Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
Mol Ther ; 31(5): 1437-1450, 2023 05 03.
Article in English | MEDLINE | ID: mdl-35982620

ABSTRACT

Tubular epithelial cells (TECs) exposed to hypoxia incite tubulointerstitial inflammation (TII), while the exact mechanism is unclear. In this study, we identified that hypoxia evoked tubule injury as evidenced by tubular hypoxia-inducible factor-1α and kidney injury molecule-1 (KIM-1) expression and that renal small extracellular vesicle (sEV) production was increased with the development of TII after ischemia-reperfusion injury (IRI). Intriguingly, KIM-1-positive tubules were surrounded by macrophages and co-localized with sEVs. In vitro, KIM-1 expression and sEV release were increased in hypoxic TECs and the hypoxia-induced inflammatory response was ameliorated when KIM-1 or Rab27a, a master regulator of sEV secretion, was silenced. Furthermore, KIM-1 was identified to mediate hypoxic TEC-derived sEV (Hypo-sEV) uptake by TECs. Phosphatidylserine (PS), a ligand of KIM-1, was present in Hypo-sEVs as detected by nanoflow cytometry. Correspondingly, the inflammatory response induced by exogenous Hypo-sEVs was attenuated when KIM-1 was knocked down. In vivo, exogenous-applied Hypo-sEVs localized to KIM-1-positive tubules and exacerbated TII in IRI mice. Our study demonstrated that KIM-1 expressed by injured tubules mediated sEV uptake via recognizing PS, which participated in the amplification of tubule inflammation induced by hypoxia, leading to the development of TII in ischemic acute kidney injury.


Subject(s)
Extracellular Vesicles , Reperfusion Injury , Animals , Mice , Epithelial Cells/metabolism , Extracellular Vesicles/metabolism , Hypoxia/metabolism , Inflammation/metabolism , Kidney/metabolism , Reperfusion Injury/metabolism
2.
Cell Mol Life Sci ; 80(12): 347, 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37943391

ABSTRACT

Tubulointerstitial fibrosis (TIF) plays a crucial role in the progression of diabetic kidney disease (DKD). However, the underlying molecular mechanisms remain obscure. The present study aimed to examine whether transmembrane member 16A (TMEM16A), a Ca2+-activated chloride channel, contributes to the development of TIF in DKD. Interestingly, we found that TMEM16A expression was significantly up-regulated in tubule of murine model of DKD, which was associated with development of TIF. In vivo inhibition of TMEM16A channel activity with specific inhibitors Ani9 effectively protects against TIF. Then, we found that TMEM16A activation induces tubular mitochondrial dysfunction in in vivo and in vitro models, with the evidence of the TMEM16A inhibition with specific inhibitor. Mechanically, TMEM16A mediated tubular mitochondrial dysfunction through inhibiting PGC-1α, whereas overexpression of PGC-1α could rescue the changes. In addition, TMEM16A-induced fibrogenesis was dependent on increased intracellular Cl-, and reducing intracellular Cl- significantly blunted high glucose-induced PGC-1α and profibrotic factors expression. Taken together, our studies demonstrated that tubular TMEM16A promotes TIF by suppressing PGC-1α-mediated mitochondrial homeostasis in DKD. Blockade of TMEM16A may serve as a novel therapeutic approach to ameliorate TIF.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Animals , Mice , Diabetic Nephropathies/genetics , Homeostasis , Mitochondria , Fibrosis
3.
J Biol Chem ; 298(12): 102605, 2022 12.
Article in English | MEDLINE | ID: mdl-36257404

ABSTRACT

Podocyte injury is a characteristic pathological hallmark of diabetic nephropathy (DN). However, the exact mechanism of podocyte injury in DN is incompletely understood. This study was conducted using db/db mice and immortalized mouse podocytes. High-throughput sequencing was used to identify the differentially expressed long noncoding RNAs in kidney of db/db mice. The lentiviral shRNA directed against long noncoding RNA small nucleolar RNA host gene 5 (SNHG5) or microRNA-26a-5p (miR-26a-5p) agomir was used to treat db/db mice to regulate the SNHG5/miR-26a-5p pathway. Here, we found that the expression of transient receptor potential canonical type 6 (TRPC6) was significantly increased in injured podocytes under the condition of DN, which was associated with markedly decreased miR-26a-5p. We determined that miR-26a-5p overexpression ameliorated podocyte injury in DN via binding to 3'-UTR of Trpc6, as evidenced by the markedly reduced activity of luciferase reporters by miR-26a-5p mimic. Then, the upregulated SNHG5 in podocytes and kidney in DN was identified, and it was proved to sponge to miR-26a-5p directly using luciferase activity, RNA immunoprecipitation, and RNA pull-down assay. Knockdown of SNHG5 attenuated podocyte injury in vitro, accompanied by an increased expression of miR-26a-5p and decreased expression of TRPC6, demonstrating that SNHG5 promoted podocyte injury by controlling the miR-26a-5p/TRPC6 pathway. Moreover, knockdown of SNHG5 protects against podocyte injury and progression of DN in vivo. In conclusion, SNHG5 promotes podocyte injury via the miR-26a-5p/TRPC6 pathway in DN. Our findings provide novel insights into the pathophysiology of podocyte injury and a potential new therapeutic strategy for DN.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , MicroRNAs , Podocytes , RNA, Long Noncoding , Mice , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Diabetic Nephropathies/metabolism , TRPC6 Cation Channel/genetics , TRPC6 Cation Channel/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Podocytes/metabolism , Apoptosis/genetics , Diabetes Mellitus/metabolism
4.
Inflamm Res ; 72(5): 1051-1067, 2023 May.
Article in English | MEDLINE | ID: mdl-37039838

ABSTRACT

BACKGROUND: Tubulointerstitial inflammation (TII) is a critical pathological feature of kidney disease leading to renal fibrosis, and its treatment remains a major clinical challenge. We sought to explore the role of quercetin, a potential exosomes inhibitor, in exosomes release and TII. METHODS: The effects of quercetin on exosomes release and TII were examined by two TII mouse models: the unilateral ureteral obstruction (UUO) models and the LPS-induced mouse models. In vitro, exosomes-mediated crosstalk between tubular epithelial cells (TECs) and macrophages was performed to investigate the mechanisms by which quercetin inhibited exosomes and TII. RESULTS: In this study, we found that exosomes-mediated crosstalk between TECs and macrophages contributed to the development of TII. In vitro, exosomes released from LPS-stimulated TECs induced increased expression of inflammatory cytokines and fibrotic markers in Raw264·7 cells and vice versa. Interestingly, heat shock protein 70 (Hsp70) or Hsp90 proteins could control exosomes release from TECs and macrophages both in vivo and in vitro. Importantly, quercetin, a previously recognized heat shock protein inhibitor, could significantly reduce exosomes release in TII models by down-regulating Hsp70 or Hsp90. Quercetin abrogated exosomes-mediated intercellular communication, which attenuated TII and renal fibrosis accordingly. CONCLUSION: Quercetin could serve as a novel strategy for treatment of tubulointerstitial inflammation by inhibiting the exosomes-mediated crosstalk between tubules and macrophages.


Subject(s)
Exosomes , Quercetin , Mice , Animals , Quercetin/pharmacology , Quercetin/therapeutic use , Exosomes/metabolism , Lipopolysaccharides/pharmacology , Inflammation/metabolism , Macrophages/metabolism , Fibrosis , Epithelial Cells/metabolism , Kidney Tubules/metabolism , Kidney Tubules/pathology
5.
Acta Pharmacol Sin ; 44(12): 2455-2468, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37596398

ABSTRACT

Renal tubulointerstitial fibrosis (TIF) is considered as the final convergent pathway of diabetic nephropathy (DN) without effective therapies currently. MiRNAs play a key role in fibrotic diseases and become promising therapeutic targets for kidney diseases, while miRNA clusters, formed by the cluster arrangement of miRNAs on chromosomes, can regulate diverse biological functions alone or synergistically. In this study, we developed clustered miR-23a/27a/26a-loaded skeletal muscle satellite cells-derived exosomes (Exos) engineered with RVG peptide, and investigated their therapeutic efficacy in a murine model of DN. Firstly, we showed that miR-23a-3p, miR-26a-5p and miR-27a-3p were markedly decreased in serum samples of DN patients using miRNA sequencing. Meanwhile, we confirmed that miR-23a-3p, miR-26a-5p and miR-27a-3p were primarily located in proximal renal tubules and highly negatively correlated with TIF in db/db mice at 20 weeks of age. We then engineered RVG-miR-23a/27a/26a cluster loaded Exos derived from muscle satellite cells, which not only enhanced the stability of miR-23a/27a/26a cluster, but also efficiently delivered more miR-23a/27a/26a cluster homing to the injured kidney. More importantly, administration of RVG-miR-23a/27a/26a-Exos (100 µg, i.v., once a week for 8 weeks) significantly ameliorated tubular injury and TIF in db/db mice at 20 weeks of age. We revealed that miR-23a/27a/26a-Exos enhanced antifibrotic effects by repressing miRNA cluster-targeting Lpp simultaneously, as well as miR-27a-3p-targeting Zbtb20 and miR-26a-5p-targeting Klhl42, respectively. Knockdown of Lpp by injection of AAV-Lpp-RNAi effectively ameliorated the progression of TIF in DN mice. Taken together, we established a novel kidney-targeting Exo-based delivery system by manipulating the miRNA-23a/27a/26a cluster to ameliorate TIF in DN, thus providing a promising therapeutic strategy for DN.


Subject(s)
Diabetic Nephropathies , Exosomes , MicroRNAs , Satellite Cells, Skeletal Muscle , Animals , Humans , Mice , Diabetes Mellitus/therapy , Diabetic Nephropathies/genetics , Diabetic Nephropathies/pathology , Diabetic Nephropathies/therapy , Exosomes/metabolism , Fibrosis , MicroRNAs/metabolism , MicroRNAs/pharmacology , MicroRNAs/therapeutic use , Satellite Cells, Skeletal Muscle/metabolism , Diabetes Complications/therapy
6.
Mol Ther ; 30(10): 3300-3312, 2022 10 05.
Article in English | MEDLINE | ID: mdl-35581939

ABSTRACT

Cyclin-dependent kinase 12 (CDK12) plays a critical role in regulating gene transcription. CDK12 inhibition is a potential anticancer therapeutic strategy. However, several clinical trials have shown that CDK inhibitors might cause renal dysfunction and electrolyte disorders. CDK12 is abundant in renal tubular epithelial cells (RTECs), but the exact role of CDK12 in renal physiology remains unclear. Genetic knockout of CDK12 in mouse RTECs causes polydipsia, polyuria, and hydronephrosis. This phenotype is caused by defects in water reabsorption that are the result of reduced Na-K-2Cl cotransporter 2 (NKCC2) levels in the kidney. In addition, CKD12 knockout causes an increase in Slc12a1 (which encodes NKCC2) intronic polyadenylation events, which results in Slc12a1 truncated transcript production and NKCC2 downregulation. These findings provide novel insight into CDK12 being necessary for maintaining renal homeostasis by regulating NKCC2 transcription, which explains the critical water and electrolyte disturbance that occurs during the application of CDK12 inhibitors for cancer treatment. Therefore, there are safety concerns about the clinical use of these new anticancer drugs.


Subject(s)
Antineoplastic Agents , Symporters , Animals , Cyclin-Dependent Kinases/genetics , Cyclin-Dependent Kinases/metabolism , Electrolytes , Kidney/metabolism , Mice , Solute Carrier Family 12, Member 1 , Symporters/genetics , Water
7.
J Am Soc Nephrol ; 32(10): 2467-2483, 2021 10.
Article in English | MEDLINE | ID: mdl-34127536

ABSTRACT

BACKGROUND: AKI is a significant public health problem with high morbidity and mortality. Unfortunately, no definitive treatment is available for AKI. RNA interference (RNAi) provides a new and potent method for gene therapy to tackle this issue. METHODS: We engineered red blood cell-derived extracellular vesicles (REVs) with targeting peptides and therapeutic siRNAs to treat experimental AKI in a mouse model after renal ischemia/reperfusion (I/R) injury and unilateral ureteral obstruction (UUO). Phage display identified peptides that bind to the kidney injury molecule-1 (Kim-1). RNA-sequencing (RNA-seq) characterized the transcriptome of ischemic kidney to explore potential therapeutic targets. RESULTS: REVs targeted with Kim-1-binding LTH peptide (REVLTH) efficiently homed to and accumulated at the injured tubules in kidney after I/R injury. We identified transcription factors P65 and Snai1 that drive inflammation and fibrosis as potential therapeutic targets. Taking advantage of the established REVLTH, siRNAs targeting P65 and Snai1 were efficiently delivered to ischemic kidney and consequently blocked the expression of P-p65 and Snai1 in tubules. Moreover, dual suppression of P65 and Snai1 significantly improved I/R- and UUO-induced kidney injury by alleviating tubulointerstitial inflammation and fibrosis, and potently abrogated the transition to CKD. CONCLUSIONS: A red blood cell-derived extracellular vesicle platform targeted Kim-1 in acutely injured mouse kidney and delivered siRNAs for transcription factors P65 and Snai1, alleviating inflammation and fibrosis in the tubules.


Subject(s)
Acute Kidney Injury/therapy , Extracellular Vesicles , Genetic Therapy/methods , Hepatitis A Virus Cellular Receptor 1/genetics , Snail Family Transcription Factors/genetics , Transcription Factor RelA/genetics , Acute Kidney Injury/pathology , Animals , Disease Models, Animal , Erythrocytes , Fibrosis , Inflammation/therapy , Kidney Tubules/metabolism , Kidney Tubules/pathology , Male , Mice , Peptides , RNA Interference , RNA, Small Interfering/therapeutic use , Reperfusion Injury/complications , Snail Family Transcription Factors/metabolism , Transcription Factor RelA/metabolism , Ureteral Obstruction/complications
8.
Am J Physiol Renal Physiol ; 321(2): F225-F235, 2021 08 01.
Article in English | MEDLINE | ID: mdl-34229478

ABSTRACT

Oxygen homeostasis disturbances play a critical role in the pathogenesis of acute kidney injury (AKI). The transcription factor hypoxia-inducible factor-1 (HIF-1) is a master regulator of adaptive responses to hypoxia. Aside from posttranslational hydroxylation, the mechanism of HIF-1 regulation in AKI remains largely unclear. In this study, the mechanism of HIF-α regulation in AKI was investigated. We found that tubular HIF-1α expression significantly increased at the transcriptional level in ischemia-reperfusion-, unilateral ureteral obstruction-, and sepsis-induced AKI models, which was closely associated with macrophage-dependent inflammation. Meanwhile, NF-κB, which plays a central role in the inflammation response, was involved in the increasing expression of HIF-1α in AKI, as evidenced by pharmacological modulation (NF-κB inhibitor BAY11-7082). Mechanistically, NF-κB directly bound to the HIF-1α promoter and enhanced its transcription, which occurred not only under hypoxic conditions but also under normoxic conditions. Moreover, the induced HIF-1α by inflammation protected against tubular injury in AKI. Thus, our findings not only provide novel insights into HIF-1 regulation in AKI but also offer to understand the pathophysiology of kidney diseases.NEW & NOTEWORTHY Here, the mechanism of hypoxia-inducible factor-α (HIF-α) regulation in acute kidney injury (AKI) was investigated. We found that tubular HIF-1α expression significantly increased at the transcriptional level, which was closely associated with macrophage-dependent inflammation. Meanwhile, NF-κB was involved in the increasing expression of HIF-1α in AKI. Mechanistically, NF-κB directly bound to the HIF-1α promoter and enhanced its transcription. Our findings not only provide novel insights into HIF-1 regulation in AKI but also offer to understand the pathophysiology of kidney diseases.


Subject(s)
Acute Kidney Injury/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Kidney/metabolism , NF-kappa B/metabolism , Acute Kidney Injury/genetics , Animals , Cells, Cultured , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Gene Expression Regulation/drug effects , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Inflammation/genetics , Inflammation/metabolism , Kidney/drug effects , Mice , NF-kappa B/antagonists & inhibitors , NF-kappa B/genetics , Nitriles/pharmacology , Sulfones/pharmacology
9.
Acta Pharmacol Sin ; 42(12): 2106-2119, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33658705

ABSTRACT

Incomplete recovery from episodes of acute kidney injury (AKI) can predispose patients to develop chronic kidney disease (CKD). Although hypoxia-inducible factor-1α (HIF-1α) is a master regulator of the response to hypoxia/ischemia, the role of HIF-1α in CKD progression following incomplete recovery from AKI is poorly understood. Here, we investigated this issue using moderate and severe ischemia/reperfusion injury (I/RI) mouse models. We found that the outcomes of AKI were highly associated with the time course of tubular HIF-1α expression. Sustained activation of HIF-1α, accompanied by the development of renal fibrotic lesions, was found in kidneys with severe AKI. The AKI to CKD progression was markedly ameliorated when PX-478 (a specific HIF-1α inhibitor, 5 mg· kg-1·d-1, i.p.) was administered starting on day 5 after severe I/RI for 10 consecutive days. Furthermore, we demonstrated that HIF-1α C-terminal transcriptional activation domain (C-TAD) transcriptionally stimulated KLF5, which promoted progression of CKD following severe AKI. The effect of HIF-1α C-TAD activation on promoting AKI to CKD progression was also confirmed in in vivo and in vitro studies. Moreover, we revealed that activation of HIF-1α C-TAD resulted in the loss of FIH-1, which was the key factor governing HIF-1α-driven AKI to CKD progression. Overexpression of FIH-1 inhibited HIF-1α C-TAD and prevented AKI to CKD progression. Thus, FIH-1-modulated HIF-1α C-TAD activation was the key mechanism of AKI to CKD progression by transcriptionally regulating KLF5 pathway. Our results provide new insights into the role of HIF-1α in AKI to CKD progression and also the potential therapeutic strategy for the prevention of renal diseases progression.


Subject(s)
Acute Kidney Injury/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Kruppel-Like Transcription Factors/metabolism , Mixed Function Oxygenases/metabolism , Renal Insufficiency, Chronic/etiology , Signal Transduction/drug effects , Acute Kidney Injury/pathology , Animals , Disease Progression , Hypoxia/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/antagonists & inhibitors , Hypoxia-Inducible Factor 1, alpha Subunit/chemistry , Kidney/metabolism , Kidney/pathology , Male , Mice, Inbred C57BL , Mustard Compounds/therapeutic use , Phenylpropionates/therapeutic use , Protein Domains , Renal Insufficiency, Chronic/pathology , Up-Regulation/physiology
10.
FASEB J ; 33(11): 12630-12643, 2019 11.
Article in English | MEDLINE | ID: mdl-31451021

ABSTRACT

The discovery of hypoxia-inducible factor (HIF)-prolyl hydroxylase inhibitor (PHI) has revolutionized the treatment strategy for renal anemia. However, the presence of multiple transcription targets of HIF raises safety concerns regarding HIF-PHI. Here, we explored the dose-dependent effect of MK-8617 (MK), a kind of HIF-PHI, on renal fibrosis. MK was administered by oral gavage to mice for 12 wk at doses of 1.5, 5, and 12.5 mg/kg. In vitro, the human proximal tubule epithelial cell line HK-2 was treated with increasing doses of MK administration. Transcriptome profiling was performed, and fibrogenesis was evaluated. The dose-dependent biphasic effects of MK on tubulointerstitial fibrosis (TIF) were observed in chronic kidney disease mice. Accordingly, high-dose MK treatment could significantly enhance TIF. Using RNA-sequencing, combined with in vivo and in vitro experiments, we found that Krüppel-like factor 5 (KLF5) expression level was significantly increased in the proximal tubular cells, which could be transcriptionally regulated by HIF-1α with high-dose MK treatment but not low-dose MK. Furthermore, our study clarified that HIF-1α-KLF5-TGF-ß1 signaling activation is the potential mechanism of high-dose MK-induced TIF, as knockdown of KLF5 reduced TIF in vivo. Collectively, our study demonstrates that high-dose MK treatment initiates TIF by activating HIF-1α-KLF5-TGF-ß1 signaling. These findings provide novel insights into TIF induction by high-dose MK (HIF-PHI), suggesting that the safety dosage window needs to be emphasized in future clinical applications.-Li, Z.-L., Lv, L.-L., Wang, B., Tang, T.-T., Feng, Y., Cao, J.-Y., Jiang, L.-Q., Sun, Y.-B., Liu, H., Zhang, X.-L., Ma, K.-L., Tang, R.-N., Liu, B.-C. The profibrotic effects of MK-8617 on tubulointerstitial fibrosis mediated by the KLF5 regulating pathway.


Subject(s)
Kidney Diseases/metabolism , Kruppel-Like Transcription Factors/metabolism , Pyridazines/adverse effects , Pyrimidines/adverse effects , Signal Transduction/drug effects , Animals , Fibrosis , Gene Expression Profiling , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Kidney Diseases/chemically induced , Kidney Diseases/pathology , Male , Mice , Pyridazines/pharmacology , Pyrimidines/pharmacology , Transforming Growth Factor beta1/metabolism
11.
J Pharmacol Sci ; 143(3): 226-233, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32446726

ABSTRACT

Renal ischemia/reperfusion (I/R) injury is a major cause of acute kidney injury (AKI), characterized by tubulointerstitial inflammation. Currently, progress in developing effective therapies to prevent or ameliorate AKI by anti-inflammation remains slow. Emerging studies have suggested that NLRP3 (the NOD-, LRR- and pyrin domain-containing 3) inflammasome plays a key role in a wide spectrum of kidney disease models including I/R injury. In this study, we investigated the renal protective effects of A68930, a specific agonist for the D-1 dopamine receptor (DRD1), which was recently recognized to downregulate NLRP3 inflammasome via DRD1 signaling. AKI was induced by renal I/R injury and A68930 was intraperitoneally injected 3 times after renal reperfusion. We showed that A68930 significantly ameliorated renal dysfunction. Meanwhile, A68930 markedly reduced macrophages and T cells infiltration, renal pro-inflammatory cytokines production (TNF-α, IL-6, IL-1ß), serum pro-inflammatory cytokine (TNF-α and IL-6) and NLRP3 inflammasome activation. Additionally, A68930 attenuated I/R-induced mitochondria injury, which was observed by transmission electron microscopy. In summary, our results demonstrated that activation of DRD1 by A68930 inhibited renal and systematic inflammation, and improved kidney function in I/R induced AKI model, which was probably related to the inhibition of the NLRP3 inflammasome activation.


Subject(s)
Acute Kidney Injury/drug therapy , Acute Kidney Injury/genetics , Chromans/pharmacology , Chromans/therapeutic use , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/physiology , Receptors, Dopamine D1/agonists , Receptors, Dopamine D1/metabolism , Acute Kidney Injury/etiology , Acute Kidney Injury/prevention & control , Animals , Disease Models, Animal , Down-Regulation/drug effects , Inflammation Mediators/metabolism , Interleukin-1beta/metabolism , Interleukin-6/metabolism , Kidney/metabolism , Male , Mice, Inbred C57BL , Reperfusion Injury/complications , Tumor Necrosis Factor-alpha/metabolism
12.
Cell Biochem Funct ; 38(4): 384-391, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31887787

ABSTRACT

Acute kidney injury (AKI) is a common adverse reaction of the anticancer drug. Among these chemotherapeutic agents, cisplatin, an effective chemotherapeutic drug, is extensively applied to the treatment of solid tumours, yet various adverse reactions, especially AKI, often limit their use. However, the pathogenesis of AKI caused by cisplatin remains poorly clarified. Therefore, we tested whether microRNAs, which have been certified as key regulators of disease are involved in this process. AKI mouse and HK2 cells were treated with cisplatin. Annexin V/PI staining and cleaved caspase-3 were used to assess apoptosis. Western blot analyses and qRT-PCR were used to evaluate the protein and mRNA level of TRPC6 and DRP1. miR-26a was remarkably decreased in cisplatin-induced AKI and in cisplatin co-cultured HK2 cells. Furthermore, we used a miR-26a mimics in vitro and found that apoptosis was alleviated than that in the control cells. We further verified that miR-26a protected against cisplatin-induced cell apoptosis by acting on transient receptor potential channel 6 (TRPC6) which can regulate the expression of dynamin-related protein 1 (DRP1), thus inhibited the mitochondrial apoptosis pathway. Therefore, the study unveiled that miR-26a/TRPC6/DRP1 is a novel protective pathway in cisplatin-induced AKI and may be targeted for the prevention and treatment of drug-related renal injury. SIGNIFICANCE OF THE STUDY: Our study found that miR-26a was significantly downregulated during cisplatin-induced AKI and during cisplatin co-cultured HK2 cells. Further, in vitro we used miR-26a mimic to intervene cells and found that apoptosis alleviated compared with control group. We further verified that miR-26a protected cisplatin-induced apoptosis by target transient receptor potential channel 6 (TRPC6) which can regulate the expression of dynamic-related protein 1 (DRP1) and inhibit the mitochondrial apoptosis pathway. Thus, miR-26a/TRPC6/DRP1 is a new protective pathway in cisplatin-induced AKI and may be targeted for the prevention and treatment of drug-related acute kidney injury.


Subject(s)
Acute Kidney Injury/metabolism , Apoptosis/drug effects , Cisplatin/adverse effects , Dynamins/metabolism , Epithelial Cells/metabolism , Kidney Tubules/metabolism , MicroRNAs/metabolism , TRPC6 Cation Channel/metabolism , Acute Kidney Injury/chemically induced , Acute Kidney Injury/pathology , Animals , Cell Line , Cisplatin/pharmacology , Epithelial Cells/pathology , Humans , Kidney Tubules/pathology , Male , Mice
13.
Ren Fail ; 42(1): 912-925, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32869703

ABSTRACT

Hypoxia-inducible factor-prolyl hydroxylase inhibitors (HIF-PHIs) are orally active first-in-class new generation drugs for renal anemia. This extensive meta-analysis of randomized controlled trials (RCTs) was designed to provide clear information on the efficacy and safety of HIF-PHIs on anemia in chronic kidney disease (CKD) patients. Searches included PubMed, Web of Science, Ovid MEDLINE, and Cochrane Library database up to October 2019. RCTs of patients with CKD comparing HIF-PHIs with erythropoiesis-stimulating agents (ESAs) or placebo in the treatment of anemia. The primary outcome was hemoglobin change from baseline (Hb CFB); the secondary outcomes included iron-related parameters and the occurrence of each adverse event. 26 trials in 17 articles were included, with a total of 2804 dialysis or patients with CKD. HIF-PHIs treatment produced a significant beneficial effect on Hb CFB compared with the placebo group (MD, 0.69; 95% CI, 0.36 to 1.02). However, this favored effect of HIF-PHIs treatment was not observed in subgroup analysis among trials compared with ESAs (MD, 0.06; 95% CI, -0.20 to 0.31). The significant reduction in hepcidin by HIF-PHIs was observed in all subgroups when compared with the placebo group, whereas this effect was observed only in NDD-CKD patients when compared with ESAs. HIF-PHIs increased the risk of nausea (RR, 2.20; 95% CI, 1.06 to 4.53) and diarrhea (RR, 1.75; 95% CI, 1.06 to 2.92). We conclude that orally given HIF-PHIs are at least as efficacious as ESAs treatment to correct anemia short term in patients with CKD. In addition, HIF-PHIs improved iron metabolism and utilization in patients with CKD.


Subject(s)
Anemia/drug therapy , Hematinics/pharmacology , Prolyl-Hydroxylase Inhibitors/administration & dosage , Renal Insufficiency, Chronic/therapy , Anemia/etiology , Erythropoietin/metabolism , Hepcidins/drug effects , Humans , Hypoxia-Inducible Factor-Proline Dioxygenases/antagonists & inhibitors , Prolyl-Hydroxylase Inhibitors/adverse effects , Prolyl-Hydroxylase Inhibitors/pharmacology , Randomized Controlled Trials as Topic , Renal Dialysis , Renal Insufficiency, Chronic/complications
14.
Am J Physiol Renal Physiol ; 317(5): F1265-F1273, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31588798

ABSTRACT

Muscle wasting and diminished physical performance contribute to the morbidity and mortality of chronic kidney disease (CKD), for which no curative therapy exists. Accumulating evidence indicates that impaired angiogenesis occurs in the muscles of CKD models. Therefore, proangiogenesis therapy is considered a potentially effective strategy for limiting CKD-associated myopathy. Hypoxia-inducible factor (HIF)-prolyl hydroxylase inhibitor (HIF-PHI) stabilizes HIF and enhances muscle angiogenesis during acute ischemia; however, little evidence was available from CKD models. Here, we assessed whether pharmacological activation of HIF by MK-8617 (MK), a novel orally active HIF-PHI, improves CKD-associated myopathy. Mice were divided into sham or CKD groups, and CKD mice were subdivided into CKD + vehicle or MK treatment groups (1.5, 5, or 12.5 mg/kg for 12 wk). In CKD mice, skeletal muscle mass, mitochondrial amount, and exercise capacity decreased compared with sham mice. Compared with the CKD + vehicle group, low (1.5 mg/kg) and medium (5 mg/kg) doses of MK, but not the high dose (12.5 mg/kg), significantly restored these changes and was accompanied by incremental increases in HIF-1α. Furthermore, increased capillary density and area were observed in a MK dose-dependent manner, which is likely related to an improved VEGF response in the skeletal muscle of CKD mice. In addition, macrophage and proinflammatory cytokines, including monocyte chemoattractant protein 1, TNF-α, and IL-6, significantly increased in the high-dose MK group. These results indicate that HIF-PHI provides a potential therapeutic strategy to improve CKD-associated myopathy.


Subject(s)
Hypoxia-Inducible Factor 1/antagonists & inhibitors , Muscular Diseases/drug therapy , Muscular Diseases/etiology , Prolyl-Hydroxylase Inhibitors/pharmacology , Pyridazines/pharmacology , Pyrimidines/pharmacology , Renal Insufficiency, Chronic/complications , Administration, Oral , Animals , Immunohistochemistry , Mice , Mice, Inbred C57BL , Muscle Strength/drug effects , Muscle, Skeletal/pathology , Muscular Diseases/pathology , Pyridazines/administration & dosage , Pyrimidines/administration & dosage
15.
Kidney Int ; 95(2): 388-404, 2019 02.
Article in English | MEDLINE | ID: mdl-30551896

ABSTRACT

Hypoxia promotes tubulointerstitial inflammation in the kidney. Although hypoxia inducible factor-1α (HIF-1α) is a master regulator of the response to hypoxia, the exact mechanisms through which HIF-1α modulates the induction of tubulointerstitial inflammation are still largely unclear. We demonstrated tubulointerstitial inflammation and increased tubular HIF-1α expression in murine models of ischemia/reperfusion injury and unilateral ureteral obstruction. Increased expression of HIF-1α in tubular epithelial cells was associated with selective shedding of microRNA-23a (miRNA-23a)-enriched exosomes in vivo and systemic inhibition of miRNA-23a prior to ischemia/reperfusion injury attenuated tubulointerstitial inflammation. In vitro, uptake of miRNA-23a-enriched exosomes by macrophages triggered their reprogramming into a pro-inflammatory state via suppression of the ubiquitin editor A20. To confirm the effect of miRNA-23a-containing exosomes on tubulointerstitial inflammation, we exposed tubular epithelial cells to hypoxic conditions to promote the release of miRNA-23a-containing exosomes. Injection of these miRNA-23a-enriched exosomes into uninjured renal parenchyma resulted in increased inflammatory infiltration in vivo. Taken together, our studies demonstrate that the HIF-1α-dependent release of miRNA-23a-enriched exosomes from hypoxic tubular epithelial cells activates macrophages to promote tubulointerstitial inflammation. Blockade of exosome-mediated miRNA-23a transfer between tubular epithelial cells and macrophages may serve as a novel therapeutic approach to ameliorate tubulointerstitial inflammation.


Subject(s)
Epithelial Cells/immunology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Macrophages/immunology , MicroRNAs/metabolism , Nephritis, Interstitial/immunology , Animals , Cell Communication/immunology , Cell Hypoxia/genetics , Cell Hypoxia/immunology , Cellular Reprogramming/genetics , Cellular Reprogramming/immunology , Disease Models, Animal , Epithelial Cells/cytology , Epithelial Cells/metabolism , Exosomes/immunology , Exosomes/metabolism , Gene Expression Regulation/immunology , Humans , Kidney Tubules/cytology , Kidney Tubules/immunology , Macrophages/metabolism , Male , Mice , Nephritis, Interstitial/pathology , Signal Transduction/genetics , Signal Transduction/immunology , Tumor Necrosis Factor alpha-Induced Protein 3/genetics , Tumor Necrosis Factor alpha-Induced Protein 3/metabolism
16.
J Transl Med ; 17(1): 59, 2019 02 28.
Article in English | MEDLINE | ID: mdl-30819181

ABSTRACT

BACKGROUND: Diabetic kidney disease (DKD) is the leading cause of end-stage kidney disease (ESKD) in the world. Emerging evidence has shown that urinary mRNAs may serve as early diagnostic and prognostic biomarkers of DKD. In this article, we aimed to first establish a novel bioinformatics-based methodology for analyzing the "urinary kidney-specific mRNAs" and verify their potential clinical utility in DKD. METHODS: To select candidate mRNAs, a total of 127 Affymetrix microarray datasets of diabetic kidney tissues and other tissues from humans were compiled and analyzed using an integrative bioinformatics approach. Then, the urinary expression of candidate mRNAs in stage 1 study (n = 82) was verified, and the one with best performance moved on to stage 2 study (n = 80) for validation. To avoid potential detection bias, a one-step Taqman PCR assay was developed for quantification of the interested mRNA in stage 2 study. Lastly, the in situ expression of the selected mRNA was further confirmed using fluorescent in situ hybridization (FISH) assay and bioinformatics analysis. RESULTS: Our bioinformatics analysis identified sixteen mRNAs as candidates, of which urinary BBOX1 (uBBOX1) levels were significantly upregulated in the urine of patients with DKD. The expression of uBBOX1 was also increased in normoalbuminuric diabetes subjects, while remained unchanged in patients with urinary tract infection or bladder cancer. Besides, uBBOX1 levels correlated with glycemic control, albuminuria and urinary tubular injury marker levels. Similar results were obtained in stage 2 study. FISH assay further demonstrated that BBOX1 mRNA was predominantly located in renal tubular epithelial cells, while its expression in podocytes and urothelium was weak. Further bioinformatics analysis also suggested that tubular BBOX1 mRNA expression was quite stable in various types of kidney diseases. CONCLUSIONS: Our study provided a novel methodology to identify and analyze urinary kidney-specific mRNAs. uBBOX1 might serve as a promising biomarker of DKD. The performance of the selected urinary mRNAs in monitoring disease progression needs further validation.


Subject(s)
Computational Biology , Diabetic Nephropathies/genetics , Diabetic Nephropathies/urine , gamma-Butyrobetaine Dioxygenase/genetics , gamma-Butyrobetaine Dioxygenase/urine , Biomarkers/urine , Databases, Genetic , Female , Humans , Kidney/metabolism , Kidney/pathology , Male , Middle Aged , RNA, Messenger/genetics , RNA, Messenger/urine , Reproducibility of Results , Up-Regulation/genetics
17.
Am J Pathol ; 188(11): 2542-2552, 2018 11.
Article in English | MEDLINE | ID: mdl-30142333

ABSTRACT

IgA nephropathy (IgAN) features variable renal pathology and a heterogeneous clinical course. Our aim was to search noninvasive biomarkers from urinary exosomes for IgAN patients; membrane nephropathy and minimal change disease were included as other glomerulopathy controls. Transmission electron microscopy and nanoparticle tracking analysis confirmed the size and morphology characteristic of urinary exosomes. Exosome markers (Alix and CD63) as well as renal cell markers [aquaporin 2 (AQP2) and nephrin] were detected, which indicate the renal origin of urinary exosomes. Exosome excretion was increased markedly in IgAN patients compared with controls and correlated with levels of proteinuria and tubular injury. More important, urinary exosome excretion correlated with greater histologic activity (mesangial hypercellularity, crescents, and endocapillary hypercellularity). Profiling of the inflammation-related mRNA revealed that exosomal chemokine (C-C motif) ligand 2 (CCL2) was up-regulated in IgAN patients. In a validation study, CCL2 was exclusively highly expressed in IgAN patients compared with healthy controls as well as minimal change disease and membrane nephropathy patients. Also, a correlation between exosomal CCL2 and estimated glomerular filtration rate levels was found in IgAN. Exosomal CCL2 was correlated with tubulointerstitial inflammation and C3 deposition. High CCL2 levels at the time of renal biopsy were associated with subsequent deterioration in renal function. Thus, urinary exosomes and exosomal CCL2 mRNA are promising biomarkers reflecting active renal histologic injury and renal function deterioration in IgAN.


Subject(s)
Biomarkers/urine , Chemokine CCL2/urine , Exosomes/metabolism , Glomerulonephritis, IGA/complications , Inflammation/diagnosis , Nephritis, Interstitial/diagnosis , RNA, Messenger/metabolism , Adult , Case-Control Studies , Chemokine CCL2/genetics , Exosomes/genetics , Female , Glomerular Filtration Rate , Glomerulonephritis, IGA/pathology , Humans , Inflammation/etiology , Inflammation/urine , Male , Nephritis, Interstitial/etiology , Nephritis, Interstitial/urine , RNA, Messenger/genetics
18.
Adv Exp Med Biol ; 1165: 467-485, 2019.
Article in English | MEDLINE | ID: mdl-31399980

ABSTRACT

Hypoxia, one of the most common causes of kidney injury, is a key pathological condition in various kidney diseases. Renal fibrosis is the terminal pathway involved in the continuous progression of chronic kidney disease (CKD), characterized by glomerulosclerosis and tubulointerstitial fibrosis (TIF). Recent studies have shown that hypoxia is a key factor promoting the progression of TIF. Loss of microvasculature, reduced oxygen dispersion, and metabolic abnormality of cells in the kidney are the main causes of the hypoxic state. Hypoxia can, in turn, profoundly affect the tubular epithelial cells, endothelial cells, pericytes, fibroblasts, inflammatory cells, and progenitor cells. In this chapter, we reviewed the critical roles of hypoxia in the pathophysiology of TIF and discussed the potential of anti-hypoxia as its promising therapeutic target.


Subject(s)
Hypoxia/pathology , Kidney Tubules/pathology , Renal Insufficiency, Chronic/pathology , Endothelial Cells , Fibrosis , Humans
19.
J Am Soc Nephrol ; 29(3): 919-935, 2018 03.
Article in English | MEDLINE | ID: mdl-29295871

ABSTRACT

Albuminuria is a key instigator of tubulointerstitial inflammation associated with CKD, but the mechanism through which filtered albumin propagates renal injury remains unclear. In this study, we explored the role in this process of exosome mRNA released from tubular epithelial cells (TECs). Compared with control mice, acute and chronic kidney injury models had more exosomes containing inflammatory cytokine mRNA, particularly the chemokine CCL2, in kidneys and urine. In vitro stimulation of TECs with BSA recapitulated this finding. Notably, the internalization of purified TEC exosomes by cultured macrophages increased if TECs were exposed to BSA. Macrophage internalization of exosomes from BSA-treated TECs led to an enhanced inflammatory response and macrophage migration, but CCL2 silencing in TECs prevented these effects. Using a GFP-CCL2 fusion mRNA construct, we observed direct transfer of CCL2 mRNA from TEC exosomes to macrophages. Mice subjected to tail vein injection of purified BSA-treated TEC exosomes developed tubular injury with renal inflammatory cell infiltration. However, injection of exosomes from BSA-treated CCL2-deficient TECs induced less severe kidney inflammation. Finally, in patients with IgA nephropathy, the increase of proteinuria correlated with augmented urinary excretion of exosomes with exaggerated expression of CCL2 mRNA. Moreover, the level of CCL2 mRNA in urinary exosomes correlated closely with levels of renal interstitial macrophage infiltration in these patients. Our studies demonstrate that the increasing release of exosomes that transfer CCL2 mRNA from TECs to macrophages constitutes a critical mechanism of albumin-induced tubulointerstitial inflammation.


Subject(s)
Acute Kidney Injury/metabolism , Chemokine CCL2/genetics , Chemokine CCL2/metabolism , Epithelial Cells/metabolism , Exosomes/metabolism , Glomerulonephritis, IGA/urine , Kidney Tubules/metabolism , Macrophages/metabolism , RNA, Messenger/metabolism , Renal Insufficiency, Chronic/metabolism , Acute Kidney Injury/genetics , Acute Kidney Injury/urine , Adult , Animals , Cell Movement/drug effects , Cells, Cultured , Disease Models, Animal , Exosomes/genetics , Female , Gene Silencing , Glomerulonephritis, IGA/complications , Glomerulonephritis, IGA/pathology , Humans , Kidney Tubules/cytology , Kidney Tubules/pathology , Macrophages/physiology , Male , Mice , Middle Aged , Nephritis/metabolism , Nephritis/pathology , Proteinuria/etiology , Proteinuria/pathology , Proteinuria/urine , Rats , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/urine , Serum Albumin, Bovine/pharmacology , Young Adult
20.
J Cell Mol Med ; 22(2): 728-737, 2018 02.
Article in English | MEDLINE | ID: mdl-29083099

ABSTRACT

Extracellular vesicles (EVs) are nanosized, membrane-bound vesicles released from different cells. Recent studies have revealed that EVs may participate in renal tissue damage and regeneration through mediating inter-nephron communication. Thus, the potential use of EVs as therapeutic vector has gained considerable interest. In this review, we will discuss the basic characteristics of EVs and its role in nephron cellular communication. Then, the application of EVs as therapeutic vector based on its natural content or as carriers of drug, in acute and chronic kidney injury, was discussed. Finally, perspectives and challenges of EVs in therapy of kidney disease were described.


Subject(s)
Extracellular Vesicles/metabolism , Kidney Diseases/therapy , Animals , Cell Communication , Humans , Kidney Diseases/pathology , Models, Biological , Molecular Targeted Therapy , Nephrons/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL