Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
Cancer ; 129(16): 2469-2478, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37060239

ABSTRACT

BACKGROUND: Ultrasound-guided radiofrequency ablation (RFA) has been used in patients with papillary thyroid carcinoma (PTC) who refuse surgery or active surveillance. However, the long-term outcomes are still limited. This study aimed to evaluate the clinical outcomes of RFA for solitary T1N0M0 PTC in a large cohort over a more than 5-year follow-up period. METHODS: This retrospective study included 358 patients with solitary T1N0M0 PTC who were treated with RFA and followed for at least 5 years. The bipolar RFA procedure was performed using hydrodissection technique, transisthmic approach, and moving-shot technique. The primary outcomes were disease progression, including lymph node metastasis (LNM), recurrent tumor, persistent tumor, and distant metastasis. The secondary outcomes were volume reduction rate, complete disappearance rate, complications, and delayed surgery. RESULTS: During a mean follow-up period of 75.5 ± 9.7 months, the overall disease progression was 5.0%. The incidence of LNM, recurrent tumor, and persistent tumor was 1.4%, 3.1%, and 0.6%, respectively. There were no significant differences in the disease progression (5.0% vs. 5.5%, p = 1.000), LNM (1.3% vs. 1.8%, p = .568), recurrent tumor (3.3% vs. 1.8%, p = .872), persistent tumors (0.3% vs. 1.8%, p = .284), and 5-year recurrence-free survival rates (95.4% vs. 96.4%, p = .785) in the T1a and T1b groups. Volume reduction rate was 100.0 ± 0.3%, with 96.9% of tumors disappearing. No complications occurred. No patients underwent delayed surgery because of anxiety. CONCLUSIONS: RFA is an effective and safe alternative for patients with T1N0M0 PTC and can offer a minimally invasive curative option for patients who refuse surgery or active surveillance. PLAIN LANGUAGE SUMMARY: During a mean follow-up period of 75.5 ± 9.7 months, the overall papillary thyroid carcinoma disease progression was 5.0%. The volume reduction rate was 100.0 ± 0.3%, with 96.9% of tumors disappearing. The T1a and T1b groups had similar incidence of disease progression and 5-year recurrence-free survival rates. No patients experienced complications or underwent delayed surgery because of anxiety.


Subject(s)
Carcinoma, Papillary , Radiofrequency Ablation , Thyroid Neoplasms , Humans , Thyroid Cancer, Papillary/surgery , Retrospective Studies , Thyroid Neoplasms/diagnostic imaging , Thyroid Neoplasms/surgery , Thyroid Neoplasms/pathology , Follow-Up Studies , Carcinoma, Papillary/diagnostic imaging , Carcinoma, Papillary/surgery , Neoplasm Recurrence, Local/pathology , Radiofrequency Ablation/methods , Lymphatic Metastasis , Ultrasonography, Interventional , Treatment Outcome
2.
Crit Care ; 27(1): 366, 2023 09 23.
Article in English | MEDLINE | ID: mdl-37742018

ABSTRACT

BACKGROUND: Critical care patients often require central venous cannulation (CVC). We hypothesized that real-time biplane ultrasound-guided CVC would improve first-puncture success rate and reduce mechanical complications. The purpose of this study was to compare the success rate and safety of single-plane and real-time biplane approaches for ultrasound-guided CVC. METHODS: From October 2022 to March 2023, 256 participants with critical illness requiring CVC were randomized to either the single-plane (n = 128) or biplane (n = 128) ultrasound-guided cannulation groups. The success rate, number of punctures, procedure duration, incidence of catheterization-related complications, and confidence score of operators were documented. RESULTS: The central vein was successfully cannulated in all 256 participants (163 [64%] man and 93 [36%] women; mean age 69 ± 19 [range 13-104 years]), including 182 and 74 who underwent internal jugular vein cannulation (IJVC) and femoral vein cannulation (FVC), respectively. The incidence of successful puncture on the first attempt was higher in the biplane group than that in the single-plane group (91.6% vs. 74.7%; relative risk (RR), 1.226; 95% confidence interval (CI), 1.069-1.405; P = 0.002 for the IJVC and 90.9% vs. 68.3%; RR, 1.331; 95% CI, 1.053-1.684; P = 0.019 for the FVC). The biplane group was also associated with a higher first-puncture single-pass catheterization success rate (87.4% vs. 69.0% and 90.9% vs. 68.3%), fewer undesired punctures (1[1-1(1-2)] vs. 1[1-2(1-4)] and 1[1-1(1-3)] vs. 1[1-2(1-4)]), shorter cannulation time (205 s [162-283 (66-1,526)] vs. 311 s [243-401 (136-1,223)] and 228 s [193-306 (66-1,669)] vs. 340 s [246-499 (130-944)]), and fewer immediate complications (10.5% vs. 28.7% and 9.1% vs. 34.1%) for both IJVC and FVC (all P < 0.05). CONCLUSION: Real-time biplane imaging of ultrasound-guided CVCs offers advantages over the single-plane approach for critically ill patients. TRIAL REGISTRATION: This prospective RCT was registered at Chinese Clinical Trial Registry (ChiCTR2200064843). Registered 19 October 2022.


Subject(s)
Catheterization, Central Venous , Male , Humans , Female , Adolescent , Young Adult , Adult , Middle Aged , Aged , Aged, 80 and over , Catheterization, Central Venous/methods , Ultrasonography, Interventional/methods , Prospective Studies , Ultrasonography , Jugular Veins/diagnostic imaging , Critical Illness/therapy , Critical Care
3.
Sensors (Basel) ; 23(23)2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38067757

ABSTRACT

The inability to locate device faults quickly and accurately has become prominent due to the large number of communication devices and the complex structure of secondary circuit networks in smart substations. Traditional methods are less efficient when diagnosing secondary equipment faults in smart substations, and deep learning methods have poor portability, high learning sample costs, and often require retraining a model. Therefore, a secondary equipment fault diagnosis method based on a graph attention network is proposed in this paper. All fault events are automatically represented as graph-structured data based on the K-nearest neighbors (KNNs) algorithm in terms of the feature information exhibited by the corresponding detection nodes when equipment faults occur. Then, a fault diagnosis model is established based on the graph attention network. Finally, partial intervals of a 220 kV intelligent substation are taken as an example to compare the fault localization effect of different methods. The results show that the method proposed in this paper has the advantages of higher localization accuracy, lower learning cost, and better robustness than the traditional machine learning and deep learning methods.

4.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 45(2): 227-234, 2023 Apr.
Article in Zh | MEDLINE | ID: mdl-37157069

ABSTRACT

Objective To investigate the treatment outcomes,prognosis,and risk factors of treatment failure of peritoneal dialysis associated peritonitis (PDAP) caused by Klebsiella pneumoniae,and thus provide clinical evidence for the prevention and treatment of this disease. Methods The clinical data of PDAP patients at four peritoneal dialysis centers from January 1,2014 to December 31,2019 were collected retrospectively.The treatment outcomes and prognosis were compared between the patients with PDAP caused by Klebsiella.pneumoniae and that caused by Escherichia coli.Kaplan-Meier method was employed to establish the survival curve of technical failure,and multivariate Logistic regression to analyze the risk factors of the treatment failure of PADP caused by Klebsiella pneumoniae. Results In the 4 peritoneal dialysis centers,1034 cases of PDAP occurred in 586 patients from 2014 to 2019,including 21 cases caused by Klebsiella pneumoniae and 98 cases caused by Escherichia coli.The incidence of Klebsiella pneumoniae caused PDAP was 0.0048 times per patient per year on average,ranging from 0.0024 to 0.0124 times per patient per year during 2014-2019.According to the Kaplan-Meier survival curve,the technical failure rate of Klebsiella pneumoniae caused PDAP was higher than that of Escherichia coli caused PDAP (P=0.022).The multivariate Logistic regression model showed that long-term dialysis was an independent risk factor for the treatment failure of Klebsiella pneumoniae caused PDAP (OR=1.082,95%CI=1.011-1.158,P=0.023).Klebsiella pneumoniae was highly sensitive to amikacin,meropenem,imipenem,piperacillin,and cefotetan,and it was highly resistant to ampicillin (81.82%),cefazolin (53.33%),tetracycline (50.00%),cefotaxime (43.75%),and chloramphenicol (42.86%). Conclusion The PDAP caused by Klebsiella pneumoniae had worse prognosis than that caused by Escherichia coli,and long-term dialysis was an independent risk factor for the treatment failure of Klebsiella pneumoniae caused PDAP.


Subject(s)
Peritoneal Dialysis , Peritonitis , Humans , Klebsiella pneumoniae , Retrospective Studies , Anti-Bacterial Agents/therapeutic use , Peritoneal Dialysis/adverse effects , Peritonitis/drug therapy , Risk Factors , Treatment Failure , Escherichia coli
5.
Bioorg Chem ; 119: 105469, 2022 02.
Article in English | MEDLINE | ID: mdl-34915285

ABSTRACT

Targeting EGFR and HER-2 is an essential direction for cancer treatment. Here, a series of N-(1,3,4-thiadiazol-2-yl)benzamide derivatives containing a 6,7-methoxyquinoline structure was designed and synthesized to serve as EGFR/HER-2 dual-target inhibitors. The kinase assays verified that target compounds could inhibit the kinase activity of EGFR and HER-2 selectively. The results of CCK-8 and 3D cell viability assays confirmed that target compounds had excellent anti-proliferation ability against breast cancer cells (MCF-7 and SK-BR-3) and lung cancer cells (A549 and H1975), particularly against SK-BR-3 cells, while the inhibitory effect on healthy breast cells (MCF-10A) and lung cells (Beas-2B) was weak. Among them, the hit compound YH-9 binded to EGFR and HER-2 stably in molecular dynamics studies. Further studies found thatYH-9could induce the release of cytochrome c and inhibit proliferation by promoting ROS expression in SK-BR-3 cells. Moreover,YH-9could diminish the secretion of VEGF and bFGF factors in SK-BR-3 cells, then inhibited tube formation and angiogenesis. Notably,YH-9could effectively inhibit breast cancer growth and angiogenesis with little toxicity in the SK-BR-3 cell xenograft model. Taken together,in vitroandin vivoresults revealed that YH-9 had high drug potential as a dual-target inhibitor of EGFR/HER-2 to inhibit breast cancer growth and angiogenesis.


Subject(s)
Antineoplastic Agents/pharmacology , Benzamides/pharmacology , Drug Discovery , Neovascularization, Pathologic/drug therapy , Protein Kinase Inhibitors/pharmacology , Thiadiazoles/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Benzamides/chemical synthesis , Benzamides/chemistry , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Humans , Molecular Structure , Neovascularization, Pathologic/pathology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Receptor, ErbB-2/antagonists & inhibitors , Receptor, ErbB-2/metabolism , Structure-Activity Relationship , Thiadiazoles/chemical synthesis , Thiadiazoles/chemistry , Tumor Cells, Cultured
6.
Bioorg Chem ; 111: 104840, 2021 06.
Article in English | MEDLINE | ID: mdl-33780687

ABSTRACT

To further explore the research of novel PARP-1 inhibitors, we designed and synthesized a series of novel amide PARP-1 inhibitors based on our previous research. Most compounds displayed certain antitumor activities against four tumor cell lines (A549, HepG2, HCT-116, and MCF-7). Specifically, the candidate compound R8e possessed strong anti-proliferative potency toward A549 cells with the IC50 value of 2.01 µM. Compound R8e had low toxicity to lung cancer cell line. And the in vitro enzyme inhibitory activity of compound R8e was better than rucaparib. Molecular docking studies provided a rational binding model of compound R8e in complex with rucaparib. The following cell cycle and apoptosis assays revealed that compound R8e could arrest cell cycle in the S phase and induce cell apoptosis. Western blot analysis further showed that compound R8e could effectively inhibit the PAR's biosynthesis and was more effective than rucaparib. Overall, based on the biological activity evaluation, compound R8e could be a potential lead compound for further developing novel amide PARP-1 inhibitors.


Subject(s)
Antineoplastic Agents/pharmacology , Azepines/pharmacology , Cyclohexanones/pharmacology , Drug Design , Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Spiro Compounds/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Azepines/chemical synthesis , Azepines/chemistry , Cell Cycle/drug effects , Cell Proliferation/drug effects , Cyclohexanones/chemical synthesis , Cyclohexanones/chemistry , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/chemical synthesis , Poly(ADP-ribose) Polymerase Inhibitors/chemistry , Spiro Compounds/chemical synthesis , Spiro Compounds/chemistry , Structure-Activity Relationship , Tumor Cells, Cultured
7.
Addict Biol ; 26(6): e13025, 2021 11.
Article in English | MEDLINE | ID: mdl-33609013

ABSTRACT

Oxycodone is one of the most commonly used analgesics in the clinic. However, long-term use can contribute to drug dependence. Accumulating evidence of changes in DNA methylation after opioid relapse has provided insight into mechanisms underlying drug-associated memory. The neuropeptide oxytocin is reported to be a potential treatment for addiction. The present study sought to identify changes in global and synaptic gene methylation after cue-induced reinstatement of oxycodone conditioned place preference (CPP) and the effect of oxytocin. We analyzed hippocampal mRNA of synaptic genes and also synaptic density in response to oxycodone CPP. We determined the mRNA levels of DNA methyltransferases (Dnmts) and ten-eleven translocations (Tets), observed global 5-methylcytosine (5-mC) and 5-hydroxymethylcytosine (5-hmC) levels, and measured DNA methylation status of four synaptic genes implicated in learning and memory (Arc, Dlg1, Dlg4, and Syn1). Both synaptic density and the transcription of 15 hippocampal synaptic genes significantly increased following cue-induced reinstatement of oxycodone CPP. Oxycodone relapse was also related to markedly decreased 5-mC levels and decreased transcription of Dnmt1, Dnmt3a, and Dnmt3b; in contrast, 5-hmC levels and the transcription of Tet1 and Tet3 were increased. Oxycodone exposure induced DNA hypomethylation at the exons of the Arc, Dlg1, Dlg4, and Syn1 genes. Intracerebroventricular (ICV) administration of oxytocin (2.5 µg/µl) specifically blocked oxycodone relapse, possibly by inhibition of Arc, Dlg1, Dlg4, and Syn1 hypomethylation in oxycodone-treated rats. Together, these data indicate the occurrence of epigenetic changes in the hippocampus following oxycodone relapse and the potential role of oxytocin in oxycodone addiction.


Subject(s)
DNA Methylation/drug effects , Hippocampus/drug effects , Narcotic-Related Disorders/physiopathology , Oxycodone/pharmacology , Oxytocin/pharmacology , 5-Methylcytosine/analogs & derivatives , 5-Methylcytosine/metabolism , Animals , Conditioning, Classical/drug effects , Cues , DNA Methylation/physiology , Dose-Response Relationship, Drug , Learning/drug effects , Male , Memory/drug effects , Narcotic-Related Disorders/genetics , RNA, Messenger/drug effects , Rats , Rats, Sprague-Dawley
8.
Ecotoxicol Environ Saf ; 223: 112567, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34364125

ABSTRACT

Males of the Oriental fruit fly Bactrocera dorsalis (Hendel) are highly attracted to, and compulsively feed, on methyl eugenol (ME). ME is converted into 2-allyl-4,5-dimethoxyphenol (DMP) and (E)-coniferyl alcohol (E-CF), which are temporarily sequestered in the fly's rectal gland prior to being released at dusk. Previous research initially confirmed that DMP is a relatively strong lure to B. dorsalis males. However, the characteristics of males' response to DMP and toxicology of DMP remains largely unclear. In our study, we demonstrated that DMP was more attractive to sexually mature males than E-CF tested in laboratory bioassays. Interestingly, the responsiveness of mature males to DMP was not uniform throughout the day, eliciting the highest response during the day and dropping to a low level at night. Furthermore, there were no significant differences between the olfactory responses of virgin and mated mature males to DMP. No obvious signs of toxic symptom and deaths were observed in mice during a 14-day acute oral toxicity testing. Further, toxicologically significant changes were not observed in body weight, water intake, food consumption, and absolute and relative organ weights between control and treated groups, implying DMP could be regarded as nontoxic. Lastly, the cytotoxicity data of DMP on cells showed that it exhibited no significant cytotoxicity to normal human and mouse cells. Taken together, results from both the acute and cellular toxicity experiments demonstrated the nontoxic nature of DMP. In conclusion, DMP shows promise as an effective and eco-friendly lure for B. dorsalis males, and may contribute to controlling B. dorsalis in the flied.


Subject(s)
Sex Attractants , Tephritidae , Animals , Eugenol/analogs & derivatives , Male , Mice , Reproduction
9.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 43(2): 278-282, 2021 Apr 28.
Article in Zh | MEDLINE | ID: mdl-33966710

ABSTRACT

Elabela is a newly discovered peptide in recent years.It is the endogenous ligand of Apelin receptor(APJ)and plays an important role in embryonic development and adult organs.Elabela-APJ axis is closely related to organ fibrosis.Elabela can protect the functions of heart and kidney by antagonizing renin-angiotensin system and regulating blood pressure.In addition,it can prevent kidney and heart fibrosis by down-regulating the expression of fibrosis and inflammatory factors.However,there is a positive correlation between the level of Elabela and the degree of liver fibrosis,suggesting that Elabela may play a role in promoting liver fibrosis.This review aims to explore the role of Elabela-APJ axis in renal fibrosis,cardiac fibrosis,and liver fibrosis,and to provide a new therapeutic target for organ fibrosis.


Subject(s)
Peptide Hormones , Apelin , Apelin Receptors , Blood Pressure , Female , Fibrosis , Humans , Pregnancy
10.
Zhongguo Dang Dai Er Ke Za Zhi ; 23(8): 848-853, 2021 Aug 15.
Article in English, Zh | MEDLINE | ID: mdl-34511176

ABSTRACT

OBJECTIVES: To study the effect of gap junction blockers, quinine (QUIN) and carbenoxolone (CBX), on hippocampal ripple energy expression in rats with status epilepticus (SE). METHODS: A total of 24 rats were randomly divided into four groups: model, QUIN, valproic acid (VPA), and CBX (n=6 each). A rat model of SE induced by lithium-pilocarpine (PILO) was prepared. The QUIN, VPA, and CBX groups were given intraperitoneal injection of QUIN (50 mg/kg), VPA by gavage (200 mg/kg), and intraperitoneal injection of CBX (50 mg/kg) respectively, at 3 days before PILO injection. Electroencephalography was used to analyze the change in hippocampal ripple energy before and after modeling, as well as before and after chloral hydrate injection to control seizures. RESULTS: Ripple expression was observed in the hippocampal CA1, CA3, and dentate gyrus regions of normal rats. After 10 minutes of PILO injection, all groups had a gradual increase in mean ripple energy expression compared with 1 day before modeling, with the highest expression level before chloral hydrate injection in the model, VPA and CBX groups (P<0.05). The QUIN group had the highest expression level of mean ripple energy 60 minutes after PILO injection. The mean ripple energy returned to normal levels in the three intervention groups immediately after chloral hydrate injection, while in the model group, the mean ripple energy returned to normal levels 1 hour after chloral hydrate injection. The mean ripple energy remained normal till to day 3 after SE in the four groups. The changing trend of maximum ripple energy was similar to that of mean ripple energy. CONCLUSIONS: The change in ripple energy can be used as a quantitative indicator for early warning of seizures, while it cannot predict seizures in the interictal period. Gap junction blockers can reduce ripple energy during seizures.


Subject(s)
Status Epilepticus , Animals , Gap Junctions , Hippocampus , Pilocarpine , Rats , Seizures , Status Epilepticus/drug therapy
11.
Int J Syst Evol Microbiol ; 70(5): 3391-3398, 2020 May.
Article in English | MEDLINE | ID: mdl-32375949

ABSTRACT

A novel endophytic actinobacterium, designated strain EGI 650086T, was isolated from the roots of Anabasis elatior (C.A.Mey.) Schischk. collected in Xinjiang, north-west China. The taxonomic position of the strain was investigated using a polyphasic taxonomic approach. Growth occurred at 15-40 °C, pH 6.0-8.0 and in the presence of 0-6 % NaCl (w/v). Phylogenetic analysis based on 16S rRNA gene sequence and concatenation of 22 protein marker genes revealed that strain EGI 650086T formed a monophyletic clade within the genus Amycolatopsis and shared the highest sequence similarities with Amycolatopsis nigrescens JCM 14717T (97.1 %) and Amycolatopsis sacchari DSM 44468T (97.0 %). Sequence similarities with type strains of other species of the genus Amycolatopsis were less than 97.0 %. The average nucleotide identity and DNA-DNA hybridization values between strain EGI 650086T and the reference strains were 78.1-79.8 % and 22.1-23.0 %, respectively. The genome of strain EGI 650086T was 10.9 Mb, with a DNA G+C content of 70.1 mol%. The diagnostic diamino acid in the peptidoglycan was meso-diaminopimelic acid. The major whole-cell sugars contained arabinose, galactose, glucose and ribose. The predominant menaquinones were MK-9 (H4) and MK-9 (H2). Major fatty acids were iso-C16 : 0 and summed feature 4 (iso-C17 : 1 I and/or anteiso-C17 : 1 B). The polar lipid profile of strain EGI 650086T included diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, hydroxy-phosphatidylethanolamine, phosphatidylinositol, phosphatidylinositol mannosides, two unknown phospholipids, an unknown glycolipid and an unknown lipid. Polyphasic taxonomic characteristics indicated that strain EGI 650086T represents a novel species of the genus Amycolatopsis, for which the name Amycolatopsis anabasis sp. nov. is proposed. The type strain is EGI 650086T (=KCTC 49044T=CGMCC 4.7188T).


Subject(s)
Actinobacteria/classification , Chenopodiaceae/microbiology , Phylogeny , Plant Roots/microbiology , Actinobacteria/isolation & purification , Bacterial Typing Techniques , Base Composition , China , DNA, Bacterial/genetics , Diaminopimelic Acid/chemistry , Fatty Acids/chemistry , Glycolipids/chemistry , Nucleic Acid Hybridization , Peptidoglycan/chemistry , Phospholipids/chemistry , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Vitamin K 2/analogs & derivatives , Vitamin K 2/chemistry
12.
Phys Chem Chem Phys ; 22(46): 27024-27030, 2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33210701

ABSTRACT

Nodal-line half-metals (NLHMs) are highly desirable for future spintronic devices due to their exotic quantum properties. However, the experimental realization in spin-polarized materials is nontrivial to date. Herein we perform first-principles calculations to demonstrate a 2D honeycomb, AgN, as a promising candidate of NLHMs, which is thermodynamically and dynamically stable. Band structure analysis reveals that two concentric NLs coexist centered at a Γ point near EF, accompanied by the electron and hole pockets that touch each other linearly with single-spin components. Inclusion of SOC can enrich the electronic structures of AgN, sensitive to the protection of mirror reflection symmetry: the NLHM survives if the spin is perpendicular to the Mz mirror plane, while it tunes into Wyle nodal-points by rotating spins from the out-of-plane to the in-plane direction. The characteristics of HM and NL can be well maintained on semiconducting h-BN and is immune to mechanical strains. These tunable magnetic properties render 2D AgN suitable for exotic quantum transports in nodal fermions as well as related spintronic devices.

13.
Bioorg Chem ; 94: 103385, 2020 01.
Article in English | MEDLINE | ID: mdl-31669094

ABSTRACT

A series of homoerythrina alkaloid derivatives containing a 1,2,3-triazole moiety as PARP-1 inhibitors were designed and synthesized. And their anti-proliferative activity was further evaluated. Compound 10n had excellent activity to inhibit proliferation of A549 cells (IC50 = 1.89 µM), which was higher than harringtonine (IC50 = 10.55 µM), pemetrexed (IC50 = 3.39 µM), and rucaparib (IC50 = 4.91 µM). Furthermore, the selectivity index of compound 10n was higher than rucaparib and pemetrexed for lung cancer cells. Flow cytometry analysis showed that compound 10n significantly arrested the cell cycle in the S phase, then induced apoptosis of A549 cells (apoptosis rate is 46%), which effectively inhibited cell proliferation. Simultaneously, western blot analysis revealed that compound 10n could prevent the biosynthesis of PAR. Further analysis results revealed that compound 10n could inhibit the expression of cyclin A, down-regulate the expression of bcl-2/bax, activate caspase-3, and ultimately induce apoptosis of A549 cells. All the results indicated that compound 10n had potential research value as a novel PARP-1 inhibitor in antitumor, and it provided a new reference for further development of PARP-1 inhibitors.


Subject(s)
Alkaloids/pharmacology , Antineoplastic Agents/pharmacology , Drug Design , Enzyme Inhibitors/pharmacology , Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors , Triazoles/pharmacology , Alkaloids/chemical synthesis , Alkaloids/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Cycle Checkpoints/drug effects , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Molecular Structure , Poly (ADP-Ribose) Polymerase-1/metabolism , Structure-Activity Relationship , Triazoles/chemistry , Tumor Cells, Cultured
14.
Bioorg Chem ; 96: 103575, 2020 03.
Article in English | MEDLINE | ID: mdl-31962202

ABSTRACT

Inhibitors of poly (ADP-ribose) polymerase-1 (PARP-1) have shown to be promising in clinical trials against cancer, and many researchers are interested in the development of new PARP-1 inhibitors. Herein, we designed and synthesized 44 novel erythrina derivatives bearing a 1,2,3-triazole moiety as PARP-1 inhibitors. MTT assay results indicated that compound 10b had the most potent anti-proliferative activity against A549 cells among five cancer cells. The enzyme inhibitory activity in vitro of compound 10b was also significantly better than rucaparib. Furthermore, the selectivity index of compound 10b was higher than rucaparib for lung cancer cells. Flow cytometry analysis showed that compound 10b induced apoptosis of A549 cells by the mitochondrial pathway. Western blot analysis indicated that compound 10b was able to inhibit the biosynthesis of PAR effectively, and it was more potent than rucaparib. Also, compound 10b was able to up-regulate the ratio of bax/bcl-2, activate caspase-3, and ultimately induced apoptosis of A549 cells. The combined results revealed that the discovery of novel non-amide based PARP-1 inhibitors have great research significance and provide a better choice for the future development of drugs.


Subject(s)
Drug Design , Erythrina/metabolism , Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors , Poly(ADP-ribose) Polymerase Inhibitors/chemistry , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Triazoles/chemistry , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Humans , Inhibitory Concentration 50 , Mitochondria/drug effects , Molecular Docking Simulation , Poly(ADP-ribose) Polymerase Inhibitors/chemical synthesis
15.
Bioorg Chem ; 103: 104189, 2020 10.
Article in English | MEDLINE | ID: mdl-32890996

ABSTRACT

A series of novel (E)-N-phenyl-4-(pyridine-acylhydrazone) benzamide derivatives were designed, synthesized, and evaluated for their anti-proliferative activity against two different human cancer cell lines and one human normal cell line. Compound 8b had the best anti-proliferative activity (IC50 = 0.12 ± 0.09 µM, RPMI8226 cells) than the other compounds. And compound 8b had lower toxicity than imatinib. Flow cytometry analysis showed that compound 8b could arrest the cell cycle at the G0/G1 phase, and induce apoptosis of RPMI8226 cells by promoting mitochondrial ROS release, thereby effectively inhibiting cell proliferation. Our findings provided a promising lead compound 8b for further structural optimization and will be instructive for the discovery of more potent antitumor drugs with high selectivity and low toxicity.


Subject(s)
Antineoplastic Agents/pharmacology , Benzamides/pharmacology , Hydrazones/pharmacology , Multiple Myeloma/drug therapy , Antineoplastic Agents/chemical synthesis , Apoptosis/drug effects , Benzamides/chemical synthesis , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Design , Drug Screening Assays, Antitumor , G1 Phase Cell Cycle Checkpoints/drug effects , Humans , Hydrazones/chemical synthesis , Molecular Structure , Reactive Oxygen Species/metabolism , Structure-Activity Relationship
16.
Curr Microbiol ; 76(3): 297-303, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30603961

ABSTRACT

A novel bacterial strain A7.6T was isolated from the sediments collected near the Zhairuo Island located in the East China Sea and characterized using a polyphasic approach. Cells were Gram-stain-negative, rod-shaped, non-spore forming, non-flagellated but motile by gliding. The strain was aerobic, positive for oxidase and catalase activities. The strain can grow at 4-35 °C, pH 5.5-9.0, and 0-3% (w/v) NaCl concentration. The major polar lipid was phosphatidylethanolamine, the predominant fatty acids (> 10%) were iso-C15:0 and summed feature 3 (C16:1 ω7c and/or C16:1 ω6c). The genomic G+C content was 33.6 mol% and the major respiratory quinone was menaquinone 6. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain A7.6T belonged to the genus Flavobacterium and was closely related to Flavobacterium tistrianum GB 56.1T (98.4% similarity), F. nitrogenifigens NXU-44T (98.4%), F. ginsenosidimutans THG 01T (98.0%) and F. anhuiense D3T (97.7%). Average nucleotide identities and digital DNA-DNA hybridizations values for genomes ranged from 75.9 to 91.4% and 21.4 to 43.9% between strain A7.6T and its closest phylogenetic neighbors. The polyphasic characterization indicated that strain A7.6T represented a novel species of the genus Flavobacterium, for which the name Flavobacterium sharifuzzamanii is proposed. The type strain is A7.6T (= KCTC 62405T = MCCC 1K03485T). The NCBI GenBank accession number for the 16S rRNA gene of A7.6T is MH396692, and for the genome sequence is QJGZ00000000. The digital protologue database (DPD) Taxon Number is TA00643.


Subject(s)
Flavobacterium/classification , Flavobacterium/physiology , Geologic Sediments/microbiology , Oceans and Seas , Phylogeny , Base Composition , China , DNA, Bacterial/genetics , Fatty Acids/analysis , Flavobacterium/chemistry , Genome, Bacterial/genetics , Hydrogen-Ion Concentration , Phospholipids/analysis , Quinones/analysis , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Sodium Chloride , Temperature
17.
Mar Drugs ; 17(1)2019 Jan 12.
Article in English | MEDLINE | ID: mdl-30642059

ABSTRACT

Marine animals and plants provide abundant secondary metabolites with antitumor activity. Itampolin A is a brominated natural tyrosine secondary metabolite that is isolated from the sponge Iotrochota purpurea. Recently, we have achieved the first total synthesis of this brominated tyrosine secondary metabolite, which was found to be a potent p38α inhibitor exhibiting anticancer effects. A fragment-based drug design (FBDD) was carried out to optimize itampolin A. Forty-five brominated tyrosine derivatives were synthesized with interesting biological activities. Then, a QSAR study was carried out to explore the structural determinants responsible for the activity of brominated tyrosine skeleton p38α inhibitors. The lead compound was optimized by a FBDD method, then three series of brominated tyrosine derivatives were synthesized and evaluated for their inhibitory activities against p38α and tumor cells. Compound 6o (IC50 = 0.66 µM) exhibited significant antitumor activity against non-small cell lung A549 cells (A549). This also demonstrated the feasibility of the FBDD method of structural optimization.


Subject(s)
Antineoplastic Agents/pharmacology , Biological Products/pharmacology , Drug Design , Lung Neoplasms/drug therapy , Mitogen-Activated Protein Kinase 14/antagonists & inhibitors , Porifera , A549 Cells , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Antineoplastic Agents/therapeutic use , Biological Products/chemistry , Biological Products/isolation & purification , Biological Products/therapeutic use , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Enzyme Assays , Humans , Inhibitory Concentration 50 , Lung Neoplasms/pathology , Mitogen-Activated Protein Kinase 14/chemistry , Mitogen-Activated Protein Kinase 14/metabolism , Molecular Docking Simulation , Molecular Structure , Structure-Activity Relationship
18.
Bioorg Med Chem Lett ; 28(5): 847-852, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29456106

ABSTRACT

Rucaparib and PJ34 were used as the structural model for the design of novel 5H-dibenzo[b,e]azepine-6,11-dione derivatives containing 1,3,4-oxadiazole units. And target compounds were successfully synthesized through a 3-step synthetic strategy. All target compounds were screened for their anti-proliferative effects against OVCAR-3 cell line. Preliminary biological study of these compounds provided potent compounds d21 and d22 with better activities than Rucaparib.


Subject(s)
Antineoplastic Agents/pharmacology , Azepines/pharmacology , Drug Design , Oxadiazoles/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Azepines/chemical synthesis , Azepines/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Oxadiazoles/chemistry , Structure-Activity Relationship
19.
Int J Mol Sci ; 19(3)2018 Mar 18.
Article in English | MEDLINE | ID: mdl-29562629

ABSTRACT

A series of imidazolium salt derivatives have demonstrated potent antitumor activity in prior research. A comprehensive in silicon method was carried out to identify the putative protein target and detailed structure-activity relationship of the compounds. The Topomer CoMFA and CoMSIA techniques were implemented during the investigation to obtain the relationship between the properties of the substituent group and the contour map of around 77 compounds; the Topomer CoMFA and CoMSIA models were reliable with the statistical data. The protein-protein interaction network was constructed by combining the Pharmmapper platform and STRING database. After generating the sub-network, the phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit α (PIK3CA with protein data bank ID: 3ZIM) was selected as the putative target of imidazolium salt derivatives. A docking study was carried out to correlate interactions of amino acids in protein active pockets surrounded by the ligand with contour maps generated by the structure-activity relationship method. Then the molecular dynamics simulations demonstrated that the imidazolium salt derivatives have potent binding capacity and stability to receptor 3ZIM, and the two ligand-receptor complex was stable in the last 2 ns. Finally, the ligand-based structure-activity relationship and receptor-based docking were combined together to identify the structural requirement of the imidazolium salt derivatives, which will be used to design and synthesize the novel PIK3CA inhibitors.


Subject(s)
Antineoplastic Agents/chemistry , Class I Phosphatidylinositol 3-Kinases/antagonists & inhibitors , Drug Design , Enzyme Inhibitors/chemistry , Imidazoles/chemistry , Molecular Docking Simulation/methods , Antineoplastic Agents/pharmacology , Binding Sites , Class I Phosphatidylinositol 3-Kinases/chemistry , Databases, Protein , Enzyme Inhibitors/pharmacology , Imidazoles/pharmacology , Ligands , Molecular Dynamics Simulation , Protein Interaction Maps , Quantitative Structure-Activity Relationship
20.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 48(6): 828-833, 2017 Nov.
Article in Zh | MEDLINE | ID: mdl-29260515

ABSTRACT

OBJECTIVE: To explore the changes of micro RNA 155 (miR-155),BTB and CNC homologous protein 1 (BACH1),quinone oxidoreductase 1 (NQO1) and heme-oxygenase-1 (HO-1) in the process of arsenic trioxide-induced cell death,and to clarify the relationship between miR-155 and BACH1,providing experimental basis for the sensitivity of arsenic trioxide (ATO) treatment. METHODS: Human lung adenocarcinoma cell line A549 cells were treated with different concentrations of ATO. MTT assay and total antioxidant capacity detection kit were used to determine cell viability and total antioxidant capacity,respectively. BACH1,NQO1 and HO-1 protein expression were probed by Western blot and real-time fluorescence quantitative (qRT-PCR) was utilized to test the miR-155 level. A549 cells were transfected with miR-155 mimic and its negative control,then the expression level of miR-155 was detected by qRT-PCR,and these cells were treated with 20 µmol/L for 24 h followed by MTT and Western blot detection. RESULTS: 10 µmol/L ATO significantly reduced the cell viability in A549 cells. 10 µmol/L and 20 µmol/L ATO treatment activated BACH1 expression and inhibited miR-155,NQO1 and HO-1 expression,leading to decreased total antioxidant capacity. Importantly,the cell death induced by 20 µmol/L ATO was significantly decreased in miR-155 mimic transfection cells in comparison with non-transfected cells and miR-155 mimic negative control transfected cells. Moreover,high expression of miR-155 reduced BACH1 activation and increased NQO1 and HO-1 expression in cells treated with 20 µmol/L ATO ( P<0.05). CONCLUSION: Restraining total antioxidant capacity contributes to ATO induced cell death,the underlying mechanisms may be that ATO can activate BACH1 expression through inhibition of the miR-155 level,leading to subsequent inhibition of NQO1 and HO-1 expression. Taken together,these data suggest that miR-155 and BACH1 could be used as sensitivity targets for ATO treatment in lung cancer.


Subject(s)
Adenocarcinoma/genetics , Arsenicals/pharmacology , Basic-Leucine Zipper Transcription Factors/genetics , Lung Neoplasms/genetics , MicroRNAs/genetics , Oxides/pharmacology , Signal Transduction , Adenocarcinoma of Lung , Apoptosis , Arsenic Trioxide , Cell Death/drug effects , Cell Line, Tumor , Heme Oxygenase-1/genetics , Humans , NAD(P)H Dehydrogenase (Quinone)/genetics
SELECTION OF CITATIONS
SEARCH DETAIL