch alse IC50 24.33 micromol x L(-1).


Subject(s)
Biological Factors/chemistry , Chaetomium/chemistry , Endophytes/chemistry , Poaceae/microbiology , Biological Factors/pharmacology , Cell Line , Cell Survival/drug effects , Humans , Molecular Structure , Spectrometry, Mass, Electrospray Ionization
16.
Stem Cells ; 31(8): 1633-43, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23630193

ABSTRACT

Astrocytes are key components of the niche for neural stem cells (NSCs) in the adult hippocampus and play a vital role in regulating NSC proliferation and differentiation. However, the exact molecular mechanisms by which astrocytes modulate NSC proliferation have not been identified. Here, we identified adenosine 5'-triphosphate (ATP) as a proliferative factor required for astrocyte-mediated proliferation of NSCs in the adult hippocampus. Our results indicate that ATP is necessary and sufficient for astrocytes to promote NSC proliferation in vitro. The lack of inositol 1,4,5-trisphosphate receptor type 2 and transgenic blockage of vesicular gliotransmission induced deficient ATP release from astrocytes. This deficiency led to a dysfunction in NSC proliferation that could be rescued via the administration of exogenous ATP. Moreover, P2Y1-mediated purinergic signaling is involved in the astrocyte promotion of NSC proliferation. As adult hippocampal neurogenesis is potentially involved in major mood disorder, our results might offer mechanistic insights into this disease.


Subject(s)
Adenosine Triphosphate/metabolism , Astrocytes/cytology , Astrocytes/metabolism , Hippocampus/cytology , Hippocampus/metabolism , Neural Stem Cells/metabolism , Animals , Cell Differentiation/physiology , Cell Growth Processes/physiology , Inositol 1,4,5-Trisphosphate Receptors/deficiency , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurogenesis , Signal Transduction
17.
BMC Public Health ; 14: 358, 2014 Apr 14.
Article in English | MEDLINE | ID: mdl-24731248

ABSTRACT

BACKGROUND: There have been large-scale outbreaks of hand, foot and mouth disease (HFMD) in Mainland China over the last decade. These events varied greatly across the country. It is necessary to identify the spatial risk factors and spatial distribution patterns of HFMD for public health control and prevention. Climate risk factors associated with HFMD occurrence have been recognized. However, few studies discussed the socio-economic determinants of HFMD risk at a space scale. METHODS: HFMD records in Mainland China in May 2008 were collected. Both climate and socio-economic factors were selected as potential risk exposures of HFMD. Odds ratio (OR) was used to identify the spatial risk factors. A spatial autologistic regression model was employed to get OR values of each exposures and model the spatial distribution patterns of HFMD risk. RESULTS: Results showed that both climate and socio-economic variables were spatial risk factors for HFMD transmission in Mainland China. The statistically significant risk factors are monthly average precipitation (OR = 1.4354), monthly average temperature (OR = 1.379), monthly average wind speed (OR = 1.186), the number of industrial enterprises above designated size (OR = 17.699), the population density (OR = 1.953), and the proportion of student population (OR = 1.286). The spatial autologistic regression model has a good goodness of fit (ROC = 0.817) and prediction accuracy (Correct ratio = 78.45%) of HFMD occurrence. The autologistic regression model also reduces the contribution of the residual term in the ordinary logistic regression model significantly, from 17.25 to 1.25 for the odds ratio. Based on the prediction results of the spatial model, we obtained a map of the probability of HFMD occurrence that shows the spatial distribution pattern and local epidemic risk over Mainland China. CONCLUSIONS: The autologistic regression model was used to identify spatial risk factors and model spatial risk patterns of HFMD. HFMD occurrences were found to be spatially heterogeneous over the Mainland China, which is related to both the climate and socio-economic variables. The combination of socio-economic and climate exposures can explain the HFMD occurrences more comprehensively and objectively than those with only climate exposures. The modeled probability of HFMD occurrence at the county level reveals not only the spatial trends, but also the local details of epidemic risk, even in the regions where there were no HFMD case records.


Subject(s)
Climate , Geographic Mapping , Hand, Foot and Mouth Disease/etiology , Population Density , Weather , China/epidemiology , Disease Outbreaks , Hand, Foot and Mouth Disease/epidemiology , Humans , Industry , Odds Ratio , Public Health , Regression Analysis , Risk Factors , Socioeconomic Factors , Students
18.
World J Gastrointest Surg ; 16(9): 2815-2822, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39351556

ABSTRACT

BACKGROUND: Intraoperative fluid management is an important aspect of anesthesia management in gastrointestinal surgery. Intraoperative goal-directed fluid therapy (GDFT) is a method for optimizing a patient's physiological state by monitoring and regulating fluid input in real-time. AIM: To evaluate the efficacy of intraoperative GDFT in patients under anesthesia for gastrointestinal surgery. METHODS: This study utilized a retrospective comparative study design and included 60 patients who underwent gastrointestinal surgery at a hospital. The experimental group (GDFT group) and the control group, each comprising 30 patients, received intraoperative GDFT and traditional fluid management strategies, respectively. The effect of GDFT was evaluated by comparing postoperative recovery, complication rates, hospitalization time, and other indicators between the two patient groups. RESULTS: Intraoperative blood loss in the experimental and control groups was 296.64 ± 46.71 mL and 470.05 ± 73.26 mL (P < 0.001), and urine volume was 415.13 ± 96.72 mL and 239.15 ± 94.69 mL (P < 0.001), respectively. The postoperative recovery time was 5.44 ± 1.1 days for the experimental group compared to 7.59 ± 1.45 days (P < 0.001) for the control group. Hospitalization time for the experimental group was 10.87 ± 2.36 days vs 13.65 ± 3 days for the control group (P < 0.001). The visual analogue scale scores of the experimental and control groups at 24 h and 48 h post-surgery were 3.38 ± 0.79 and 4.51 ± 0.86, and 2.05 ± 0.57 and 3.51 ± 0.97 (P < 0.001), respectively. The cardiac output of the experimental and control groups was 5.99 ± 1.04 L/min and 4.88 ± 1.17 L/min, respectively, while the pulse pressure variability for these two groups was 10.87 ± 2.36% and 17.5 ± 3.21%, respectively. CONCLUSION: The application of GDFT in gastrointestinal surgery can significantly improve postoperative recovery, reduce the incidence of complications, and shorten hospital stays.

19.
Front Psychol ; 15: 1415552, 2024.
Article in English | MEDLINE | ID: mdl-39286562

ABSTRACT

Purpose: This study aims to explore the effectiveness of enhancing individual spatial cognitive abilities in alleviating the negative symptoms of visually induced motion sickness (VIMS). Additionally, it seeks to develop innovative intervention methods to improve spatial cognition and identify new treatment approaches for VIMS. Methods: The study investigated the impact of innovative interventions on spatial cognitive abilities and their modulation of VIMS susceptibility. A total of 43 participants were recruited (23 in the experimental group and 20 in the control group). The experimental group underwent six sessions of spatial cognitive ability training, while the control group engaged in activities unrelated to spatial cognition. Results: The analysis revealed that the spatial cognitive ability scores of the experimental group significantly improved after the intervention. Furthermore, the experimental group exhibited significant differences in nausea, oculomotor, disorientation, and total SSQ scores before and after the intervention, indicating that the intervention effectively mitigated VIMS symptoms. Conclusion: This study developed a virtual reality training method that effectively enhances individual spatial cognitive abilities and significantly alleviates VIMS symptoms, providing a novel and effective approach for VIMS intervention and treatment.

20.
J Neuroimmunol ; 394: 578423, 2024 09 15.
Article in English | MEDLINE | ID: mdl-39096562

ABSTRACT

The objective is to characterize differentially expressed proteins (DEPs) in Guillain-Barré Syndrome (GBS) and Chronic Inflammatory Demyelinating Polyneuropathy (CIDP) through high-throughput analysis. Sera from 11 healthy controls (HCs), 21 GBS and 19 CIDP patients were subjected to Olink Proteomics Analysis. In the comparison between CIDP and GBS groups, up-regulation of ITM2A and down-regulation of NTF4 were observed. Comparing GBS with HCs revealed 18 up-regulated and 4 down-regulated proteins. Comparing CIDP with the HCs identified 15 up-regulated and 4 down-regulated proteins. Additionally, the correlation between clinical characteristics and DEPs were uncovered. In conclusion, the DEPs have significant potential to advance our understanding of the pathogenesis in these debilitating neurological disorders.


Subject(s)
Guillain-Barre Syndrome , Polyradiculoneuropathy, Chronic Inflammatory Demyelinating , Proteomics , Humans , Polyradiculoneuropathy, Chronic Inflammatory Demyelinating/blood , Polyradiculoneuropathy, Chronic Inflammatory Demyelinating/immunology , Guillain-Barre Syndrome/blood , Guillain-Barre Syndrome/immunology , Proteomics/methods , Male , Female , Middle Aged , Adult , Aged , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL