ABSTRACT
Correlating atomic configurations-specifically, degree of disorder (DOD)-of an amorphous solid with properties is a long-standing riddle in materials science and condensed matter physics, owing to difficulties in determining precise atomic positions in 3D structures1-5. To this end, 2D systems provide insight to the puzzle by allowing straightforward imaging of all atoms6,7. Direct imaging of amorphous monolayer carbon (AMC) grown by laser-assisted depositions has resolved atomic configurations, supporting the modern crystallite view of vitreous solids over random network theory8. Nevertheless, a causal link between atomic-scale structures and macroscopic properties remains elusive. Here we report facile tuning of DOD and electrical conductivity in AMC films by varying growth temperatures. Specifically, the pyrolysis threshold temperature is the key to growing variable-range-hopping conductive AMC with medium-range order (MRO), whereas increasing the temperature by 25 °C results in AMC losing MRO and becoming electrically insulating, with an increase in sheet resistance of 109 times. Beyond visualizing highly distorted nanocrystallites embedded in a continuous random network, atomic-resolution electron microscopy shows the absence/presence of MRO and temperature-dependent densities of nanocrystallites, two order parameters proposed to fully describe DOD. Numerical calculations establish the conductivity diagram as a function of these two parameters, directly linking microstructures to electrical properties. Our work represents an important step towards understanding the structure-property relationship of amorphous materials at the fundamental level and paves the way to electronic devices using 2D amorphous materials.
ABSTRACT
Controversial data have been reported on the prognostic value of C-X-C motif chemokine receptor 4 (CXCR4) in chronic lymphocytic leukemia (CLL). This prospective, single-center, observational study aimed to evaluate the role of CXCR4 in the pathophysiology of CLL and its prognostic role. A total of 158 patients of CLL were enrolled, and CXCR4 expression on CLL cells was detected by flow cytometry (FCM) at initial diagnosis. The patients were divided into 2 groups according to the CXCR4 mean fluorescence intensity (MFI) median. Also, four patient specimens from the CXCR4low and CXCR4high groups were selected for RNASeq analysis. The progression-free survival (PFS) of CLL patients in the CXCR4high group was significantly shorter than the CXCR4low group, with a median follow-up time of 27 months (log-rank P < 0.001). Moreover, CXCR4 overexpression (MFI > 3376) was an independent marker of poor PFS in CLL patients (P < 0.001). Analysis of RNASeq results revealed that CXCR4 plays an important role in the migration of CLL. Collectively, CXCR4 expression levels on leukemia cells can be detected rapidly by FCM. CXCR4 overexpression was significantly associated with poorer prognosis in CLL patients within a shorter follow-up time.
Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Receptors, CXCR4 , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Prospective Studies , Receptors, CXCR4/genetics , Receptors, CXCR4/metabolism , Signal Transduction , PrognosisABSTRACT
Overexpression of the epidermal growth factor receptor (EGFR, erbB1) has been observed in a wide range of solid tumors and has frequently been associated with poor prognosis. As a result, EGFR inhibition has become an attractive anticancer drug design strategy, and a large number of small molecular inhibitors have been developed. Despite the widespread clinical use of EGFR tyrosine kinase inhibitors (TKIs), their drug resistance, inadequate accumulation in tumors, and severe side effects have spurred the search for better antitumor drugs. Metal complexes have attracted much attention because of their different mechanisms compared with EGFR-TKIs. Therefore, the combination of metals and inhibitors is a promising anticancer strategy. For example, Ru and Pt centers are introduced to design complexes with double or multiple targets, while Au complexes are combined with inhibitors to overcome drug resistance. Co complexes are designed as prodrugs with weak side effects and enhanced targeting by the hypoxia activation strategy, and other metals such as Rh and Fe enhance the anticancer effect of the complexes. In addition, the introduction of Ga center is beneficial to the development of nuclear imaging tracers. In this paper, metal EGFR-TKI complexes in the last 15 years are reviewed, their mechanisms are briefly introduced, and their advantages are summarized.
Subject(s)
Antineoplastic Agents , Coordination Complexes , ErbB Receptors , Protein Kinase Inhibitors , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Ligands , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Animals , Neoplasms/drug therapy , Neoplasms/metabolismABSTRACT
BACKGROUND: Skeletal muscle development and fat deposition have important effects on meat quality. The study of regulating skeletal muscle development and fat deposition is of great significance in improving the quality of carcass and meat. In the present study, whole transcriptome sequencing (including RNA-Seq and miRNA-Seq) was performed on the longissimus dorsi muscle (LDM) of Jinfen White pigs at 1, 90, and 180 days of age. RESULTS: The results showed that a total of 245 differentially expressed miRNAs were screened in any two comparisons, which may be involved in the regulation of myogenesis. Among them, compared with 1-day-old group, miR-22-5p was significantly up-regulated in 90-day-old group and 180-day-old group. Functional studies demonstrated that miR-22-5p inhibited the proliferation and differentiation of porcine skeletal muscle satellite cells (PSCs). Pearson correlation coefficient analysis showed that long non-coding RNA (lncRNA) LOC106505926 and CXXC5 gene had strong negative correlations with miR-22-5p. The LOC106505926 and CXXC5 were proven to promote the proliferation and differentiation of PSCs, as opposed to miR-22-5p. In terms of mechanism, LOC106505926 functions as a molecular sponge of miR-22-5p to modulate the expression of CXXC5, thereby inhibits the differentiation of PSCs. In addition, LOC106505926 regulates the differentiation of porcine preadipocytes through direct binding with FASN. CONCLUSIONS: Collectively, our results highlight the multifaceted regulatory role of LOC106505926 in controlling skeletal muscle and adipose tissue development in pigs and provide new targets for improving the quality of livestock products by regulating skeletal muscle development and fat deposition.
Subject(s)
Cell Differentiation , Lipogenesis , MicroRNAs , Muscle Development , RNA, Long Noncoding , Animals , RNA, Long Noncoding/genetics , Muscle Development/genetics , Swine , MicroRNAs/genetics , MicroRNAs/metabolism , Lipogenesis/genetics , Cell Differentiation/genetics , Cell Proliferation , Satellite Cells, Skeletal Muscle/metabolism , Satellite Cells, Skeletal Muscle/cytology , Muscle, Skeletal/metabolism , Muscle, Skeletal/growth & development , Cells, CulturedABSTRACT
PURPOSE: Immune checkpoint inhibitors (ICIs) have transformed traditional cancer treatments. Specifically, ICI-related myocarditis is an immune-related adverse event (irAE) with high mortality. ICIs activate CD4+ T-lymphocyte reprogramming, causing an imbalance between Th17 and Treg cell differentiation, ultimately leading to myocardial inflammatory damage. Low-intensity pulsed ultrasound (LIPUS) can limit inflammatory responses, with positive therapeutic effects across various cardiovascular inflammatory diseases; however, its role in the pathogenesis of ICI-related myocarditis and CD4+ T-cell dysfunction remains unclear. Accordingly, this study investigated whether LIPUS can alleviate ICI-related myocarditis inflammatory damage and, if so, aimed to elucidate the beneficial effects of LIPUS and its underlying molecular mechanisms. METHODS: An in vivo model of ICI-related myocarditis was obtained by intraperitonially injecting male A/J mice with an InVivoPlus anti-mouse PD-1 inhibitor. LIPUS treatment was performed via an ultrasound-guided application to the heart via the chest wall. The echocardiographic parameters were observed and cardiac function was assessed using an in vivo imaging system. The expression of core components of the HIPPO pathway was analyzed via western blotting. RESULTS: LIPUS treatment reduced cardiac immune responses and inflammatory cardiac injury. Further, LIPUS treatment alleviated the inflammatory response in mice with ICI-related myocarditis. Mechanistically, in the HIPPO pathway, the activation of Mst1-TAZ axis improved autoimmune inflammation by altering the interaction between the transcription factors FOXP3 and RORγt and regulating the differentiation of Treg and Th17 cells. CONCLUSION: LIPUS therapy was shown to reduce ICI-related myocarditis inflammatory damage and improve cardiac function, representing an exciting finding for irAEs treatment.
Subject(s)
Myocarditis , Male , Animals , Mice , Myocarditis/chemically induced , Myocarditis/diagnostic imaging , Myocarditis/therapy , Immune Checkpoint Inhibitors , Cell Differentiation , Lymphocyte Activation , CD4-Positive T-LymphocytesABSTRACT
Sodium-ion batteries (SIBs), as the next-generation high-performance electrochemical energy storage devices, have attracted widespread attention due to their cost-effectiveness and wide geographical distribution of sodium. As a crucial component of the structure of SIBs, the anode material plays a crucial role in determining its electrochemical performance. Significantly, metal phosphide exhibits remarkable application prospects as an anode material for SIBs because of its low redox potential and high theoretical capacity. However, due to volume expansion limitations and other factors, the rate and cycling performance of metal phosphides have gradually declined. To address these challenges, various viable solutions have been explored. In this paper, the recent research progress of metal phosphide materials for SIBs is systematically reviewed, including the synthesis strategy of metal phosphide, the storage mechanism of sodium ions, and the application of metal phosphide in electrochemical aspects. In addition, future challenges and opportunities based on current developments are presented.
ABSTRACT
Allergic asthma (AA) is closely associated with the polarization of T helper (Th)2 and Th17 cells. Interleukin (IL)-18 acts as an inducer of Th2 and Th17 cell responses. However, expressions of IL-18 and IL-18 receptor alpha (IL-18Rα) in blood Th2 and Th17 cells of patients with AA remain unclear. We therefore investigated their expressions in Th2 and Th17 cells using flow cytometric analysis, quantitative real-time PCR (qPCR), and murine AA model. We observed increased proportions of Th2, Th17, IL-18+, IL-18+ Th2, and IL-18+ Th17 cells in blood CD4+ T cells of patients with AA. Additionally, house dust mite seemed to upregulate further IL-18 expression in Th2 and Th17, and upregulate IL-18Rα expression in CD4+ T, Th2, and Th17 cells of AA patients. It was also found that the plasma levels of IL-4, IL-17A, and IL-18 in AA patients were elevated, and they were correlated between each other. In ovalbumin (OVA)-induced asthma mouse (AM), we observed that the percentages of blood CD4+ T, Th2, and Th17 cells were increased. Moreover, OVA-induced AM expressed higher level of IL-18Rα in blood Th2 cells, which was downregulated by IL-18. Increased IL-18Rα expression was also observed in blood Th2 cells of OVA-induced FcεRIα-/- mice. Collectively, our findings suggest the involvement of Th2 cells in AA by expressing excessive IL-18 and IL-18Rα in response to allergen, and that IL-18 and IL-18Rα expressing Th2 cells are likely to be the potential targets for AA therapy.
Subject(s)
Allergens , Asthma , Interleukin-18 , Th17 Cells , Th2 Cells , Humans , Interleukin-18/immunology , Interleukin-18/blood , Asthma/immunology , Asthma/blood , Animals , Th2 Cells/immunology , Mice , Female , Th17 Cells/immunology , Male , Adult , Allergens/immunology , Middle Aged , Up-Regulation/immunology , Interleukin-18 Receptor alpha Subunit/immunology , Interleukin-18 Receptor alpha Subunit/genetics , Ovalbumin/immunology , Receptors, Interleukin-18/immunology , Mice, Inbred BALB C , Disease Models, Animal , Pyroglyphidae/immunology , Young AdultABSTRACT
BACKGROUND: Muscle-invasive bladder carcinoma (MIBC) is a serious and more advanced stage of bladder carcinoma. N6-Methyladenosine (m6A) is a dynamic and reversible modifications that primarily affects RNA stability and alternative splicing. The dysregulation of m6A in MIBC can be potential target for clinical interventions, but there have been limited studies on m6A modifications in MIBC and their associations with post-transcriptional regulatory processes. METHODS: Paired tumor and adjacent-normal tissues were obtained from three patients with MIBC following radical cystectomy. The additional paired tissues for validation were obtained from patients underwent transurethral resection. Utilizing Nanopore direct-RNA sequencing, we characterized the m6A RNA methylation landscape in MIBC, with a focus on identifying post-transcriptional events potentially affected by changes in m6A sites. This included an examination of differential transcript usage, polyadenylation signal sites, and variations in poly(A) tail length, providing insights into the broader impact of m6A alterations on RNA processing in MIBC. RESULTS: The prognostic-related m6A genes and m6A-risk model constructed by machine learning enables the stratification of high and low-risk patients with precision. A novel m6A modification site in the 3' untranslated region (3'UTR) of IGLL5 gene were identified, characterized by a lower m6A methylation ratio, elongated poly(A) tails, and a notable bias in transcript usage. Furthermore, we discovered two particular transcripts, VWA1-203 and CEBPB-201. VWA1-203 displayed diminished m6A methylation levels, a truncated 3'UTR, and an elongated poly(A) tail, whereas CEBPB-201 showed opposite trends, highlighting the complex interplay between m6A modifications and RNA processing. Source code was provided on GitHub ( https://github.com/lelelililele/Nanopore-m6A-analysis ). CONCLUSIONS: The state-of-the-art Nanopore direct-RNA sequencing and machine learning techniques enables comprehensive identification of m6A modification and provided insights into the potential post-transcriptional regulation mechanisms on the development and progression in MIBC.
Subject(s)
Adenosine , Neoplasm Invasiveness , Urinary Bladder Neoplasms , Humans , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology , Adenosine/analogs & derivatives , Adenosine/metabolism , RNA Processing, Post-Transcriptional/genetics , Methylation , Male , Gene Expression Regulation, Neoplastic , RNA, Messenger/genetics , RNA, Messenger/metabolism , Machine Learning , Muscles/pathology , Muscles/metabolism , Female , Middle Aged , Prognosis , Aged , 3' Untranslated Regions/geneticsABSTRACT
BACKGROUND: Due to the diversity of the immune repertoire (IR), reconstructing full-length IR using traditional short-read sequencing has proven challenging. METHODS: A full-length IR sequencing (FLIRseq) work flow was developed with linear rolling circle amplification and nanopore sequencing. Its accuracy and quantification ability were verified by plasmid mixtures and commercial B-cell receptor/T-cell receptor sequencing (BCR/TCR-seq) based on short reads. IRs in tissues and the peripheral blood from 8 patients with acute lymphoblastic leukemia, 3 patients with allergic diseases, 4 patients with psoriasis, and 5 patients with prostate cancer were analyzed using FLIRseq. RESULTS: FLIRseq reads had lower mismatch rates and gap rates, and higher identify rates than nanopore reads (all P < 2.2 × -16). The relative quantification of components by FLIRseq was consistent with the actual quantification (P > 0.05). FLIRseq had superiority over BCR/TCR-seq, providing the long complementarity-determining region 3, B-cell isotype, and the rarely used V gene sequence. FLIRseq observed an increase in clonotype diversity (P < 0.05) and a decrease in the percentage of abnormal BCRs/TCRs in patients with leukemia in remission. For patients with allergic diseases or psoriasis, FLIRseq provided direct insights into V(D)J recombination and specific immunoglobulin classes. Compared with that in prostate cancer tissues, the full-length V segment of the biased T-cell receptor ß chain from lymphocytes in psoriatic tissues showed a more consistent AlphaFold2-predicted protein structure (P < 0.05). CONCLUSIONS: FLIRseq enables unbiased and comprehensive analyses of direct V(D)J recombination and immunoglobulin classes, thereby contributing to characterizing pathogenic mechanisms, monitoring minimal residual disease, and customizing adoptive cell therapy.
ABSTRACT
OBJECTIVE: Choroid plexus (CP) is a key regulator in cerebrospinal fluid production, but its contribution to glymphatic clearance function and association with white matter hyperintensity (WMH) remains unclear. METHODS: This retrospective study included 2 prospective 3.0-T magnetic resonance imaging (MRI) cohorts. In cohort 1, patients with indications for lumbar puncture underwent 3-dimensional T1-weighted sequence (3D-T1) before and at 39 hours after intrathecal administration of contrast agent (glymphatic MRI). In cohort 2, patients with WMH were enrolled from the CIRCLE study and had a median follow-up time of 1.4 years. WMH and CP of the lateral ventricles were automatically segmented on T2 fluid-attenuated inversion recovery (FLAIR) and 3D-T1, respectively. CP volume was expressed as a ratio to intracranial volume. Glymphatic clearance was measured as signal percentage change from baseline to 39 hours at 8 brain locations based on glymphatic MRI in the first cohort, or as noninvasive diffusion tensor image analysis along the perivascular space (DTI-ALPS) index based on DTI in the second cohort. RESULTS: In cohort 1, a total of 52 patients were included. Higher CP volume was correlated with slower glymphatic clearance rate in all brain locations. In cohort 2, a total of 197 patients were included. Baseline CP volume was positively associated with WMH volume and its growth. Furthermore, DTI-ALPS index partially mediated the association of CP with both WMH load and growth. INTERPRETATIONS: Enlarged CP volume could be an indicator for larger growth of WMH, potentially involving impaired glymphatic clearance function. The exploration of CP may provide a novel perspective to clarify the mechanism of WMH pathogenesis, as well as other glymphatic-related disorders. ANN NEUROL 2023;94:182-195.
Subject(s)
White Matter , Humans , White Matter/diagnostic imaging , White Matter/pathology , Choroid Plexus/diagnostic imaging , Prospective Studies , Retrospective Studies , Brain/pathology , Magnetic Resonance Imaging/methodsABSTRACT
We report on the efficient generation of intense terahertz radiation from the organic crystal N-benzyl-2-methyl-4-nitroaniline pumped by chirped Ti:sapphire femtosecond laser pulses. The THz energy and spectrum as a function of the pump fluence and duration of the chirped laser pulses are studied systematically. For the appropriate positively chirped pump pulses, a significant boost in the THz generation efficiency by a factor of around 2.5 is achieved, and the enhancement of high-frequency components (>1â THz) shortens the THz pulse duration. Via complete characterization of THz properties and transmitted laser spectra, this nonlinear behavior is attributed to the extended effective interaction length for phase matching as a result of the self-phase modulation of the intense pump laser pulses. Numerical calculations well reproduce the experimental observation. Our results demonstrate a robust, efficient, strong-field (up to several MV/cm) THz source using the common sub-10â mJ and sub-100â fs Ti:sapphire laser systems without optical parametric amplifiers.
ABSTRACT
BACKGROUND: Chronic myeloid leukemia (CML) is a common hematological malignancy, and tyrosine kinase inhibitors (TKIs) represent the primary therapeutic approach for CML. Activation of metabolism signaling pathway has been connected with BCR::ABL1-independent TKIs resistance in CML cells. However, the specific mechanism by which metabolism signaling mediates this drug resistance remains unclear. Here, we identified one relationship between glutamine synthetase (GS) and BCR::ABL1-independent Imatinib resistance in CML cells. METHODS: GS and PXN-AS1 in bone marrow samples of CML patients with Imatinib resistance (IR) were screened and detected by whole transcriptome sequencing. GS expression was upregulated using LVs and blocked using shRNAs respectively, then GS expression, Gln content, and cell cycle progression were respectively tested. The CML IR mice model were established by tail vein injection, prognosis of CML IR mice model were evaluated by Kaplan-Meier analysis, the ratio of spleen/body weight, HE staining, and IHC. PXN-AS1 level was blocked using shRNAs, and the effects of PXN-AS1 on CML IR cells in vitro and in vivo were tested the same as GS. Several RNA-RNA tools were used to predict the potential target microRNAs binding to both GS and PXN-AS1. RNA mimics and RNA inhibitors were used to explore the mechanism through which PXN-AS1 regulates miR-635 or miR-635 regulates GS. RESULTS: GS was highly expressed in the bone marrow samples of CML patients with Imatinib resistance. In addition, the lncRNA PXN-AS1 was found to mediate GS expression and disorder cell cycle in CML IR cells via mTOR signaling pathway. PXN-AS1 regulated GS expression by binding to miR-635. Additionally, knockdown of PXN-AS1 attenuated BCR::ABL1-independent Imatinib resistance in CML cells via PXN-AS1/miR-635/GS/Gln/mTOR signaling pathway. CONCLUSIONS: Thus, PXN-AS1 promotes GS-mediated BCR::ABL1-independent Imatinib resistance in CML cells via cell cycle signaling pathway.
ABSTRACT
BACKGROUND: Vulvar and vaginal melanoma (VuM & VaM) is a rare gynecologic malignancy with high mortality but low effectiveness to checkpoint immunotherapy compared to cutaneous melanoma. This article aims to elucidate the role of the disordered immune microenvironment in cancer progression in VuM. METHODS: At first, this article applied single-cell RNA sequencing (scRNA-seq) to the VuM obtained from a 68-year-old female patient, and constructed a single-cell atlas of VuM consist of 12,243 single cells. Then this article explores the genomic complexity and core signal channel in VuM microenvironment. RESULTS: This article provides new insights about the pathogenesis of VuM based on single-cell resolution data. It was found that the activation of CD8+ T cell contributed to induce tumor angiogenesis and immune escape, and the activation of the antigen-presenting molecular function participated in melanoma metastasis. CONCLUSION: This article provided new insights into underlining VuM molecular regulation and potential signaling involved in immunotherapy, which would benefit the clinical practice and administration.
Subject(s)
Melanoma , Skin Neoplasms , Vulvar Neoplasms , Female , Humans , Aged , Melanoma/therapy , Vulvar Neoplasms/therapy , Single-Cell Analysis , Immunotherapy , Tumor MicroenvironmentABSTRACT
Primary spinal cord astrocytoma (SCA) is a rare disease. Knowledge about the molecular profiles of SCAs mostly comes from intracranial glioma; the pattern of genetic alterations of SCAs is not well understood. Herein, we describe genome-sequencing analyses of primary SCAs, aiming to characterize the mutational landscape of primary SCAs. We utilized whole exome sequencing (WES) to analyze somatic nucleotide variants (SNVs) and copy number variants (CNVs) among 51 primary SCAs. Driver genes were searched using four algorithms. GISTIC2 was used to detect significant CNVs. Additionally, recurrently mutated pathways were also summarized. A total of 12 driver genes were identified. Of those, H3F3A (47.1%), TP53 (29.4%), NF1 (19.6%), ATRX (17.6%), and PPM1D (17.6%) were the most frequently mutated genes. Furthermore, three novel driver genes seldom reported in glioma were identified: HNRNPC, SYNE1, and RBM10. Several germline mutations, including three variants (SLC16A8 rs2235573, LMF1 rs3751667, FAM20C rs774848096) that were associated with risk of brain glioma, were frequently observed in SCAs. Moreover, 12q14.1 (13.7%) encompassing the oncogene CDK4 was recurrently amplified and negatively affected patient prognosis. Besides frequently mutated RTK/RAS pathway and PI3K pathway, the cell cycle pathway controlling the phosphorylation of retinoblastoma protein (RB) was mutated in 39.2% of patients. Overall, a considerable degree of the somatic mutation landscape is shared between SCAs and brainstem glioma. Our work provides a key insight into the molecular profiling of primary SCAs, which might represent candidate drug targets and complement the molecular atlas of glioma. © 2023 The Pathological Society of Great Britain and Ireland.
Subject(s)
Astrocytoma , Glioma , Humans , Phosphatidylinositol 3-Kinases , Mutation , Glioma/genetics , Spinal Cord/pathology , RNA-Binding Proteins/geneticsABSTRACT
Photothermal catalysis exhibits promising prospects to overcome the shortcomings of high-energy consumption of traditional thermal catalysis and the low efficiency of photocatalysis. However, there is still a challenge to develop catalysts with outstanding light absorption capability and photothermal conversion efficiency for the degradation of atmospheric pollutants. Herein, we introduced the Co3O4 layer and Pt nanoclusters into the three-dimensional (3D) porous membrane through the atomic layer deposition (ALD) technique, leading to a Pt/Co3O4/AAO monolithic catalyst. The 3D ordered nanochannel structure can significantly enhance the solar absorption capacity through the light-trapping effect. Therefore, the embedded Pt/Co3O4 catalyst can be rapidly heated and the O2 adsorbed on the Pt clusters can be activated to generate sufficient O2- species, exhibiting outstanding activity for the diverse VOCs (toluene, acetone, and formaldehyde) degradation. Optical characterization and simulation calculation confirmed that Pt/Co3O4/AAO exhibited state-of-the-art light absorption and a notable localized surface plasmon resonance (LSPR) effect. In situ diffuse reflectance infrared Fourier transform spectrometry (in situ DRIFTS) studies demonstrated that light irradiation can accelerate the conversion of intermediates during toluene and acetone oxidation, thereby inhibiting byproduct accumulation. Our finding extends the application of AAO's optical properties in photothermal catalytic degradation of air pollutants.
Subject(s)
Acetone , Cobalt , Oxides , Toluene , Oxidation-Reduction , Catalysis , Toluene/analysis , Toluene/chemistryABSTRACT
Previous studies have detected microplastics (MPs) in human biological samples, such as lungs, alveolar lavage fluid, and thrombus. However, whether MPs induce health effects after inhalation are unclear. In this study, fluorescent polystyrene microplastics (PS-MPs) were found in the thymus, spleen, testes, liver, kidneys, and brain on day 1 or day 3 after one intratracheal instillation. Furthermore, mice showed inflammation in multiple organs, manifested as obvious infiltration of neutrophils and macrophages, increased Toll-like receptors (TLRs), myeloid differentiation primary response protein 88 (MyD88) and nuclear factor-κB (NF-κB), as well as proinflammatory cytokines (tumor necrosis factor (TNF)-α and interleukin (IL)-1ß) in the lungs, thymus, spleen, liver, and kidneys after four intratracheal instillations of PS-MPs at once every 2 weeks. Hepatic and renal function indexes were also increased. Subsequently, the inflammatory response in multiple murine organs was significantly alleviated by TLR2 and TLR4 inhibitors. Unexpectedly, we did not find any elevated secretion of monocyte chemotactic protein (MCP)-1 or TNF-α by RAW264.7 macrophages in vitro. Thus, PS-MPs induced inflammatory injuries in multiple murine organs via the TLRs/MyD88/NF-κB pathway in vivo, but not macrophages in vitro. These results may provide theoretical support for healthy protection against PS-MPs and their environmental risk assessment.
Subject(s)
Inflammation , Microplastics , Toll-Like Receptors , Animals , Mice , Toll-Like Receptors/metabolism , RAW 264.7 Cells , NF-kappa B/metabolism , Male , Myeloid Differentiation Factor 88/metabolism , Macrophages/drug effectsABSTRACT
OBJECTIVES: Blood cell-free DNA (cfDNA) can be a new reliable tool for detecting epidermal growth factor receptor (EGFR) mutations in non-small cell lung cancer (NSCLC) patients. However, the currently reported cfDNA assays have a limited role in detecting drug-resistant mutations due to their deficiencies in sensitivity, stability, or mutation detection rate. METHODS: We developed an Archaeoglobus fulgidus-derived flap endonuclease (Afu FEN)-based DNA-enhanced amplification system of mutated cfDNA by designing a pair of hairpin probes to anneal with wild-type cfDNA to form two 5'-flaps, allowing for the specific cleavage of wild-type cfDNA by Afu FEN. When the dominant wild-type somatic cfDNA fragments were cleaved by structure-recognition-specific Afu FEN, the proportion of mutated cfDNA in the reaction system was greatly enriched. As the amount of mutated cfDNA in the system was further increased by PCR amplification, the mutation status could be easily detected through first-generation sequencing. RESULTS: In a mixture of synthetic wild-type and T790M EGFR DNA fragments, our new assay still could detect T790M mutation at the fg level with remarkably high sensitivity. We also tested its performance in detecting low variant allele frequency (VAF) mutations in clinical samples from NSCLC patients. The plasma cfDNA samples with low VAF (0.1 and 0.5â¯%) could be easily detected by DNA-enhanced amplification. CONCLUSIONS: This system with enhanced amplification of mutated cfDNA is an effective tool used for the early screening and individualized targeted therapy of NSCLC by providing a rapid, sensitive, and economical way for the detection of drug-resistant mutations in tumors.
ABSTRACT
BACKGROUND: We aimed to identify hub genes in chronic obstructive pulmonary disease (COPD) plasma through the exploration of a putative miRNA-mRNA regulatory network. METHODS: Three datasets (GSE24709, GSE102915, GSE136390) were utilized to discern differentially expressed miRNAs (DEMs) between COPD and normal plasma. miRNET was employed to predict the potential targets of DEMs. Subsequent GO and KEGG analyses were conducted using DAVID. For the construction of the protein-protein interaction (PPI) network and screening of hub genes, STRING and Cytoscape were employed. The expression validation was assessed through GSE56768. RESULTS: The results revealed 395 genes targeted by up-regulated DEMs and 234 genes targeted by down-regulated DEMs. The target genes exhibited significant enrichment in the PI3K-Akt signaling pathway and the p53 signaling pathway. Through the validation of hub genes' expression, we proposed two potential miRNA-mRNA interactions: miR-126-5p/miR-495-3p/miR-193b-3p - YWHAZ and miR-937-5p/miR-183-5p/miR-34c-5p/miR-98-5p/miR-525-3p/miR-215-5p - ACTB. CONCLUSIONS: In conclusion, our study posits potential miRNA-mRNA interactions in COPD by analyzing datasets from public databases, contributing valuable insights into the understanding of COPD pathogenesis and potential therapeutic avenues.
Subject(s)
Gene Regulatory Networks , MicroRNAs , Protein Interaction Maps , Pulmonary Disease, Chronic Obstructive , RNA, Messenger , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/blood , Humans , MicroRNAs/genetics , RNA, Messenger/genetics , Protein Interaction Maps/genetics , 14-3-3 Proteins/genetics , Gene Expression Profiling , Signal Transduction/geneticsABSTRACT
BACKGROUND: Mood disorders are strongly associated with melatonin disturbances. However, it is unclear whether there is a difference in melatonin concentrations and melatonin circadian rhythm profiles between depression and bipolar disorder. In addition, the relationship between anhedonia, a common symptom of affective disorders, and its melatonin circadian rhythm remains under-investigated. METHODS: Thirty-four patients with depression disorder, 20 patients diagnosed with bipolar disorder and 21 healthy controls participated in this study. The Revised Physical Anhedonia Scale (RPAS) was performed to assess anhedonia. Saliva samples were collected from all subjects at fixed time points (a total of 14 points) in two consecutive days for measuring the melatonin concentrations to fit circadian rhythms of subjects. Melatonin circadian rhythms were compared between the three groups using ANOVA. Partial correlation analysis and linear regression analysis were used to explore the correlation between melatonin rhythm variables and anhedonia. RESULTS: We found that the peak phase of melatonin in the depression group was significantly advanced compared to the control group (P < 0.001) and the bipolar disorder group (P = 0.004). The peak phase of melatonin and RPAS showed a negative correlation (P = 0.003) in depression patients, which was also demonstrated in the multiple linear regression model (B=-2.47, P = 0.006). CONCLUSIONS: These results suggest that circadian rhythms of melatonin are differentiated in depression and bipolar disorder and correlate with anhedonia in depression. Future research needs to explore the neurobiological mechanisms linking anhedonia and melatonin circadian rhythms in depressed patients.
Subject(s)
Melatonin , Mood Disorders , Humans , Anhedonia , Cross-Sectional Studies , Circadian RhythmABSTRACT
BACKGROUND: Dysmobility syndrome based on osteoporosis (ODS) is a disease characterized by low bone mass and low muscle mass. Its features are high fracture and high fall risk. Falls and fractures are the most important factors affecting the quality of life and lifespan of ODS. However, there is no serum marker for the evaluation of ODS patients.Our previous studies have shown that the expression of circulating miRNA is stable and is a good marker for disease diagnosis. Therefore, this study aims to explore potential serum markers of ODS. METHODS: A total of 78 subjects were included in this study. The data including appendicular skeletal muscle mass index, bone mineral density, bone metabolism markers, and other relevant information were collected for analysis. Real-time quantitative polymerase chain reaction was used to detect 19 miRNAs associated with muscle mass reduction. The correlation of quantitative data was analyzed by Pearson. The receiver operating characteristic curve was used to evaluate the performance of miRNA as a biomarker. RESULTS: In this study, we found that the muscle mass and strength of patients with ODS are significantly reduced and are negatively correlated with the risk of fracture. The hsa-miR-499a-5p is specifically downregulated in ODS, and is positively correlated with muscle mass and strength, and negatively correlated with the risk of fracture. Compared with muscle mass and strength, hsa-miR-499a-5p has better sensitivity and specificity as a diagnostic marker. CONCLUSION: hsa-miR-499a-5p is a potential serum biomarker for assessing muscle function and predicting fall or fracture risk in the ODS population.