Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
BMC Nephrol ; 24(1): 45, 2023 02 27.
Article in English | MEDLINE | ID: mdl-36849937

ABSTRACT

BACKGROUND: Accurate diagnosis and assessment of hematuria is crucial for the early detection of chronic kidney disease(CKD). As instability of urinary RBC count (URBC) often results with clinical uncertainty, therefore new urinary indexes are demanded to improve the accuracy of diagnosis of hematuria. In this study, we aimed to investigate the benefit of applying new complex indicators based on random urine red blood cell counts confirmed in hematuric kidney diseases. METHODS: All patients enrolled underwent renal biopsy, and their clinical information was collected. Urinary and blood biomedical indexes were implemented with red blood cell counts to derive complex indicators. Patients were divided into two groups (hematuria-dominant renal histologic lesions and non-hematuria-dominant renal histologic lesions) based on their renal pathological manifestations. The target index was determined by comparing the predictive capabilities of the candidate parameters for hematuric kidney diseases. Hematuria stratification was divided into four categories based on the scale of complex indicators and distributional features. The practicality of the new complex indicators was demonstrated by fitting candidate parameters to models comprising demographic information. RESULTS: A total of 1,066 cases (678 hematuria-dominant renal histologic lesions) were included in this study, with a mean age of 44.9 ± 15 years. In differentiating hematuria-dominant renal histologic lesion from the non-hematuria-dominant renal histologic lesion, the AUC value of "The ratio of the random URBC to 24-h albumin excretion" was 0.76, higher than the standard approach of Lg (URBC) [AUC = 0.744] (95% Confidence interval (CI) 0.712 ~ 0.776). The odds ratio of hematuria-dominant renal histologic lesion (Type I) increased from Q2 (3.81, 95% CI 2.66 ~ 5.50) to Q4 (14.17, 95% CI 9.09 ~ 22.72). The predictive model, composed of stratification of new composite indexes, basic demographic characteristics, and biochemical parameters, performed best with AUC value of 0.869 (95% CI 0.856-0.905). CONCLUSION: The new urinary complex indicators improved the diagnostic accuracy of hematuria and may serve as a useful parameter for screening hematuric kidney diseases.


Subject(s)
Body Fluids , Renal Insufficiency, Chronic , Humans , Adult , Middle Aged , Clinical Decision-Making , Uncertainty , Hematuria/diagnosis , Kidney , Renal Insufficiency, Chronic/diagnosis
2.
Am J Phys Anthropol ; 174(4): 686-700, 2021 04.
Article in English | MEDLINE | ID: mdl-33555039

ABSTRACT

OBJECTIVES: The aim of this research was to explore the origin, diversification, and demographic history of O1a-M119 over the past 10,000 years, as well as its role during the formation of East Asian and Southeast Asian populations, particularly the Han, Tai-Kadai-speaking, and Austronesian-speaking populations. MATERIALS AND METHODS: Y-chromosome sequences (n = 141) of the O1a-M119 lineage, including 17 newly generated in this study, were used to reconstruct a revised phylogenetic tree with age estimates, and identify sub-lineages. The geographic distribution of 12 O1a-M119 sub-lineages was summarized, based on 7325 O1a-M119 individuals identified among 60,009 Chinese males. RESULTS: A revised phylogenetic tree, age estimation, and distribution maps indicated continuous expansion of haplogroup O1a-M119 over the past 10,000 years, and differences in demographic history across geographic regions. We propose several sub-lineages of O1a-M119 as founding paternal lineages of Han, Tai-Kadai-speaking, and Austronesian-speaking populations. The sharing of several young O1a-M119 sub-lineages with expansion times less than 6000 years between these three population groups supports a partial common ancestry for them in the Neolithic Age; however, the paternal genetic divergence pattern is much more complex than previous hypotheses based on ethnology, archeology, and linguistics. DISCUSSION: Our analyses contribute to a better understanding of the demographic history of O1a-M119 sub-lineages over the past 10,000 years during the emergence of Han, Austronesians, Tai-Kadai-speaking populations. The data described in this study will assist in understanding of the history of Han, Tai-Kadai-speaking, and Austronesian-speaking populations from ethnology, archeology, and linguistic perspectives in the future.


Subject(s)
Asian People/genetics , Chromosomes, Human, Y/genetics , Ethnicity/genetics , Genetics, Population/methods , Haplotypes/genetics , Anthropology, Physical , Asian People/classification , China , Ethnicity/classification , Humans , Male
3.
Acta Pharmacol Sin ; 39(5): 866-874, 2018 May.
Article in English | MEDLINE | ID: mdl-29417943

ABSTRACT

Epigenetic gene-regulation abnormalities have been implicated in various neuropsychiatric disorders including schizophrenia and depression, as well as in the regulation of mood and anxiety. In addition, epigenetic mechanisms are involved in the actions of psychiatric drugs. Current anxiolytic drugs have significant shortcomings, and development of new medications is warranted. Two proteins, G9a (also known as EHMT2 or KMT1C) and GLP (G9a-like protein, also known as EHMT1 or KMT1D), which methylate lysine 9 of histone H3 (H3K9), could be promising anxiolytic targets. Postnatal genetic knock-out of G9a reduces anxiety-related behavior, consistent with the reduction of G9a levels by some medications used to treat anxiety (amitriptyline, imipramine and paroxetine). Conversely, there is increased anxiety-like behavior in mice with GLP haplodeficiency. We sought to determine whether two pharmacological inhibitors of G9a/GLP, UNC0642 and A-366, would have similar effects to genetic G9a/GLP insufficiency. We found that G9a/GLP inhibition with either compound reduced anxiety-like behaviors when administered to adult mice, in conjunction with decreased H3K9 methylation in the brain. In contrast, exposure to these compounds from embryonic day 9.5 (E9.5) until birth increased anxiety-like behaviors and decreased social interaction in adulthood, while H3K9 methylation was at normal levels in the brains of the adult mice. These findings reinforce genetic evidence that G9a/GLP has different effects on anxiety-like behavior at different stages of brain development, and suggest that targeting this histone methyltransferase pathway could be useful for developing new anxiolytic drugs. These data also suggest that antidepressant exposure in utero could have negative effects in adulthood, and further investigation of these effects is warranted.


Subject(s)
Anti-Anxiety Agents/therapeutic use , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Indoles/therapeutic use , Quinazolines/therapeutic use , Spiro Compounds/therapeutic use , Animals , Diazepam/therapeutic use , Dose-Response Relationship, Drug , Epigenesis, Genetic , Female , Histones/genetics , Histones/metabolism , Male , Methylation , Mice, Inbred C57BL , Protein Processing, Post-Translational , Venlafaxine Hydrochloride/therapeutic use
4.
Int J Nanomedicine ; 17: 1593-1608, 2022.
Article in English | MEDLINE | ID: mdl-35411142

ABSTRACT

Background: Dendritic cell (DC) targeted antigen delivery is a promising strategy to enhance vaccine efficacy and delivery of therapeutics. Self-assembling peptide-based nanoparticles and virus-like particles (VLPs) have attracted extensive interest as non-replicating vectors for nanovaccine design, based on their unique properties, including molecular specificity, biodegradability and biocompatibility. DCs are specialized antigen-presenting cells involved in antigen capture, processing, and presentation to initiate adaptive immune responses. Using DC-specific ligands for targeted delivery of antigens to DCs may be utilized as a promising strategy to drive efficient and strong immune responses. Methods: In this study, several candidates for DC-binding peptides (DCbps) were individually integrated into C-terminal of porcine circovirus type 2 (PCV2) Cap, a viral protein that could self-assemble into icosahedral VLPs with 60 subunits. The immunostimulatory adjuvant activity of DC-targeted VLPs was further evaluated in a vaccine model of PCV2 Cap. Results: With transmission electron microscopy (TEM), E. coli expressed Cap-DCbp fusion proteins were observed self-assembled into highly ordered VLPs. Further, in dynamic light scattering (DLS) analysis, chimeric VLPs exhibited similar particle size uniformity and narrow size distribution as compared to wild type Cap VLPs. With a distinctly higher targeting efficiency, DCbp3 integrated Cap VLPs (Cap-DCbp3) displayed enhanced antigen uptake and increased elicitation of antigen presentation-related factors in BM-DCs. Mice subcutaneously immunized with Cap-DCbp3 VLPs exhibited significantly higher levels of Cap-specific antibodies, neutralizing antibodies and intracellular cytokines than those with other DCbp integrated or wild type Cap VLPs without any DCbp. Interestingly, Cap-DCbp3 VLPs vaccine induces robust cellular immune response profile, including the efficient production of IFN-γ, IL-2 and IL-10. Meanwhile, the improved proliferation index in lymphocytes with Cap-DCbp3 was also detected as compared to other VLPs. Conclusion: This study described the potential of DC-binding peptides for further improved antigen delivery and vaccine efficacy, explainning nanovaccine optimization in relation to a range of emerging and circulating infectious pathogens.


Subject(s)
Capsid Proteins , Circovirus , Animals , Antiviral Agents/metabolism , Capsid Proteins/chemistry , Circovirus/genetics , Dendritic Cells/metabolism , Escherichia coli/metabolism , Mice , Peptides/metabolism , Swine
5.
Nat Commun ; 11(1): 5519, 2020 11 02.
Article in English | MEDLINE | ID: mdl-33139738

ABSTRACT

Lithium garnets have been widely studied as promising electrolytes that could enable the next-generation all-solid-state lithium batteries. However, upon exposure to atmospheric moisture and carbon dioxide, insulating lithium carbonate forms on the surface and deteriorates the interfaces within electrodes. Here, we report a scalable solid sintering method, defined by lithium donor reaction that allows for complete decarbonation of Li6.4La3Zr1.4Ta0.6O12 (LLZTO) and yields an active LiCoO2 layer for each garnet particle. The obtained LiCoO2 coated garnets composite is stable against air without any Li2CO3. Once working in a solid-state lithium battery, the LiCoO2-LLZTO@LiCoO2 composite cathode maintains 81% of the initial capacity after 180 cycles at 0.1 C. Eliminating CO2 evolution above 4.0 V is confirmed experimentally after transforming Li2CO3 into LiCoO2. These results indicate that Li2CO3 is no longer an obstacle, but a trigger of the intimate solid-solid interface. This strategy has been extended to develop a series of LLZTO@active layer materials.

SELECTION OF CITATIONS
SEARCH DETAIL