Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 104
Filter
1.
Small ; 20(1): e2304756, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37653605

ABSTRACT

Halide perovskites exhibit outstanding optoelectronic properties, which make them an ideal choice for photocatalytic CO2 reduction and benzyl alcohol (BA) oxidation. Nevertheless, the simultaneous realization of the above redox coupling reactions on halide perovskites remains a great challenge, as it requires distinct catalytic sites for different target reactions. Herein, the catalytic sites of Cs2 AgBiCl6 (CABC) are regulated by doping Fe for efficient coupling of photocatalytic CO2 reduction and BA oxidation. The Fe-doped CABC (Fe: CABC) exhibits an enhanced visible-light response and effective charge separation. Experimental results and theoretical calculations reveal a synergistic interplay between Bi and Fe sites, where the Bi and Fe sites have lower activation energies toward CO2 reduction and BA oxidation. Further investigations demonstrate that electrons and holes prefer to accumulate at the Bi site and Fe site under light irradiation, respectively, which creates favorable conditions for facilitating CO2 reduction and BA oxidation. The resultant Fe: CABC achieves a high photocatalytic performance toward CO (18.5 µmol g-1  h-1 ) and BD (1.1 mmol g-1  h-1 ) generation, which surpasses most of the state-of-the-art halide photocatalysts. This work demonstrates a facile strategy for regulating the catalytic site for redox coupling reactions, which will pave a new way for designing halide perovskites for photocatalysis.

2.
Small ; : e2400769, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38751231

ABSTRACT

In the field of photocatalytic CO2 reduction, quantum dot (QD) assemblies have emerged as promising candidate photocatalysts due to their superior light absorption and better substrate adsorption. However, the poor contacts within QD assemblies lead to low interfacial charge transfer efficiency, making QD assemblies suffer from unsatisfactory photocatalytic performance. Herein, a novel approach is presented involving the construction of strongly interfacial fused CdS QD assemblies (CdS QD gel) for CO2 reduction. The novel CdS QD gel demonstrates outstanding photocatalytic performance for CO2 methanation, achieving a CH4 generation rate of ≈296 µmol g-1 h-1, with a selectivity surpassing 76% and an apparent quantum yield (AQY) of 1.4%. Further investigations reveal that the robust interfacial fusion in these CdS QDs not only boosts their ability to absorb visible light but also significantly promotes charge separation. The present work paves the way for utilizing QD gel photocatalysts in realizing efficient CO2 reduction and highlights the critical role of interfacial engineering in photocatalysts.

3.
Small ; : e2401202, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38805739

ABSTRACT

Halide perovskites have garnered significant attention for their unique optoelectronic properties in solar-to-fuel conversions. However, the efficiency of halide perovskites in the field of photocatalytic CO2 reduction is largely limited by serious charge recombination and a lack of efficient active sites. In this work, a rubidium (Rb) doped Cs2AgBiBr6 (Rb:CABB) hierarchical microsphere is developed for photocatalytic CO2 reduction. Experimental and theoretical analysis discloses that partially substituting Rb+ for Ag+ can effectively modulate the electronic structure of CABB, favoring charge separation and making adjacent Bi atoms an electron-rich active site. Further investigations indicated that Rb doping also reduces the energy barriers of the rate-determining step in CO2 reduction. As a result, Rb:CABB demonstrated an enhanced CO yield compared to its undoped counterpart. This work presents a promising approach to optimizing the electronic structures of photocatalysts and paving a new way for exploring halide perovskites for photocatalytic CO2 reduction.

4.
Chemphyschem ; : e202400304, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622796

ABSTRACT

In the field of photocatalysis, new heterojunction materials are increasingly explored to achieve efficient energy conversion and environmental catalysis under visible light and sunlight. This paper presents a study on two newly constructed two-dimensional van der Waals heterojunctions, Sc2CCl2/MoSe2 and Sc2CCl2/PtSe2, using density-functional theory. The study includes a systematic investigation of their geometrical structure, electronic properties, and optical properties. The results indicate that both heterojunctions are thermodynamically, kinetically, and mechanically stable. Additionally, Bader charge analysis reveals that both heterojunctions exhibit typical type II band properties. However, the band gap of the Sc2CCl2/MoSe2 heterojunction is only 1.18 eV, which is insufficient to completely cross the reduction and oxidation (REDOX) potential of 1.23 eV, whereas the band gap of Sc2CCl2/PtSe2 heterojunction is 1.49 eV, which is theoretically capable for water decomposition. The subsequent calculation of the Sc2CCl2/PtSe2 heterojunction demonstrate excellent hole carrier mobility and high efficiency light absorption in the visible light range, facilitating the separation of photogenerated electrons and holes. More importantly, Sc2CCl2/PtSe2 vdW type II heterojunction can achieve full water decomposition from pH 1 to pH 4, and its thermodynamic feasibility is confirmed by Gibbs free energy results. The aim of this study is to develop materials and analyses that will result in optoelectronic devices that are more efficient, stable, and sustainable.

5.
Inorg Chem ; 63(4): 2234-2240, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38214981

ABSTRACT

Converting CO2 into high-value-added chemicals has been recognized as a promising way to tackle the fossil fuel crisis. Quantum dots (QDs) have been extensively studied for photocatalytic CO2 reduction due to their excellent optoelectronic properties. However, most of the photogenerated charge carriers recombine before they participate in the photocatalytic reaction. It is crucial to regulate the charge carriers to minimize undesired charge recombination, thus, promoting surface photocatalysis. Herein, we report a copper-doped CdS (Cu:CdS) QD photocatalyst for CO2 reduction. Density functional theory simulations and experimental results demonstrate that Cu dopants create intermediate energy levels in CdS QDs that can extend the lifetime of exciton charge carriers. Furthermore, the long-lived charge carriers can be harnessed for the photocatalytic reaction on Cu:CdS QDs. The resultant Cu:CdS QDs exhibited a significantly enhanced photocatalytic activity toward CO2 reduction compared to the pristine CdS QDs. This work highlights the importance of charge regulation in photocatalysts and opens new pathways for the exploration of efficient QD photocatalysts.

6.
Inorg Chem ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949122

ABSTRACT

In recent years, halide perovskites have attracted considerable attention for photocatalytic CO2 reduction. However, the presence of surface defects and the lack of specific catalytic sites for CO2 reduction lead to low photocatalytic performance. In this study, we demonstrate a facile method that post-treats CsPbBr3 with ZnBr2 for photocatalytic CO2 reduction. Our experimental and characterization results show that ZnBr2 has a dual role: the Br- ions in ZnBr2 passivate Br vacancies (VBr) on the CsPbBr3 surface, while Zn2+ cations act as catalytic sites for CO2 reduction. The ZnBr2-CsPbBr3 achieves a photocatalytic CO evolution rate of 57 µmol g-1 h-1, which is nearly three times higher than that of the pristine CsPbBr3. The enhanced performance over ZnBr2-CsPbBr3 is mainly due to the decreased VBr and lower reaction energy barrier for CO2 reduction. This work presents an effective method to simultaneously passivate surface defects and introduce catalytic sites, providing useful guidance for the regulation of perovskite photoelectric properties and the design of efficient photocatalysts.

7.
Angew Chem Int Ed Engl ; : e202407748, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38818639

ABSTRACT

Selective producing ethanol from CO2 electroreduction is highly demanded, yet the competing ethylene generation route is commonly more thermodynamically preferred. Herein, we reported an efficient CO2-to-ethanol conversion (53.5% faradaic efficiency at -0.75 V versus reversible hydrogen electrode (vs. RHE)) over an oxide-derived nanocubic catalyst featured with abundant "embossment-like" structured grain-boundaries. The catalyst also attains a 23.2% energy efficiency to ethanol within a flow cell reactor. In situ spectroscopy and electrochemical analysis identified that these dualphase Cu(I) and Cu(0) sites stabilized by grain-boundaries are very robust over the operating potential window, which maintains a high concentration of co-adsorbed *CO and hydroxyl (*OH) species. Theoretical calculations revealed that the presence of *OHad not only promote the easier dimerization of *CO to form *OCCO (ΔG ~ 0.20 eV) at low overpotentials but also preferentially favor the key *CHCOH intermediate hydrogenation to *CHCHOH (ethanol pathway) while suppressing its dehydration to *CCH (ethylene pathway), which is believed to determine the remarkable ethanol selectivity. Such imperative intermediates associated with the bifurcation pathway were directly distinguished by isotope labelling in situ infrared spectroscopy. Our work promotes the understanding of bifurcating mechanism of CO2ER-to-hydrocarbons more deeply, providing a feasible strategy for the design of efficient ethanol-targeted catalysts.

8.
Small ; 19(37): e2300841, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37154204

ABSTRACT

Perovskite nanocrystals (PNCs) are promising candidates for solar-to-fuel conversions yet exhibit low photocatalytic activities mainly due to serious recombination of photogenerated charge carriers. Constructing heterojunction is regarded as an effective method to promote the separation of charge carriers in PNCs. However, the low interfacial quality and non-directional charge transfer in heterojunction lead to low charge transfer efficiency. Herein, a CsPbBr3 -CdZnS heterojunction is designed and prepared via an in situ hot-injection method for photocatalytic CO2 reduction. It is found that the high-quality interface in heterojunction and anisotropic charge transfer of CdZnS nanorods (NRs) enable efficient spatial separation of charge carriers in CsPbBr3 -CdZnS heterojunction. The CsPbBr3 -CdZnS heterojunction achieves a higher CO yield (55.8 µmol g-1  h-1 ) than that of the pristine CsPbBr3 NCs (13.9 µmol g-1  h-1 ). Furthermore, spectroscopic experiments and density functional theory (DFT) simulations further confirm that the suppressed recombination of charge carriers and lowered energy barrier for CO2 reduction contribute to the improved photocatalytic activity of the CsPbBr3 -CdZnS heterojunction. This work demonstrates a valid method to construct high-quality heterojunction with directional charge transfer for photocatalytic CO2 reduction. This study is expected to pave a new avenue to design perovskite-chalcogenide heterojunction.

9.
Chemistry ; 29(46): e202301455, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37283568

ABSTRACT

Electrochemical CO2 reduction reaction (CO2 RR) provides a promising approach for sustainable chemical fuel production of carbon neutrality. Neutral and alkaline electrolytes are predominantly employed in the current electrolysis system, but with striking drawbacks of (bi)carbonate (CO3 2- /HCO3 - ) formation and crossover due to the rapid and thermodynamically favourable reaction between hydroxide (OH- ) with CO2 , resulting in low carbon utilization efficiency and short-lived catalysis. Very recently, CO2 RR in acidic media can effectively address the (bi)carbonate issue; however, the competing hydrogen evolution reaction (HER) is more kinetically favourable in acidic electrolytes, which dramatically reduces CO2 conversion efficiency. Thus, it is a big challenge to effectively suppress HER and accelerate acidic CO2 RR. In this review, we begin by summarizing the recent progress of acidic CO2 electrolysis, discussing the key factors limiting the application of acidic electrolytes. We then systematically discuss addressing strategies for acidic CO2 electrolysis, including electrolyte microenvironment modulation, alkali cations adjusting, surface/interface functionalization, nanoconfinement structural design, and novel electrolyzer exploitation. Finally, the new challenges and perspectives of acidic CO2 electrolysis are suggested. We believe this timely review can arouse researchers' attention to CO2 crossover, inspire new insights to solve the "alkalinity problem" and enable CO2 RR as a more sustainable technology.

10.
Sensors (Basel) ; 23(7)2023 Mar 25.
Article in English | MEDLINE | ID: mdl-37050509

ABSTRACT

In vehicular edge computing (VEC), some tasks can be processed either locally or on the mobile edge computing (MEC) server at a base station (BS) or a nearby vehicle. In fact, tasks are offloaded or not, based on the status of vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) communication. In this paper, device-to-device (D2D)-based V2V communication and multiple-input multiple-output and nonorthogonal multiple access (MIMO-NOMA)-based V2I communication are considered. In actual communication scenarios, the channel conditions for MIMO-NOMA-based V2I communication are uncertain, and the task arrival is random, leading to a highly complex environment for VEC systems. To solve this problem, we propose a power allocation scheme based on decentralized deep reinforcement learning (DRL). Since the action space is continuous, we employ the deep deterministic policy gradient (DDPG) algorithm to obtain the optimal policy. Extensive experiments demonstrate that our proposed approach with DRL and DDPG outperforms existing greedy strategies in terms of power consumption and reward.

11.
Molecules ; 28(10)2023 May 22.
Article in English | MEDLINE | ID: mdl-37241963

ABSTRACT

With the increasing demand for tooth bleaching in esthetic dentistry, its safety has been the focus of a comprehensive body of literature. In this context, the aim of the present study was to evaluate the application effects of pentalysine ß-carbonylphthalocyanine zinc (ZnPc(Lys)5)-mediated photodynamic therapy in dentin bleaching and its effects on dentin collagen. We first established a new and reproducible tooth staining model using dentin blocks stained by Orange II and then bleached with ZnPc(Lys)5 (25 µM) and hydrogen peroxide (10% or 30%). Data were analyzed with one- and two-way ANOVA and a significance level of p < 0.05. ZnPc(Lys)5 effectively bleached the dentin samples to an extent comparable to hydrogen peroxide at either 10% or 30% concentrations. Further studies on the dentin morphology, chemical element distribution, and protein constituents, using an electron microscope, energy dispersive spectroscopy, X-ray photoelectron spectroscopy, and SDS-PAGE, demonstrated that treatment with the photosensitizer preserved the dentin structure and, at the same time, the major organic component, collagen type I. For comparison, hydrogen peroxide (10% or 30%) treatment significantly degraded the collagen protein. This work indicated that the photosensitizer exerts potent bleaching effects on dentin staining; importantly, does not damage dentin and its collagen content; and opens up a new strategy to further explore various photosensitizers for the bleaching of both tooth enamel and dentin.


Subject(s)
Hydrogen Peroxide , Tooth Bleaching , Hydrogen Peroxide/pharmacology , Tooth Bleaching/methods , Photosensitizing Agents/pharmacology , Photosensitizing Agents/analysis , Dentin/chemistry , Hypochlorous Acid/analysis , Collagen/pharmacology , Color
12.
Clin Oral Investig ; 26(2): 2175-2186, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34657223

ABSTRACT

OBJECTIVES: The current tooth bleaching materials are associated with adverse effect. Photodynamic method based on a novel photosensitizer alone, without combining with peroxides, is evaluated for tooth bleaching application. MATERIALS AND METHODS: Teeth samples were randomly divided into 3 groups with different treatment schemes, including negative control group (group A, physiological saline), experimental group (group B, ZnPc(Lys)5), and the positive control group (group C, hydrogen peroxide). Tooth color, surface microhardness, and roughness were determined at baseline, right after the first and second phase of bleaching, as well as 1 week and 1 month post-bleaching. Four samples in each group was randomly selected to evaluate the changes in surface morphology using the scanning electron microscope. RESULTS: The color change values (ΔE) in group B (7.10 ± 1.03) and C (12.22 ± 2.35) were significantly higher than that in group A (0.93 ± 0.30, P < 0.05). Additionally, surface microhardness and roughness were significantly affected in group C, but not in the group A and B. Furthermore, the scanning electron microscope images showed no adverse effect of enamel in the group A and B while the group C demonstrated corrosive changes. CONCLUSIONS: ZnPc(Lys)5 had a satisfactory bleaching effect and is promising to be a new type of tooth bleaching agent. CLINICAL RELEVANCE: The current tooth bleaching materials give a satisfactory clinical outcome and long-term stability, but associated with some adverse reactions. Photosenstizer ZnPc(Lys)5 eliminated the main side effects observed in hydrogen peroxide-based agents on the enamel, and also had a satisfactory bleaching effect and provide a novel selective bleaching scheme for clinical use.


Subject(s)
Photochemotherapy , Tooth Bleaching Agents , Tooth Bleaching , Hardness , Hydrogen Peroxide , Peroxides , Urea
13.
Biomacromolecules ; 22(8): 3216-3222, 2021 08 09.
Article in English | MEDLINE | ID: mdl-34260205

ABSTRACT

Biomass aerogels have received extensive attention due to their unique natural characteristics. However, biomass-based chitosan aerogels are often confronted with the traditional issue concerning a weak skeleton structure, namely, the corresponding huge shrinkage for chitosan aerogels in the stage from the final gel to the aerogel. Herein, we put forward a new approach to enhance chitosan aerogels by introducing natural biomaterial cellulose nanocrystal (CNC). CNC is applied to connect/cross-link chitosan chains to form its networking construction through supramolecular interaction/physical entanglement, eventually realizing the enhancement of the chitosan aerogel network structure. Chitosan aerogels modified with CNC exhibit a high specific surface area of 578.43 cm2 g-1, and the pore size distribution is in the range of 20-60 nm, which is smaller than the mean free path of gas molecules (69 nm), triggering a "no convection" effect. Hence, the gaseous heat transfer of chitosan aerogel is effectively suppressed. Chitosan aerogels with the addition of CNC show an excellent thermal insulation property (0.0272 W m-1 K-1 at ambient condition) and an enhanced compressive strength (0.13 MPa at a strain of 3%). This improvement method of chitosan aerogel in enhancing the skeleton structure aspect provides a new kind of idea for strengthening the nanoscale morphology structure of biomass aerogels.


Subject(s)
Chitosan , Nanoparticles , Nanostructures , Cellulose , Gels
14.
Entropy (Basel) ; 22(9)2020 Aug 30.
Article in English | MEDLINE | ID: mdl-33286726

ABSTRACT

In order to maximize energy efficiency in heterogeneous networks (HetNets), a turbo Q-Learning (TQL) combined with multistage decision process and tabular Q-Learning is proposed to optimize the resource configuration. For the large dimensions of action space, the problem of energy efficiency optimization is designed as a multistage decision process in this paper, according to the resource allocation of optimization objectives, the initial problem is divided into several subproblems which are solved by tabular Q-Learning, and the traditional exponential increasing size of action space is decomposed into linear increase. By iterating the solutions of subproblems, the initial problem is solved. The simple stability analysis of the algorithm is given in this paper. As to the large dimension of state space, we use a deep neural network (DNN) to classify states where the optimization policy of novel Q-Learning is set to label samples. Thus far, the dimensions of action and state space have been solved. The simulation results show that our approach is convergent, improves the convergence speed by 60% while maintaining almost the same energy efficiency and having the characteristics of system adjustment.

15.
Small ; 15(51): e1903895, 2019 12.
Article in English | MEDLINE | ID: mdl-31747128

ABSTRACT

Glucose oxidase (GOx) can react with intracellular glucose and oxygen (O2 ) to produce hydrogen peroxide (H2 O2 ) and gluconic acid, which can cut off the nutrition source of cancer cells and consequently inhibit their proliferation. Therefore, GOx is recognised as an ideal endogenous oxido-reductase for cancer starvation therapy. This process can further regulate the tumor microenvironment by increasing the hypoxia and the acidity. Thus, GOx offers new possibilities for the elaborate design of multifunctional nanocomposites for tumor therapy. However, natural GOx is expensive to prepare and purify and exhibits immunogenicity, short in vivo half-life, and systemic toxicity. Furthermore, GOx is highly prone to degrade after exposure to biological conditions. These intrinsic shortcomings will undoubtedly limit its biomedical applications. Accordingly, some nanocarriers can be used to protect GOx from the surrounding environment, thus controlling or preserving the activity. A variety of nanocarriers including hollow mesoporous silica nanoparticles, metal-organic frameworks, organic polymers, and magnetic nanoparticles are summarized for the construction of GOx-based nanocomposites for multimodal synergistic cancer therapy. In addition, current challenges and promising developments in this area are highlighted.


Subject(s)
Glucose Oxidase/chemistry , Nanocomposites/chemistry , Phototherapy , Silicon Dioxide/chemistry , Tumor Microenvironment/physiology
16.
Chem Pharm Bull (Tokyo) ; 67(7): 690-692, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-31006721

ABSTRACT

Photodynamic therapy (PDT) is a modern cancer therapy. But it is still difficult to obtain ideal photosensitizers. We synthesized six new peri-xanthenoxanthene derivatives rapidly and efficiently using solid-phase carbon-bath microwave irradiation technology, and investigated their in vitro photodynamic antitumor activity with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Our results showed that all compounds exhibited extremely low dark cytotoxicity and good phototoxicity against four human cancer cell lines. In particular, compound 3c showed the best in vitro PDT activity against Hela cells and Bel-7402 cells with IC50 values of 91 and 74 nmol/L, respectively. Its value of 1-octanol/water partition coefficient (log Kow) was 0.5309, suggesting that it is a promising photosensitizer for PDT due to its low dark cytotoxicity, high phototoxicity, and potential water solubility.


Subject(s)
Photosensitizing Agents/chemical synthesis , Xanthenes/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Drug Screening Assays, Antitumor , HeLa Cells , Humans , Inhibitory Concentration 50 , Microwaves , Neoplasms/drug therapy , Neoplasms/metabolism , Photochemotherapy , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Reactive Oxygen Species/metabolism , Xanthenes/pharmacology , Xanthenes/therapeutic use
17.
Sensors (Basel) ; 18(12)2018 Nov 30.
Article in English | MEDLINE | ID: mdl-30513631

ABSTRACT

Platooning strategy is an important component of autonomous driving technology. Autonomous vehicles in platoons are often equipped with a variety of on-board sensors to detect the surrounding environment. The abundant data collected by autonomous vehicles in platoons can be transmitted to the infrastructure through vehicle-to-infrastructure (V2I) communications using the IEEE 802.11 distributed coordination function (DCF) mechanism and then uploaded to the cloud platform through the Internet. The cloud platform extracts useful information and then sends it back to the autonomous vehicles respectively. In this way, autonomous vehicles in platoons can detect emergency conditions and make a decision in time. The characteristics of platoons would cause a fair-access problem in the V2I communications, i.e., vehicles in the platoons moving on different lanes with different velocities would have different resident time within the infrastructure's coverage and thus successfully send different amounts of data to the infrastructure. In this case, the vehicles with different velocities will receive different amounts of useful information from the cloud. As a result, vehicles with a higher velocity are more likely to suffer from a traffic accident as compared to the vehicles with a lower velocity. Hence, this paper considers the fair-access problem and proposes a fair-access scheme to ensure that vehicles with different velocities successfully transmit the same amount of data by adaptively adjusting the minimum contention window of each vehicle according to its velocity. Moreover, the normalized throughput of the proposed scheme is derived. The validity of the fair-access scheme is demonstrated by simulation.

18.
Sensors (Basel) ; 18(6)2018 Jun 20.
Article in English | MEDLINE | ID: mdl-29925777

ABSTRACT

This study investigates the superiority of cooperative broadcast transmission over traditional orthogonal schemes when applied in a downlink relaying broadcast channel (RBC). Two proposed cooperative broadcast transmission protocols, one with an amplify-and-forward (AF) relay, and the other with a repetition-based decode-and-forward (DF) relay, are investigated. By utilizing superposition coding (SupC), the source and the relay transmit the private user messages simultaneously instead of sequentially as in traditional orthogonal schemes, which means the channel resources are reused and an increased channel degree of freedom is available to each user, hence the half-duplex penalty of relaying is alleviated. To facilitate a performance evaluation, theoretical outage probability expressions of the two broadcast transmission schemes are developed, based on which, we investigate the minimum total power consumption of each scheme for a given traffic requirement by numerical simulation. The results provide details on the overall system performance and fruitful insights on the essential characteristics of cooperative broadcast transmission in RBCs. It is observed that better overall outage performances and considerable power gains can be obtained by utilizing cooperative broadcast transmissions compared to traditional orthogonal schemes.

19.
Sensors (Basel) ; 18(10)2018 Oct 01.
Article in English | MEDLINE | ID: mdl-30275437

ABSTRACT

Multi-platooning is an important management strategy for autonomous driving technology. The backbone vehicles in a multi-platoon adopt the IEEE 802.11 distributed coordination function (DCF) mechanism to transmit vehicles' kinematics information through inter-platoon communications, and then forward the information to the member vehicles through intra-platoon communications. In this case, each vehicle in a multi-platoon can acquire the kinematics information of other vehicles. The parameters of DCF, the hidden terminal problem and the number of neighbors may incur a long and unbalanced one-hop delay of inter-platoon communications, which would further prolong end-to-end delay of inter-platoon communications. In this case, some vehicles within a multi-platoon cannot acquire the emergency changes of other vehicles' kinematics within a limited time duration and take prompt action accordingly to keep a multi-platoon formation. Unlike other related works, this paper proposes a swarming approach to optimize the one-hop delay of inter-platoon communications in a multi-platoon scenario. Specifically, the minimum contention window size of each backbone vehicle is adjusted to enable the one-hop delay of each backbone vehicle to get close to the minimum average one-hop delay. The simulation results indicate that, the one-hop delay of the proposed approach is reduced by 12% as compared to the DCF mechanism with the IEEE standard contention window size. Moreover, the end-to-end delay, one-hop throughput, end-to-end throughput and transmission probability have been significantly improved.

20.
Angew Chem Int Ed Engl ; 57(50): 16447-16451, 2018 Dec 10.
Article in English | MEDLINE | ID: mdl-30350910

ABSTRACT

Quantum dots (QDs), a class of promising candidates for harvesting visible light, generally exhibit low activity and selectivity towards photocatalytic CO2 reduction. Functionalizing QDs with metal complexes (or metal cations through ligands) is a widely used strategy for improving their catalytic activity; however, the resulting systems still suffer from low selectivity and stability in CO2 reduction. Herein, we report that doping CdS QDs with transition-metal sites can overcome these limitations and provide a system that enables highly selective photocatalytic reactions of CO2 with H2 O (100 % selectivity to CO and CH4 ), with excellent durability over 60 h. Doping Ni sites into the CdS lattice leads to effective trapping of photoexcited electrons at surface catalytic sites and substantial suppression of H2 evolution. The method reported here can be extended to various transition-metal sites, and offers new opportunities for exploring QD-based earth-abundant photocatalysts.

SELECTION OF CITATIONS
SEARCH DETAIL