Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
Int J Mol Sci ; 24(14)2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37511510

ABSTRACT

Amino acid metabolism has been implicated in tumorigenesis and tumor progression. Alterations in intracellular and extracellular metabolites associated with metabolic reprogramming in cancer have profound effects on gene expression, cell differentiation, and tumor immune microenvironment. However, the prognostic significance of amino acid metabolism in head and neck cancer remains to be further investigated. In this study, we identified 98 differentially expressed genes related to amino acid metabolism in head and neck cancer in The Cancer Genome Atlas. Using batch univariate Cox regression and Lasso regression, we extracted nine amino acid metabolism-related genes. Based on that, we developed the amino acid metabolism index. The prognostic value of this index was validated in two Gene Expression Omnibus cohorts. The results show that this model can help predict tumor recurrence and prognosis. The infiltration of immune cells in the tumor microenvironment was analyzed, and it was discovered that the high index is associated with an immunosuppressive microenvironment. In addition, this study demonstrated the impact of the amino acid metabolism index on clinical indicators, survival of patients with head and neck cancer, and the prediction of treatment response to immune checkpoint inhibitors. We conducted several cell experiments and demonstrated that epigenetic drugs could affect the index and enhance tumor immunity. In conclusion, our study demonstrates that the index not only has important prognostic value in head and neck cancer patients but also facilitates patient stratification for immunotherapy.


Subject(s)
Head and Neck Neoplasms , Neoplasm Recurrence, Local , Humans , Prognosis , Head and Neck Neoplasms/genetics , Carcinogenesis , Immunosuppressive Agents , Amino Acids , Tumor Microenvironment/genetics
2.
J Transl Med ; 20(1): 358, 2022 08 12.
Article in English | MEDLINE | ID: mdl-35962347

ABSTRACT

Head and neck squamous cell carcinomas (HNSCCs) are often aggressive, making advanced disease very difficult to treat using contemporary modalities, such as surgery, radiation therapy, and chemotherapy. However, targeted therapy, e.g., cetuximab, an epidermal growth factor receptor inhibitor, has demonstrated survival benefit in HNSCC patients with locoregional failure or distant metastasis. Molecular imaging aims at various biomarkers used in targeted therapy, and nuclear medicine-based molecular imaging is a real-time and non-invasive modality with the potential to identify tumor in an earlier and more treatable stage, before anatomic-based imaging reveals diseases. The objective of this comprehensive review is to summarize recent advances in nuclear medicine-based molecular imaging for HNSCC focusing on several commonly radiolabeled biomarkers. The preclinical and clinical applications of these candidate imaging strategies are divided into three categories: those targeting tumor cells, tumor microenvironment, and tumor angiogenesis. This review endeavors to expand the knowledge of molecular biology of HNSCC and help realizing diagnostic potential of molecular imaging in clinical nuclear medicine.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Nuclear Medicine , Carcinoma, Squamous Cell/pathology , ErbB Receptors/metabolism , Head and Neck Neoplasms/diagnostic imaging , Humans , Molecular Imaging , Squamous Cell Carcinoma of Head and Neck/diagnostic imaging , Tumor Microenvironment
3.
Ecotoxicol Environ Saf ; 232: 113238, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35121255

ABSTRACT

Polystyrene microplastics (PS-MPs) are emerging pollutants that are absorbed by organisms. Due to their small volume and strong biological permeability, they affect the biological functions of cells. In recent years, several studies have detected PS-MPs in air samples, which may damage the human respiratory system following inhalation. The Masson trichrome staining, immunofluorescence, and western blotting assays were conducted to analyze the effects of PS-MPs on pulmonary fibrosis. Alveolar epithelial injuries were assessed through confocal microscopy, and the levels of SOD and GSH were used to evaluate oxidative stress. Our analyzes demonstrated that inhalation of the PS-MPs induces pulmonary fibrosis in a dose-dependent manner in mice. In high dose group (6.25 mg/kg), the PS-MPs significantly increased the expression of α-SMA, Vimentin and Col1a (p < 0.05). Immunofluorescence assays showed decreased levels of SP-C and increased levels of KL-6 in the PS-MPs group. The suppression of SOD (1.46 times) and GSH-Px (2.27 times) indicated that inhalation of microplastics triggered intensive oxidative stress in lungs. Moreover, there was activation of the Wnt/ß-catenin signaling pathway in the PS-MPs group. In addition, the data showed that antioxidant melatonin (50 mg/kg) alleviated the PS-MPs-induced pulmonary fibrosis. Taken together, our analysis demonstrated that inhalation of polystyrene microplastics induces pulmonary fibrosis via activation of oxidative stress and Wnt/ß-catenin signaling pathway in mice.


Subject(s)
Microplastics , Pulmonary Fibrosis , Animals , Mice , Oxidative Stress , Plastics , Polystyrenes/toxicity , Pulmonary Fibrosis/chemically induced , Wnt Signaling Pathway
4.
Molecules ; 27(10)2022 May 10.
Article in English | MEDLINE | ID: mdl-35630542

ABSTRACT

Dried roots of Polygala tenuifolia (YuanZhi in Chinese) are widely used in Chinese herbal medicine. These components in YuanZhi have significant anti-oxidation properties owing to high levels of 3,6'-disinapoylsucrose (DISS) and Polygalaxanthone III (PolyIII). In order to efficiently extract natural medicines, response surface methodology (RSM) and least squares support vector machine (LSSVM) were used for the modeling and optimization of ultrasound-assisted extraction of DISS and PolyIII together to determine the antioxidant activity of the extracts obtained from YuanZhi. For the optimal combination of the comprehensive yield of DISS and PolyIII (Y), the Box-Behnken design (BBD) was used to improve extraction time (X1), extraction temperature (X2), liquid-solid ratio (X3), and ethanol concentration (X4). The optimal process parameters were determined to be as follows: extraction time, 93 min; liquid-solid ratio, 40 mL/g; extraction temperature, 48 °C; and ethanol concentration, 67%. With these conditions, the predictive optimal combination comprehensive evaluation value is 13.0217. It was clear that the LS-SVM model had higher accuracy in predictive and optimization capabilities, with higher antioxidant activity and lower relative deviations values, than did RSM. Hence, the LS-SVM model proved to be more effective for the analysis and improvement of the extraction process.


Subject(s)
Antioxidants , Polygala , Antioxidants/pharmacology , Ethanol , Least-Squares Analysis , Support Vector Machine , Ultrasonics
5.
J Environ Sci (China) ; 120: 135-143, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35623767

ABSTRACT

Carbonaceous aerosols (CA) are crucial components in the atmospheric PM2.5 and derived from diverse sources. One of the major sources for CA is from the incomplete combustion of bituminous coal that has been prevailingly used by household stoves in rural areas for heating during winter. To efficiently eliminate the CA emission, a new household stove (NHS) was developed based on a novel combustion technology and CA emissions from the NHS and a traditional household stove (THS) were comparably investigated under the actual stove operation conditions in a farmer's house. Compared with the THS, the emission factors of organic carbon (OC), elemental carbon (EC), and water-soluble organic carbon (WSOC) from the NHS were reduced by 96%±1%, 98%±1%, and 91%±1% under the flaming process and 95%±1%, 96%±2%, and 83%±4% under the smoldering process, respectively. Additionally, the mass absorption efficiency of WSOC from the NHS reduced by 3 folds and the radiative forcing by WSOC relative to EC shrank remarkably by a factor of 3-8. Based on the reduction of emissions and light absorption of WSOC, the promotion of the NHS offers a possible solution to achieve the clean combustion of residential solid fuel.


Subject(s)
Air Pollutants , Coal , Aerosols , Air Pollutants/analysis , Carbon/analysis , Coal/analysis , Heating
6.
Environ Sci Technol ; 55(22): 15063-15071, 2021 11 16.
Article in English | MEDLINE | ID: mdl-34705458

ABSTRACT

Atmospheric hydrogen peroxide (H2O2), as an important oxidant, plays a key role in atmospheric sulfate formation, affecting the global radiation budget and causing acid rain deposition. The disproportionation reactions of hydroperoxyl radicals (HO2) in both gas and aqueous phases have long been considered as dominant sources for atmospheric H2O2. However, these known sources cannot explain the significant formation of H2O2 in polluted areas under the conditions of high NO levels and low ambient relative humidity (RH). Here, we show that under relatively dry conditions during daytime, atmospheric fine particles directly produce abundant gas-phase H2O2. The formation of H2O2 is verified to be by a reaction between the particle surface -OH group and HO2 radicals formed by photooxidation of chromophoric dissolved organic matters (CDOMs), which is slightly influenced by the presence of high NO levels but remarkably accelerated by water vapor and O2. In contrast to aqueous-phase chemistry, transition metal ions (TMIs) are found to significantly suppress H2O2 formation from the atmospheric fine particles. The H2O2 formed from relatively dry particles can be directly involved in in situ SO2 oxidation, leading to sulfate formation. As CDOMs are ubiquitous in atmospheric fine particles, their daytime photochemistry is expected to play important roles in formation of H2O2 and sulfate worldwide.


Subject(s)
Hydrogen Peroxide , Sulfates , Aerosols , Oxidation-Reduction , Photochemistry
7.
Pharmazie ; 76(9): 404-411, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34481529

ABSTRACT

According to the latest statistics from WHO for all cancers, lung cancer tops the list with a 14.5% prevalence and a 22% death rate in men, similar to the prevalence in women, which is 13.8%. It is also the number one killer of cancer in China, with 40 in every 100,000 people suffering from lung cancer. HIF-1α is widely present in human cells in hypoxic environments. It regulates the body's response to hypoxia, cell oxygen balance, and hypoxia gene expression; participates in the proliferation and apoptosis of non-small cell lung cancer cells; participates in the invasion, metastasis, and neovascularization of tumor tissues; and affects the treatment and prognosis of non-small cell lung cancer. In view of the role of HIF-1α in the occurrence and development of non-small cell lung cancer, blocking HIF-1α by use of a single medication or combination chemotherapy has become a research hotspot. This review summarizes the role of HIF-1α in non-small cell lung cancer and provides new ideas for the treatment of this cancer type by synthesizing the research results of various authors.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Cell Hypoxia , Cell Line, Tumor , Female , Humans , Hypoxia , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Male , Prognosis
8.
Pervasive Mob Comput ; 75: 101434, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34121966

ABSTRACT

The outbreak of the COVID-19 pandemic has deeply influenced the lifestyle of the general public and the healthcare system of the society. As a promising approach to address the emerging challenges caused by the epidemic of infectious diseases like COVID-19, Internet of Medical Things (IoMT) deployed in hospitals, clinics, and healthcare centers can save the diagnosis time and improve the efficiency of medical resources though privacy and security concerns of IoMT stall the wide adoption. In order to tackle the privacy, security, and interoperability issues of IoMT, we propose a framework of blockchain-enabled IoMT by introducing blockchain to incumbent IoMT systems. In this paper, we review the benefits of this architecture and illustrate the opportunities brought by blockchain-enabled IoMT. We also provide use cases of blockchain-enabled IoMT on fighting against the COVID-19 pandemic, including the prevention of infectious diseases, location sharing and contact tracing, and the supply chain of injectable medicines. We also outline future work in this area.

9.
Am J Physiol Cell Physiol ; 318(2): C346-C359, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31693400

ABSTRACT

Diabetic corneal endothelial keratopathy is an intractable ocular complication characterized by corneal edema and endothelial decompensation, which seriously threaten vision. It has been suggested that diabetes is associated with pyroptosis, a type of programmed cell death via the activation of inflammation. Long noncoding RNA KCNQ1OT1 is commonly associated with various pathophysiological mechanisms of diabetic complications, including diabetic cardiomyopathy and diabetic retinopathy. However, whether KCNQ1OT1 is capable of regulating pyroptosis and participates in the pathogenesis of diabetic corneal endothelial keratopathy remains unknown. The aim of this study was to investigate the mechanisms of KCNQ1OT1 in diabetic corneal endothelial keratopathy. Here, we reveal that KCNQ1OT1 and pyroptosis can be triggered in diabetic human and rat corneal endothelium, along with the high glucose-treated corneal endothelial cells. However, miR-214 expression was substantially decreased in vivo and in experiments with cultured cells. LDH assay was also used to verify the existence of pyroptosis in high glucose-treated cells. Bioinformatics prediction and luciferase assays showed that KCNQ1OT1 may function as a competing endogenous RNA binding miR-214 to regulate the expression of caspase-1. To further analyze the KCNQ1OT1-mediated mechanism, miR-214 mimic and inhibitor were introduced into the high glucose-treated corneal endothelial cells. The results showed that upregulation of miR-214 attenuated pyroptosis; conversely, knockdown of miR-214 promoted it. In addition, KCNQ1OT1 knockdown by a small interfering RNA decreased pyroptosis factors expressions but enhanced miR-214 expression in corneal endothelial cells. To understand the signaling mechanisms underlying the prepyroptotic properties of KCNQ1OT1, si-KCNQ1OT1 was cotransfected with or without miR-214 inhibitor. The results showed that pyroptosis was repressed after silencing KCNQ1OT1 but was reversed by cotransfection with miR-214 inhibitor, suggesting that KCNQ1OT1 mediated pyroptosis induced by high glucose via targeting miR-214. Therefore, the KCNQ1OT1/miR-214/caspase-1 signaling pathway represents a new mechanism of diabetic corneal endothelial keratopathy progression, and KCNQ1OT1 could potentially be a novel therapeutic target.


Subject(s)
Diabetes Complications/genetics , Diabetic Cardiomyopathies/genetics , Endothelial Cells/metabolism , Endothelium, Corneal/metabolism , Pyroptosis/genetics , Animals , Case-Control Studies , Caspase 1/genetics , Cell Line , Diabetes Complications/metabolism , Diabetes Mellitus/genetics , Diabetes Mellitus/metabolism , Diabetic Cardiomyopathies/metabolism , Female , Humans , Male , MicroRNAs/genetics , Middle Aged , Potassium Channels, Voltage-Gated/genetics , RNA, Long Noncoding/genetics , RNA, Small Interfering/genetics , Rats , Rats, Sprague-Dawley , Up-Regulation/genetics
10.
Mediators Inflamm ; 2020: 4534272, 2020.
Article in English | MEDLINE | ID: mdl-32694925

ABSTRACT

OBJECTIVE: To investigate prognostic values of serum biomarkers of soluble intercellular adhesion molecule 1 (sICAM-1), macrophage migration inhibitor factor (MIF), interleukin 1ß (IL-1ß), and soluble urokinase plasminogen activator receptor (su-PAR) in patients with acute exacerbation of idiopathic pulmonary fibrosis (AE-IPF). METHODS: From August 2017 to November 2019, 122 consecutive IPF patients treated in our center were classified as stable IPF and AE-IPF based on the newly published international guidelines. Serum levels of four biomarkers at admission were measured by the enzyme-linked immunosorbent assay (ELISA). The primary endpoint was 3-month mortality. The log-rank test and logistic regression analysis were used to evaluate the effects of these biomarkers for survival in patients with AE-IPF. Cox proportional hazards analysis was performed to evaluate the prognostic values of serological biomarkers and clinical data. RESULTS: Eighty-one patients were diagnosed with stable IPF, and 41 AE-IPF patients were enrolled in the study. Serum levels of sICAM-1 (p < 0.001), IL-1ß (p < 0.001), MIF (p < 0.001), and su-PAR (p < 0.001) in patients with IPF were significantly increased compared to those in healthy controls. All the four biomarkers were elevated in patients with AE-IPF compared to those with stable IPF. The 3-month mortality in AE-IPF was 56.1% (23/41). Increased levels of MIF (p = 0.01) and IL-1ß (>5 pg/mL, p = 0.033) were independent risk factors for 3-month mortality in patients with AE-IPF. CONCLUSIONS: We showed the higher serum levels of IL-1ß, and MIF had prognostic values for 3-month mortality in AE-IPF. This study provided a clue to promote our understanding in the pathogenesis of the disease.


Subject(s)
Biomarkers/blood , Idiopathic Pulmonary Fibrosis/blood , Intercellular Adhesion Molecule-1/blood , Interleukin-1beta/blood , Intramolecular Oxidoreductases/blood , Macrophage Migration-Inhibitory Factors/blood , Adult , Aged , Aged, 80 and over , Enzyme-Linked Immunosorbent Assay , Female , Humans , Male , Middle Aged
11.
Comput Commun ; 160: 431-442, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32834198

ABSTRACT

The Internet of Medical Things (IoMT)-enabled e-healthcare can complement traditional medical treatments in a flexible and convenient manner. However, security and privacy become the main concerns of IoMT due to the limited computational capability, memory space and energy constraint of medical sensors, leading to the in-feasibility for conventional cryptographic approaches, which are often computationally-complicated. In contrast to cryptographic approaches, friendly jamming (Fri-jam) schemes will not cause extra computing cost to medical sensors, thereby becoming potential countermeasures to ensure security of IoMT. In this paper, we present a study on using Fri-jam schemes in IoMT. We first analyze the data security in IoMT and discuss the challenges. We then propose using Fri-jam schemes to protect the confidential medical data of patients collected by medical sensors from being eavesdropped. We also discuss the integration of Fri-jam schemes with various communication technologies, including beamforming, Simultaneous Wireless Information and Power Transfer (SWIPT) and full duplexity. Moreover, we present two case studies of Fri-jam schemes in IoMT. The results of these two case studies indicate that the Fri-jam method will significantly decrease the eavesdropping risk while leading to no significant influence on legitimate transmission.

13.
Sensors (Basel) ; 18(6)2018 Jun 14.
Article in English | MEDLINE | ID: mdl-29904003

ABSTRACT

Eavesdropping attack is one of the most serious threats in industrial crowdsensing networks. In this paper, we propose a novel anti-eavesdropping scheme by introducing friendly jammers to an industrial crowdsensing network. In particular, we establish a theoretical framework considering both the probability of eavesdropping attacks and the probability of successful transmission to evaluate the effectiveness of our scheme. Our framework takes into account various channel conditions such as path loss, Rayleigh fading, and the antenna type of friendly jammers. Our results show that using jammers in industrial crowdsensing networks can effectively reduce the eavesdropping risk while having no significant influence on legitimate communications.

14.
Sensors (Basel) ; 16(12)2016 Nov 24.
Article in English | MEDLINE | ID: mdl-27886154

ABSTRACT

Wireless sensor networks (WSNs) play an important role in Cyber Physical Social Sensing (CPSS) systems. An eavesdropping attack is one of the most serious threats to WSNs since it is a prerequisite for other malicious attacks. In this paper, we propose a novel anti-eavesdropping mechanism by introducing friendly jammers to wireless sensor networks (WSNs). In particular, we establish a theoretical framework to evaluate the eavesdropping risk of WSNs with friendly jammers and that of WSNs without jammers. Our theoretical model takes into account various channel conditions such as the path loss and Rayleigh fading, the placement schemes of jammers and the power controlling schemes of jammers. Extensive results show that using jammers in WSNs can effectively reduce the eavesdropping risk. Besides, our results also show that the appropriate placement of jammers and the proper assignment of emitting power of jammers can not only mitigate the eavesdropping risk but also may have no significant impairment to the legitimate communications.

15.
Sensors (Basel) ; 16(5)2016 May 18.
Article in English | MEDLINE | ID: mdl-27213379

ABSTRACT

The security and privacy of underwater acoustic sensor networks has received extensive attention recently due to the proliferation of underwater activities. This paper proposes an analytical model to investigate the eavesdropping attacks in underwater acoustic sensor networks. Our analytical framework considers the impacts of various underwater acoustic channel conditions (such as the acoustic signal frequency, spreading factor and wind speed) and different hydrophones (isotropic hydrophones and array hydrophones) in terms of network nodes and eavesdroppers. We also conduct extensive simulations to evaluate the effectiveness and the accuracy of our proposed model. Empirical results show that our proposed model is quite accurate. In addition, our results also imply that the eavesdropping probability heavily depends on both the underwater acoustic channel conditions and the features of hydrophones.

16.
Rev Assoc Med Bras (1992) ; 70(2): e20230636, 2024.
Article in English | MEDLINE | ID: mdl-38422245

ABSTRACT

OBJECTIVE: This study aimed to explore and analyze the therapeutic effect of the combination of Bifidobacterium animalis subsp. lactis BB-12® and Lactobacillus rhamnosus GG on underweight and malabsorption in premature infants. METHODS: This is a retrospective study. The clinical data of 68 premature infants admitted to Beijing United Family Hospital (Private Secondary Comprehensive Hospital, Chaoyang District, Beijing, China) from January 2016 to January 2022 were analyzed retrospectively. Preterm infants less than 37 weeks of gestational age admitted to the neonatal intensive care unit were included in the study. Patients with intestinal malformations, necrotizing enterocolitis, etc., who require long-term fasting were excluded. A telephone follow-up was performed 3-6 months after discharge. They were classified as treatment groups A and B according to the treatment plan. The treatment group A included parenteral nutrition, enteral nutrition, etc. In treatment group B, based on treatment group A, the premature infants were treated with Bifidobacterium animalis subsp. lactis BB-12® and Lactobacillus rhamnosus GG. The time to regain birthweight and the weight on day 30 were compared between the two groups, as was the duration of transition from parenteral nutrition to total enteral nutrition. RESULTS: The time of weight regain birthweight in group B was shorter than that in group A (t=-2.560; t=-4.287; p<0.05). The increase of weight on day 30 in group B was significantly higher than that in group A (t=2.591; t=2.651; p<0.05). The time from parenteral nutrition to total enteral nutrition in group B was shorter than that in group A (z=-2.145; z=-2.236; p<0.05). CONCLUSION: In the treatment of premature infants, the combination of Bifidobacterium animalis subsp. lactis BB-12® and Lactobacillus rhamnosus GG can have a better therapeutic effect on the underweight and malabsorption of premature infants, and this treatment method can be popularized in clinics.


Subject(s)
Bifidobacterium animalis , Lacticaseibacillus rhamnosus , Infant , Infant, Newborn , Humans , Infant, Premature , Birth Weight , Retrospective Studies , Thinness
17.
Signal Transduct Target Ther ; 9(1): 17, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38212307

ABSTRACT

Although stem cell-based therapy has demonstrated considerable potential to manage certain diseases more successfully than conventional surgery, it nevertheless comes with inescapable drawbacks that might limit its clinical translation. Compared to stem cells, stem cell-derived exosomes possess numerous advantages, such as non-immunogenicity, non-infusion toxicity, easy access, effortless preservation, and freedom from tumorigenic potential and ethical issues. Exosomes can inherit similar therapeutic effects from their parental cells such as embryonic stem cells and adult stem cells through vertical delivery of their pluripotency or multipotency. After a thorough search and meticulous dissection of relevant literature from the last five years, we present this comprehensive, up-to-date, specialty-specific and disease-oriented review to highlight the surgical application and potential of stem cell-derived exosomes. Exosomes derived from stem cells (e.g., embryonic, induced pluripotent, hematopoietic, mesenchymal, neural, and endothelial stem cells) are capable of treating numerous diseases encountered in orthopedic surgery, neurosurgery, plastic surgery, general surgery, cardiothoracic surgery, urology, head and neck surgery, ophthalmology, and obstetrics and gynecology. The diverse therapeutic effects of stem cells-derived exosomes are a hierarchical translation through tissue-specific responses, and cell-specific molecular signaling pathways. In this review, we highlight stem cell-derived exosomes as a viable and potent alternative to stem cell-based therapy in managing various surgical conditions. We recommend that future research combines wisdoms from surgeons, nanomedicine practitioners, and stem cell researchers in this relevant and intriguing research area.


Subject(s)
Exosomes , Induced Pluripotent Stem Cells , Mesenchymal Stem Cells , Exosomes/metabolism , Mesenchymal Stem Cells/metabolism , Embryonic Stem Cells
18.
Article in English | MEDLINE | ID: mdl-38980910

ABSTRACT

Traumatic brain injury poses serious physical, psychosocial, and economic threats. Although systemic administration of stem cell-derived exosomes has recently been proven to be a promising modality for traumatic brain injury treatment, they come with distinct drawbacks. Luckily, various biomaterials have been developed to assist local delivery of exosomes to improve the targeting of organs, minimize nonspecific accumulation in vital organs, and ensure the protection and release of exosomes. In this study, we developed an electrospun nanofibrous scaffold to provide sustained delivery of dual exosomes derived from mesenchymal stem cells and neural stem cells for traumatic brain injury treatment. The electrospun nanofibrous scaffold employed a functionalized layer of polydopamine on electrospun poly(ε-caprolactone) nanofibers, thereby enhancing the efficient incorporation of exosomes through a synergistic interplay of adhesive forces, hydrogen bonding, and electrostatic interactions. First, the mesenchymal stem cell-derived exosomes and the neural stem cell-derived exosomes were found to modulate microglial polarization toward M2 phenotype, play an important role in the modulation of inflammatory responses, and augment axonal outgrowth and neural repair in PC12 cells. Second, the nanofibrous scaffold loaded with dual stem cell-derived exosomes (Duo-Exo@NF) accelerated functional recovery in a murine traumatic brain injury model, as it mitigated the presence of reactive astrocytes and microglia while elevating the levels of growth associated protein-43 and doublecortin. Additionally, multiomics analysis provided mechanistic insights into how dual stem cell-derived exosomes exerted its therapeutic effects. These findings collectively suggest that our novel Duo-Exo@NF system could function as an effective treatment modality for traumatic brain injury using sustained local delivery of dual exosomes from stem cells.

19.
Front Immunol ; 15: 1429442, 2024.
Article in English | MEDLINE | ID: mdl-39040099

ABSTRACT

Introduction: Allergic rhinitis (AR) is an upper airway inflammatory disease of the nasal mucosa. Conventional treatments such as symptomatic pharmacotherapy and allergen-specific immunotherapy have considerable limitations and drawbacks. As an emerging therapy with regenerative potential and immunomodulatory effect, mesenchymal stem cell-derived exosomes (MSC-Exos) have recently been trialed for the treatment of various inflammatory and autoimmune diseases. Methods: In order to achieve sustained and protected release of MSC-Exos for intranasal administration, we fabricated Poly(lactic-co-glycolic acid) (PLGA) micro and nanoparticles-encapsulated MSC-Exos (PLGA-Exos) using mechanical double emulsion for local treatment of AR. Preclinical in vivo imaging, ELISA, qPCR, flow cytometry, immunohistochemical staining, and multiomics sequencing were used for phenotypic and mechanistic evaluation of the therapeutic effect of PLGA-Exos in vitro and in vivo. Results: The results showed that our PLGA platform could efficiently encapsulate and release the exosomes in a sustained manner. At protein level, PLGA-Exos treatment upregulated IL-2, IL-10 and IFN-γ, and downregulated IL-4, IL-17 and antigen-specific IgE in ovalbumin (OVA)-induced AR mice. At cellular level, exosomes treatment reduced Th2 cells, increased Tregs, and reestablished Th1/Th2 balance. At tissue level, PLGA-Exos significantly attenuated the infiltration of immune cells (e.g., eosinophils and goblet cells) in nasal mucosa. Finally, multiomics analysis discovered several signaling cascades, e.g., peroxisome proliferator-activated receptor (PPAR) pathway and glycolysis pathway, that might mechanistically support the immunomodulatory effect of PLGA-Exos. Discussion: For the first time, we present a biomaterial-facilitated local delivery system for stem cell-derived exosomes as a novel and promising strategy for AR treatment.


Subject(s)
Exosomes , Mesenchymal Stem Cells , Polylactic Acid-Polyglycolic Acid Copolymer , Rhinitis, Allergic , Exosomes/immunology , Exosomes/metabolism , Animals , Rhinitis, Allergic/therapy , Rhinitis, Allergic/immunology , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Mesenchymal Stem Cells/immunology , Mesenchymal Stem Cells/metabolism , Mice , Mice, Inbred BALB C , Immunomodulation , Cytokines/metabolism , Disease Models, Animal , Female , Humans , Nasal Mucosa/immunology , Nasal Mucosa/metabolism , Administration, Intranasal
20.
Biomolecules ; 14(1)2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38254695

ABSTRACT

Recent advances in cochlear implantology are exemplified by novel functional strategies such as bimodal electroacoustic stimulation, in which the patient has intact low-frequency hearing and profound high-frequency hearing pre-operatively. Therefore, the synergistic restoration of dysfunctional cochlear hair cells and the protection of hair cells from ototoxic insults have become a persistent target pursued for this hybrid system. In this study, we developed a composite GelMA/PEDOT:PSS conductive hydrogel that is suitable as a coating for the cochlear implant electrode for the potential local delivery of otoregenerative and otoprotective drugs. Various material characterization methods (e.g., 1H NMR spectroscopy, FT-IR, EIS, and SEM), experimental models (e.g., murine cochlear organoid and aminoglycoside-induced ototoxic HEI-OC1 cellular model), and biological analyses (e.g., confocal laser scanning microscopy, real time qPCR, flow cytometry, and bioinformatic sequencing) were used. The results demonstrated decent material properties of the hydrogel, such as mechanical (e.g., high tensile stress and Young's modulus), electrochemical (e.g., low impedance and high conductivity), biocompatibility (e.g., satisfactory cochlear cell interaction and free of systemic toxicity), and biosafety (e.g., minimal hemolysis and cell death) features. In addition, the CDR medicinal cocktail sustainably released by the hydrogel not only promoted the expansion of the cochlear stem cells but also boosted the trans-differentiation from cochlear supporting cells into hair cells. Furthermore, hydrogel-based drug delivery protected the hair cells from oxidative stress and various forms of programmed cell death (e.g., apoptosis and ferroptosis). Finally, using large-scale sequencing, we enriched a complex network of signaling pathways that are potentially downstream to various metabolic processes and abundant metabolites. In conclusion, we present a conductive hydrogel-based local delivery of bifunctional drug cocktails, thereby serving as a potential solution to intracochlear therapy of bimodal auditory rehabilitation and diseases beyond.


Subject(s)
Hair Cells, Auditory , Hydrogels , Humans , Animals , Mice , Hydrogels/pharmacology , Spectroscopy, Fourier Transform Infrared , Cell Communication , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL