Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
Circulation ; 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38682338

ABSTRACT

BACKGROUND: Most organs are maintained lifelong by resident stem/progenitor cells. During development and regeneration, lineage-specific stem/progenitor cells can contribute to the growth or maintenance of different organs, whereas fully differentiated mature cells have less regenerative potential. However, it is unclear whether vascular endothelial cells (ECs) are also replenished by stem/progenitor cells with EC-repopulating potential residing in blood vessels. It has been reported recently that some EC populations possess higher clonal proliferative potential and vessel-forming capacity compared with mature ECs. Nevertheless, a marker to identify vascular clonal repopulating ECs (CRECs) in murine and human individuals is lacking, and, hence, the mechanism for the proliferative, self-renewal, and vessel-forming potential of CRECs is elusive. METHODS: We analyzed colony-forming, self-renewal, and vessel-forming potential of ABCG2 (ATP binding cassette subfamily G member 2)-expressing ECs in human umbilical vessels. To study the contribution of Abcg2-expressing ECs to vessel development and regeneration, we developed Abcg2CreErt2;ROSA TdTomato mice and performed lineage tracing during mouse development and during tissue regeneration after myocardial infarction injury. RNA sequencing and chromatin methylation chromatin immunoprecipitation followed by sequencing were conducted to study the gene regulation in Abcg2-expressing ECs. RESULTS: In human and mouse vessels, ECs with higher ABCG2 expression (ABCECs) possess higher clonal proliferative potential and in vivo vessel-forming potential compared with mature ECs. These cells could clonally contribute to vessel formation in primary and secondary recipients after transplantation. These features of ABCECs meet the criteria of CRECs. Results from lineage tracing experiments confirm that Abcg2-expressing CRECs (AbcCRECs) contribute to arteries, veins, and capillaries in cardiac tissue development and vascular tissue regeneration after myocardial infarction. Transcriptome and epigenetic analyses reveal that a gene expression signature involved in angiogenesis and vessel development is enriched in AbcCRECs. In addition, various angiogenic genes, such as Notch2 and Hey2, are bivalently modified by trimethylation at the 4th and 27th lysine residue of histone H3 (H3K4me3 and H3K27me3) in AbcCRECs. CONCLUSIONS: These results are the first to establish that a single prospective marker identifies CRECs in mice and human individuals, which holds promise to provide new cell therapies for repair of damaged vessels in patients with endothelial dysfunction.

2.
Circ Res ; 132(1): e1-e21, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36448480

ABSTRACT

BACKGROUND: We examined components of systemic and intestinal renin-angiotensin system on gut barrier permeability, glucose homeostasis, systemic inflammation, and progression of diabetic retinopathy (DR) in human subjects and mice with type 1 diabetes (T1D). METHODS: T1D individual with (n=18) and without (n=20) DR and controls (n=34) were examined for changes in gut-regulated components of the immune system, gut leakage markers (FABP2 [fatty acid binding protein 2] and peptidoglycan), and Ang II (angiotensin II); Akita mice were orally administered a Lactobacillus paracasei (LP) probiotic expressing humanized ACE2 (angiotensin-converting enzyme 2) protein (LP-ACE2) as either a prevention or an intervention. Akita mice with genetic overexpression of humanAce2 by small intestine epithelial cells (Vil-Cre.hAce2KI-Akita) were similarly examined. After 9 months of T1D, circulatory, enteral, and ocular end points were assessed. RESULTS: T1D subjects exhibit elevations in gut-derived circulating immune cells (ILC1 cells) and higher gut leakage markers, which were positively correlated with plasma Ang II and DR severity. The LP-ACE2 prevention cohort and genetic overexpression of intestinal ACE2 preserved barrier integrity, reduced inflammatory response, improved hyperglycemia, and delayed development of DR. Improvements in glucose homeostasis were due to intestinal MasR activation, resulting in a GSK-3ß (glycogen synthase kinase-3 beta)/c-Myc (cellular myelocytomatosis oncogene)-mediated decrease in intestinal glucose transporter expression. In the LP-ACE2 intervention cohort, gut barrier integrity was improved and DR reversed, but no improvement in hyperglycemia was observed. These data support that the beneficial effects of LP-ACE2 on DR are due to the action of ACE2, not improved glucose homeostasis. CONCLUSIONS: Dysregulated systemic and intestinal renin-angiotensin system was associated with worsening gut barrier permeability, gut-derived immune cell activation, systemic inflammation, and progression of DR in human subjects. In Akita mice, maintaining intestinal ACE2 expression prevented and reversed DR, emphasizing the multifaceted role of the intestinal renin-angiotensin system in diabetes and DR.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetic Retinopathy , Hyperglycemia , Animals , Humans , Mice , Angiotensin-Converting Enzyme 2/metabolism , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/metabolism , Diabetic Retinopathy/prevention & control , Glucose/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Hyperglycemia/complications , Inflammation/metabolism , Intestine, Small , Peptide Fragments/metabolism , Peptidyl-Dipeptidase A/genetics , Renin-Angiotensin System/physiology
3.
Am J Pathol ; 193(11): 1789-1808, 2023 11.
Article in English | MEDLINE | ID: mdl-36965774

ABSTRACT

This study investigated retinal changes in a Western diet (WD)-induced nonhuman primate model of type 2 diabetes. Rhesus nonhuman primates, aged 15 to 17 years, were fed a high-fat diet (n = 7) for >5 years reflective of the traditional WD. Age-matched controls (n = 6) were fed a standard laboratory primate diet. Retinal fundus photography, optical coherence tomography, autofluorescence imaging, and fluorescein angiography were performed before euthanasia. To assess diabetic retinopathy (DR), eyes were examined using trypsin digests, lipofuscin autofluorescence, and multimarker immunofluorescence on cross-sections and whole mounts. Retinal imaging showed venous engorgement and tortuosity, aneurysms, macular exudates, dot and blot hemorrhages, and a marked increase in fundus autofluorescence. Post-mortem changes included the following: decreased CD31 blood vessel density (P < 0.05); increased acellular capillaries (P < 0.05); increased density of ionized calcium-binding adaptor molecule expressing amoeboid microglia/macrophage; loss of regular distribution in stratum and spacing typical of ramified microglia; and increased immunoreactivity of aquaporin 4 and glial fibrillary acidic protein (P < 0.05). However, rhodopsin immunoreactivity (P < 0.05) in rods and neuronal nuclei antibody-positive neuronal density of 50% (P < 0.05) were decreased. This is the first report of a primate model of DR solely induced by a WD that replicates key features of human DR.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Retinopathy , Animals , Humans , Diabetic Retinopathy/metabolism , Retinal Pigment Epithelium/metabolism , Diabetes Mellitus, Type 2/complications , Diet, Western , Retinal Vessels/metabolism , Primates , Tomography, Optical Coherence/methods
4.
Diabetologia ; 64(7): 1674-1689, 2021 07.
Article in English | MEDLINE | ID: mdl-33770194

ABSTRACT

AIMS/HYPOTHESIS: Homo sapiens evolved under conditions of intermittent food availability and prolonged fasting between meals. Periods of fasting are important for recovery from meal-induced oxidative and metabolic stress, and tissue repair. Constant high energy-density food availability in present-day society contributes to the pathogenesis of chronic diseases, including diabetes and its complications, with intermittent fasting (IF) and energy restriction shown to improve metabolic health. We have previously demonstrated that IF prevents the development of diabetic retinopathy in a mouse model of type 2 diabetes (db/db); however the mechanisms of fasting-induced health benefits and fasting-induced risks for individuals with diabetes remain largely unknown. Sirtuin 1 (SIRT1), a nutrient-sensing deacetylase, is downregulated in diabetes. In this study, the effect of SIRT1 stimulation by IF, fasting-mimicking cell culture conditions (FMC) or pharmacological treatment using SRT1720 was evaluated on systemic and retinal metabolism, systemic and retinal inflammation and vascular and bone marrow damage. METHODS: The effects of IF were modelled in vivo using db/db mice and in vitro using bovine retinal endothelial cells or rat retinal neuroglial/precursor R28 cell line serum starved for 24 h. mRNA expression was analysed by quantitative PCR (qPCR). SIRT1 activity was measured via histone deacetylase activity assay. NR1H3 (also known as liver X receptor alpha [LXRα]) acetylation was measured via western blot analysis. RESULTS: IF increased Sirt1 mRNA expression in mouse liver and retina when compared with non-fasted animals. IF also increased SIRT1 activity eightfold in mouse retina while FMC increased SIRT1 activity and expression in retinal endothelial cells when compared with control. Sirt1 expression was also increased twofold in neuronal retina progenitor cells (R28) after FMC treatment. Moreover, FMC led to SIRT1-mediated LXRα deacetylation and subsequent 2.4-fold increase in activity, as measured by increased mRNA expression of the genes encoding ATP-binding cassette transporter (Abca1 and Abcg1). These changes were reduced when retinal endothelial cells expressing a constitutively acetylated LXRα mutant were tested. Increased SIRT1/LXR/ABC-mediated cholesterol export resulted in decreased retinal endothelial cell cholesterol levels. Direct activation of SIRT1 by SRT1720 in db/db mice led to a twofold reduction of diabetes-induced inflammation in the retina and improved diabetes-induced visual function impairment, as measured by electroretinogram and optokinetic response. In the bone marrow, there was prevention of diabetes-induced myeloidosis and decreased inflammatory cytokine expression. CONCLUSIONS/INTERPRETATION: Taken together, activation of SIRT1 signalling by IF or through pharmacological activation represents an effective therapeutic strategy that provides a mechanistic link between the advantageous effects associated with fasting regimens and prevention of microvascular and bone marrow dysfunction in diabetes.


Subject(s)
Diabetic Angiopathies/prevention & control , Fasting/physiology , Heterocyclic Compounds, 4 or More Rings/pharmacology , Animals , Cattle , Cell Death/drug effects , Cell Death/genetics , Cells, Cultured , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/physiopathology , Diabetes Mellitus, Experimental/therapy , Diabetic Angiopathies/genetics , Diabetic Angiopathies/metabolism , Gene Expression/drug effects , Heterocyclic Compounds, 4 or More Rings/therapeutic use , Hypoglycemic Agents/pharmacology , Liver X Receptors/genetics , Liver X Receptors/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Rats , Retina/drug effects , Retina/pathology , Retinal Neurons/drug effects , Retinal Neurons/metabolism , Retinal Neurons/pathology , Retinal Vessels/drug effects , Retinal Vessels/metabolism , Retinal Vessels/pathology , Signal Transduction/drug effects , Signal Transduction/genetics , Sirtuin 1/drug effects , Sirtuin 1/genetics , Sirtuin 1/metabolism
5.
Circ Res ; 125(11): 969-988, 2019 11 08.
Article in English | MEDLINE | ID: mdl-31610731

ABSTRACT

RATIONALE: There is incomplete knowledge of the impact of bone marrow cells on the gut microbiome and gut barrier function. OBJECTIVE: We postulated that diabetes mellitus and systemic ACE2 (angiotensin-converting enzyme 2) deficiency would synergize to adversely impact both the microbiome and gut barrier function. METHODS AND RESULTS: Bacterial 16S rRNA sequencing and metatranscriptomic analysis were performed on fecal samples from wild-type, ACE2-/y, Akita (type 1 diabetes mellitus), and ACE2-/y-Akita mice. Gut barrier integrity was assessed by immunofluorescence, and bone marrow cell extravasation into the small intestine was evaluated by flow cytometry. In the ACE2-/y-Akita or Akita mice, the disrupted barrier was associated with reduced levels of myeloid angiogenic cells, but no increase in inflammatory monocytes was observed within the gut parenchyma. Genomic and metatranscriptomic analysis of the microbiome of ACE2-/y-Akita mice demonstrated a marked increase in peptidoglycan-producing bacteria. When compared with control cohorts treated with saline, intraperitoneal administration of myeloid angiogenic cells significantly decreased the microbiome gene expression associated with peptidoglycan biosynthesis and restored epithelial and endothelial gut barrier integrity. Also indicative of diabetic gut barrier dysfunction, increased levels of peptidoglycan and FABP-2 (intestinal fatty acid-binding protein 2) were observed in plasma of human subjects with type 1 diabetes mellitus (n=21) and type 2 diabetes mellitus (n=23) compared with nondiabetic controls (n=23). Using human retinal endothelial cells, we determined that peptidoglycan activates a noncanonical TLR-2 (Toll-like receptor 2) associated MyD88 (myeloid differentiation primary response protein 88)-ARNO (ADP-ribosylation factor nucleotide-binding site opener)-ARF6 (ADP-ribosylation factor 6) signaling cascade, resulting in destabilization of p120-catenin and internalization of VE-cadherin as a mechanism of deleterious impact of peptidoglycan on the endothelium. CONCLUSIONS: We demonstrate for the first time that the defect in gut barrier function and dysbiosis in ACE2-/y-Akita mice can be favorably impacted by exogenous administration of myeloid angiogenic cells.


Subject(s)
Bacteria/metabolism , Bone Marrow Transplantation , Capillary Permeability , Diabetes Mellitus, Type 2/surgery , Gastrointestinal Microbiome , Intestinal Mucosa/blood supply , Intestinal Mucosa/microbiology , Intestine, Small/blood supply , Intestine, Small/microbiology , Neovascularization, Physiologic , Peptidyl-Dipeptidase A/deficiency , ADP-Ribosylation Factor 6 , Adherens Junctions/metabolism , Angiotensin-Converting Enzyme 2 , Animals , Cells, Cultured , Diabetes Mellitus, Type 2/enzymology , Diabetes Mellitus, Type 2/microbiology , Diabetes Mellitus, Type 2/physiopathology , Disease Models, Animal , Dysbiosis , Humans , Inflammation Mediators/metabolism , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Intestine, Small/enzymology , Intestine, Small/pathology , Male , Mice, Inbred C57BL , Mice, Knockout , Peptidoglycan/metabolism , Peptidyl-Dipeptidase A/genetics , Recovery of Function
6.
J Cell Sci ; 131(1)2018 01 10.
Article in English | MEDLINE | ID: mdl-29222111

ABSTRACT

Vascular endothelial growth factor (VEGF), a key angiogenic and permeability factor, plays an important role in new blood vessel formation. However, abnormal VEGF-induced VEGFR2 signaling leads to hyperpermeability. We have shown previously that Rap1, best known for promoting cell adhesion and vessel stability, is a critical regulator of VEGFR2-mediated angiogenic and shear-stress EC responses. To determine the role of Rap1 role in endothelial barrier dynamics, we examined vascular permeability in EC-specific Rap1A- and Rap1B-knockout mice, cell-cell junction remodeling and EC monolayer resistivity in Rap1-deficient ECs under basal, inflammatory or elevated VEGF conditions. Deletion of either Rap1 isoform impaired de novo adherens junction (AJ) formation and recovery from LPS-induced barrier disruption in vivo However, only Rap1A deficiency increased permeability in ECs and lung vessels. Interestingly, Rap1B deficiency attenuated VEGF-induced permeability in vivo and AJ remodeling in vitro Therefore, only Rap1A is required for the maintenance of normal vascular integrity. Importantly, Rap1B is the primary isoform essential for normal VEGF-induced EC barrier dissolution. Deletion of either Rap1 isoform protected against hyper permeability in the STZ-induced diabetes model, suggesting clinical implications for targeting Rap1 in pathologies with VEGF-induced hyperpermeability.


Subject(s)
Capillary Permeability/drug effects , Endothelium, Vascular/physiology , Vascular Endothelial Growth Factor A/pharmacology , rap GTP-Binding Proteins/metabolism , Animals , Cell Adhesion , Cell Line , Diabetes Mellitus, Experimental/chemically induced , Endothelium, Vascular/drug effects , Female , Humans , Intercellular Junctions/metabolism , Male , Mice , Mice, Knockout , Neovascularization, Physiologic , Signal Transduction
7.
Stem Cells ; 36(9): 1430-1440, 2018 09.
Article in English | MEDLINE | ID: mdl-29761600

ABSTRACT

Angiotensin-converting enzyme 2 (ACE2) is the primary enzyme of the vasoprotective axis of the renin angiotensin system (RAS). We tested the hypothesis that loss of ACE2 would exacerbate diabetic retinopathy by promoting bone marrow dysfunction. ACE2-/y were crossed with Akita mice, a model of type 1 diabetes. When comparing the bone marrow of the ACE2-/y -Akita mice to that of Akita mice, we observed a reduction of both short-term and long-term repopulating hematopoietic stem cells, a shift of hematopoiesis toward myelopoiesis, and an impairment of lineage- c-kit+ hematopoietic stem/progenitor cell (HS/PC) migration and proliferation. Migratory and proliferative dysfunction of these cells was corrected by exposure to angiotensin-1-7 (Ang-1-7), the protective peptide generated by ACE2. Over the duration of diabetes examined, ACE2 deficiency led to progressive reduction in electrical responses assessed by electroretinography and to increases in neural infarcts observed by fundus photography. Compared with Akita mice, ACE2-/y -Akita at 9-months of diabetes showed an increased number of acellular capillaries indicative of more severe diabetic retinopathy. In diabetic and control human subjects, CD34+ cells, a key bone marrow HS/PC population, were assessed for changes in mRNA levels for MAS, the receptor for Ang-1-7. Levels were highest in CD34+ cells from diabetics without retinopathy. Higher serum Ang-1-7 levels predicted protection from development of retinopathy in diabetics. Treatment with Ang-1-7 or alamandine restored the impaired migration function of CD34+ cells from subjects with retinopathy. These data support that activation of the protective RAS within HS/PCs may represents a therapeutic strategy for prevention of diabetic retinopathy. Stem Cells 2018;36:1430-1440.


Subject(s)
Bone Marrow/metabolism , Diabetic Retinopathy/chemically induced , Peptidyl-Dipeptidase A/adverse effects , Peptidyl-Dipeptidase A/deficiency , Angiotensin-Converting Enzyme 2 , Animals , Disease Models, Animal , Humans , Mice
8.
Stem Cells ; 35(5): 1303-1315, 2017 05.
Article in English | MEDLINE | ID: mdl-28299842

ABSTRACT

Electroacupuncture (EA) performed in rats and humans using limb acupuncture sites, LI-4 and LI-11, and GV-14 and GV-20 (humans) and Bai-hui (rats) increased functional connectivity between the anterior hypothalamus and the amygdala and mobilized mesenchymal stem cells (MSCs) into the systemic circulation. In human subjects, the source of the MSC was found to be primarily adipose tissue, whereas in rodents the tissue sources were considered more heterogeneous. Pharmacological disinhibition of rat hypothalamus enhanced sympathetic nervous system (SNS) activation and similarly resulted in a release of MSC into the circulation. EA-mediated SNS activation was further supported by browning of white adipose tissue in rats. EA treatment of rats undergoing partial rupture of the Achilles tendon resulted in reduced mechanical hyperalgesia, increased serum interleukin-10 levels and tendon remodeling, effects blocked in propranolol-treated rodents. To distinguish the afferent role of the peripheral nervous system, phosphoinositide-interacting regulator of transient receptor potential channels (Pirt)-GCaMP3 (genetically encoded calcium sensor) mice were treated with EA acupuncture points, ST-36 and LIV-3, and GV-14 and Bai-hui and resulted in a rapid activation of primary sensory neurons. EA activated sensory ganglia and SNS centers to mediate the release of MSC that can enhance tissue repair, increase anti-inflammatory cytokine production and provide pronounced analgesic relief. Stem Cells 2017;35:1303-1315.


Subject(s)
Central Nervous System/cytology , Electroacupuncture , Mesenchymal Stem Cells/cytology , Achilles Tendon/pathology , Acupuncture Points , Adipocytes/cytology , Adipose Tissue, Brown/cytology , Adipose Tissue, White/cytology , Animals , Antigens, CD/metabolism , Forelimb/physiology , Hindlimb/physiology , Humans , Hyperalgesia/therapy , Hypothalamus/cytology , Interleukin-10/blood , Macrophages/cytology , Mice , Nerve Net/physiology , Rats , Rupture , Sensory Receptor Cells/metabolism , Uncoupling Protein 1/metabolism
9.
J Exp Med ; 204(3): 605-18, 2007 Mar 19.
Article in English | MEDLINE | ID: mdl-17339405

ABSTRACT

Stromal cell-derived factor 1 (SDF-1) plays a major role in the migration, recruitment, and retention of endothelial progenitor cells to sites of ischemic injury and contributes to neovascularization. We provide direct evidence demonstrating an important role for heme oxygenase 1 (HO-1) in mediating the proangiogenic effects of SDF-1. Nanomolar concentrations of SDF-1 induced HO-1 in endothelial cells through a protein kinase C zeta-dependent and vascular endothelial growth factor-independent mechanism. SDF-1-induced endothelial tube formation and migration was impaired in HO-1-deficient cells. Aortic rings from HO-1(-/-) mice were unable to form capillary sprouts in response to SDF-1, a defect reversed by CO, a byproduct of the HO-1 reaction. Phosphorylation of vasodilator-stimulated phosphoprotein was impaired in HO-1(-/-) cells, an event that was restored by CO. The functional significance of HO-1 in the proangiogenic effects of SDF-1 was confirmed in Matrigel plug, wound healing, and retinal ischemia models in vivo. The absence of HO-1 was associated with impaired wound healing. Intravitreal adoptive transfer of HO-1-deficient endothelial precursors showed defective homing and reendothelialization of the retinal vasculature compared with HO-1 wild-type cells following ischemia. These findings demonstrate a mechanistic role for HO-1 in SDF-1-mediated angiogenesis and provide new avenues for therapeutic approaches in vascular repair.


Subject(s)
Chemokines, CXC/physiology , Heme Oxygenase-1/physiology , Neovascularization, Physiologic , Animals , Cells, Cultured , Chemokine CXCL12 , Endothelial Cells/enzymology , Endothelial Cells/physiology , Endothelium, Vascular/cytology , Endothelium, Vascular/enzymology , Endothelium, Vascular/physiology , Heme Oxygenase-1/deficiency , Heme Oxygenase-1/genetics , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Stromal Cells/enzymology , Wound Healing/genetics , Wound Healing/physiology
10.
Transl Vis Sci Technol ; 12(4): 20, 2023 04 03.
Article in English | MEDLINE | ID: mdl-37070938

ABSTRACT

Purpose: The expression of silent information regulator (SIRT) 1 is reduced in diabetic retinopathy (DR). Previous studies showed that alterations in SIRT1 messenger RNA (mRNA) and protein expression are implicated in progressive inflammation and formation of retinal acellular capillaries. Treatment with the SIRT1 agonist, SRT1720, improved visual response by restoration of a- and b-wave responses on electroretinogram scotopic measurements in diabetic (db/db) mice. In this study, we investigated the effects of intravitreal SIRT1 delivery on diabetic retinal pathology. Methods: Nine-month-old db/db mice received one intravitreal injection of either AAV2-SIRT1 or AAV2-GFP control virus, and after 3 months, electroretinography and optomotor responses were measured. Their eyes were then removed and analyzed by immunohistochemistry and flow cytometry. Results: SIRT1 mRNA and protein levels were increased following AAV2-SIRT1 administration compared to control virus AAV2-GFP injected mice. IBA1+ and caspase 3 expression were decreased in retinas of db/db mice injected with AAV2-SIRT1, and reductions in scotopic a- and b-waves and high spatial frequency in optokinetic response were prevented. Retinal hypoxia inducible factor 1α (HIF-1α) protein levels were reduced in the AAV2-SIRT1-injected mice compared to control-injected mice. Using flow cytometry to assess changes in intracellular HIF-1α levels, endothelial cells (CD31+) from AAV-2 SIRT1 injected mice demonstrated reduced HIF-1α expression compared to db/db mice injected with the control virus. Conclusions: Intravitreal AAV2-SIRT1 delivery increased retina SIRT1 and transduced neural and endothelial cells, thus reversing functional damage and improving overall visual function. Translational Relevance: AAV2-SIRT1 gene therapy represents a beneficial approach for the treatment of chronic retinal conditions such as DR.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Retinopathy , Mice , Animals , Diabetic Retinopathy/genetics , Diabetic Retinopathy/therapy , Sirtuin 1/genetics , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/therapy , Endothelial Cells/metabolism , Disease Models, Animal , RNA, Messenger
11.
J Clin Med ; 12(5)2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36902558

ABSTRACT

Intestinal lymphatic, known as lacteal, plays a critical role in maintaining intestinal homeostasis by regulating several key functions, including the absorption of dietary lipids, immune cell trafficking, and interstitial fluid balance in the gut. The absorption of dietary lipids relies on lacteal integrity, mediated by button-like and zipper-like junctions. Although the intestinal lymphatic system is well studied in many diseases, including obesity, the contribution of lacteals to the gut-retinal axis in type 1 diabetes (T1D) has not been examined. Previously, we showed that diabetes induces a reduction in intestinal angiotensin-converting enzyme 2 (ACE2), leading to gut barrier disruption. However, when ACE2 levels are maintained, a preservation of gut barrier integrity occurs, resulting in less systemic inflammation and a reduction in endothelial cell permeability, ultimately retarding the development of diabetic complications, such as diabetic retinopathy. Here, we examined the impact of T1D on intestinal lymphatics and circulating lipids and tested the impact of intervention with ACE-2-expressing probiotics on key aspects of gut and retinal function. Akita mice with 6 months of diabetes were orally gavaged LP-ACE2 (3x/week for 3 months), an engineered probiotic (Lactobacillus paracasei; LP) expressing human ACE2. After three months, immunohistochemistry (IHC) was used to evaluate intestinal lymphatics, gut epithelial, and endothelial barrier integrity. Retinal function was assessed using visual acuity, electroretinograms, and enumeration of acellular capillaries. LP-ACE2 significantly restored intestinal lacteal integrity as assessed by the increased expression of lymphatic vessel hyaluronan receptor 1 (LYVE-1) expression in LP-ACE2-treated Akita mice. This was accompanied by improved gut epithelial (Zonula occludens-1 (ZO-1), p120-catenin) and endothelial (plasmalemma vesicular protein -1 (PLVAP1)) barrier integrity. In Akita mice, the LP-ACE2 treatment reduced plasma levels of LDL cholesterol and increased the expression of ATP-binding cassette subfamily G member 1 (ABCG1) in retinal pigment epithelial cells (RPE), the population of cells responsible for lipid transport from the systemic circulation into the retina. LP-ACE2 also corrected blood-retinal barrier (BRB) dysfunction in the neural retina, as observed by increased ZO-1 and decreased VCAM-1 expression compared to untreated mice. LP-ACE2-treated Akita mice exhibit significantly decreased numbers of acellular capillaries in the retina. Our study supports the beneficial role of LP-ACE2 in the restoration of intestinal lacteal integrity, which plays a key role in gut barrier integrity and systemic lipid metabolism and decreased diabetic retinopathy severity.

12.
Am J Pathol ; 178(4): 1517-28, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21435441

ABSTRACT

This study was conducted to determine the perivascular cell responses to increased endothelial cell expression of insulin-like growth factor binding protein-3 (IGFBP-3) in mouse retina. The contribution of bone marrow cells in the IGFBP-3-mediated response was examined using green fluorescent protein-positive (GFP(+)) adult chimeric mice subjected to laser-induced retinal vessel occlusion injury. Intravitreal injection of an endothelial-specific IGFBP-3-expressing plasmid resulted in increased differentiation of GFP(+) hematopoietic stem cells (HSCs) into pericytes and astrocytes as determined by immunohistochemical analysis. Administration of IGFBP-3 plasmid to mouse pups that underwent the oxygen-induced retinopathy model resulted in increased pericyte ensheathment and reduced pericyte apoptosis in the developing retina. Increased IGFBP-3 expression reduced the number of activated microglial cells and decreased apoptosis of neuronal cells in the oxygen-induced retinopathy model. In summary, IGFBP-3 increased differentiation of GFP(+) HSCs into pericytes and astrocytes while increasing vascular ensheathment of pericytes and decreasing apoptosis of pericytes and retinal neurons. All of these cytoprotective effects exhibited by IGFBP-3 overexpression can result in a more stable retinal vascular bed. Thus, endothelial expression of IGFBP-3 may represent a physiologic response to injury and may represent a therapeutic strategy for the treatment of ischemic vascular eye diseases, such as diabetic retinopathy and retinopathy of prematurity.


Subject(s)
Apoptosis , Insulin-Like Growth Factor Binding Protein 3/metabolism , Ischemia/pathology , Microglia/metabolism , Neurons/metabolism , Pericytes/metabolism , Retina/injuries , Animals , Astrocytes/cytology , Cell Death , Cell Differentiation , Eye Diseases/pathology , Female , Green Fluorescent Proteins/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Microscopy, Fluorescence/methods , Pericytes/cytology , Retina/metabolism
13.
J Pediatr Gastroenterol Nutr ; 54(4): 499-504, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22020559

ABSTRACT

BACKGROUND AND OBJECTIVE: Supplementation studies of glutamine, arginine, and docosahexaenoic acid (DHA) have established the safety of each of these nutrients in neonates; however, the potential for a more stable and soluble dipeptide, arginyl-glutamine (Arg-Gln) or DHA with anti-inflammatory properties, to exert benefits on hyperoxia-induced intestinal injury has not been investigated. Arg-Gln dipeptide has been shown to prevent retinal damage in a rodent model of oxygen-induced injury. The objective of the present study was to investigate whether Arg-Gln dipeptide or DHA could also attenuate markers of injury and inflammation to the small intestine in this same model. METHODS: Seven-day-old mouse pups were placed with their dams in 75% oxygen for 5 days. After 5 days of hyperoxic exposure (P7-P12), pups were removed from hyperoxia and allowed to recover in atmospheric conditions for 5 days (P12-P17). Mouse pups received Arg-Gln (5g·kg·day) or DHA (5g·kg·day) or vehicle orally started on P12 through P17. Distal small intestine (DSI) histologic changes, myeloperoxidase (MPO), lactate dehydrogenase (LDH), inflammatory cytokines, and tissue apoptosis were evaluated. RESULTS: Hyperoxic mice showed a greater distortion of overall villus structure and with higher injury score (P<0.05). Arg-Gln dipeptide and DHA supplementation groups were more similar to the room air control group. Supplementation of Arg-Gln or DHA reduced hyperoxia-induced MPO activity (P<0.05). Supplementation of Arg-Gln or DHA returned LDH activity to the levels of control. Hyperoxia induced apoptotic cell death in DSIs, and both Arg-Gln and DHA reversed this effect (P<0.05). CONCLUSIONS: Supplementation with either Arg-Gln or DHA may limit some inflammatory and apoptotic processes involved in hyperoxic-induced intestinal injury in neonatal mice.


Subject(s)
Arginine/administration & dosage , Dietary Supplements , Dipeptides/pharmacology , Docosahexaenoic Acids/administration & dosage , Glutamine/administration & dosage , Hyperoxia/drug therapy , Animals , Animals, Newborn , Apoptosis/drug effects , Disease Models, Animal , Female , Hyperoxia/chemically induced , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Intestine, Small/drug effects , Intestine, Small/metabolism , Intestine, Small/pathology , L-Lactate Dehydrogenase/metabolism , Mice , Mice, Inbred C57BL , Peroxidase/metabolism
14.
Cells ; 11(20)2022 10 13.
Article in English | MEDLINE | ID: mdl-36291075

ABSTRACT

Hematopoietic cells play a crucial role in the adult retina in health and disease. Monocytes, macrophages, microglia and myeloid angiogenic cells (MACs) have all been implicated in retinal pathology. However, the role that hematopoietic cells play in retinal development is understudied. The temporal changes in recruitment of hematopoietic cells into the developing retina and the phenotype of the recruited cells are not well understood. In this study, we used the hematopoietic cell-specific protein Vav1 to track and investigate hematopoietic cells in the developing retina. By flow cytometry and immunohistochemistry, we show that hematopoietic cells are present in the retina as early as P0, and include microglia, monocytes and MACs. Even before the formation of retinal blood vessels, hematopoietic cells localize to the inner retina where they eventually form networks that intimately associate with the developing vasculature. Loss of Vav1 lead to a reduction in the density of medium-sized vessels and an increased inflammatory response in retinal astrocytes. When pups were subjected to oxygen-induced retinopathy, hematopoietic cells maintained a close association with the vasculature and occasionally formed 'frameworks' for the generation of new vessels. Our study provides further evidence for the underappreciated role of hematopoietic cells in retinal vasculogenesis and the formation of a healthy retina.


Subject(s)
Retina , Retinal Vessels , Animals , Animals, Newborn , Retina/metabolism , Retinal Vessels/metabolism , Oxygen/metabolism , Microglia
15.
Sci Adv ; 8(9): eabm5559, 2022 03 04.
Article in English | MEDLINE | ID: mdl-35245116

ABSTRACT

Human induced pluripotent stem cells (hiPSCs) were differentiated into a specific mesoderm subset characterized by KDR+CD56+APLNR+ (KNA+) expression. KNA+ cells had high clonal proliferative potential and specification into endothelial colony-forming cell (ECFCs) phenotype. KNA+ cells differentiated into perfused blood vessels when implanted subcutaneously into the flank of nonobese diabetic/severe combined immunodeficient mice and when injected into the vitreous of type 2 diabetic mice (db/db mice). Transcriptomic analysis showed that differentiation of hiPSCs derived from diabetics into KNA+ cells was sufficient to change baseline differences in gene expression caused by the diabetic status and reprogram diabetic cells to a pattern similar to KNA+ cells derived from nondiabetic hiPSCs. Proteomic array studies performed on retinas of db/db mice injected with either control or diabetic donor-derived KNA+ cells showed correction of aberrant signaling in db/db retinas toward normal healthy retina. These data provide "proof of principle" that KNA+ cells restore perfusion and correct vascular dysfunction in db/db mice.

16.
Circ Res ; 105(9): 897-905, 2009 Oct 23.
Article in English | MEDLINE | ID: mdl-19762684

ABSTRACT

RATIONALE: Insulin-like growth factor binding protein (IGFBP)-3 modulates vascular development by regulating endothelial progenitor cell (EPC) behavior, specifically stimulating EPC cell migration. This study was undertaken to investigate the mechanism of IGFBP-3 effects on EPC function and how IGFBP-3 mediates cytoprotection following vascular injury. OBJECTIVE: To examine the mechanism of IGFBP-3-mediated repair following vascular injury. METHODS AND RESULTS: We used 2 complementary vascular injury models: laser occlusion of retinal vessels in adult green fluorescent protein (GFP) chimeric mice and oxygen-induced retinopathy in mouse pups. Intravitreal injection of IGFBP-3-expressing plasmid into lasered GFP chimeric mice stimulated homing of EPCs, whereas reversing ischemia induced increases in macrophage infiltration. IGFBP-3 also reduced the retinal ceramide/sphingomyelin ratio that was increased following laser injury. In the OIR model, IGFBP-3 prevented cell death of resident vascular endothelial cells and EPCs, while simultaneously increasing astrocytic ensheathment of vessels. For EPCs to orchestrate repair, these cells must migrate into ischemic tissue. This migratory ability is mediated, in part, by endogenous NO generation. Thus, we asked whether the migratory effects of IGFBP-3 were attributable to stimulation of NO generation. IGFBP-3 increased endothelial NO synthase expression in human EPCs leading to NO generation. IGFBP-3 exposure also led to the redistribution of vasodilator-stimulated phosphoprotein, an NO regulated protein critical for cell migration. IGFBP-3-mediated NO generation required high-density lipoprotein receptor activation and stimulation of phosphatidylinositol 3-kinase/Akt pathway. CONCLUSION: These studies support consideration of IGFBP-3 as a novel agent to restore the function of injured vasculature and restore NO generation.


Subject(s)
Cell Movement , Endothelial Cells/metabolism , Insulin-Like Growth Factor Binding Protein 3/metabolism , Nitric Oxide/metabolism , Retinal Neovascularization/metabolism , Retinal Vessels/metabolism , Retinopathy of Prematurity/metabolism , Stem Cells/metabolism , Animals , Animals, Newborn , Astrocytes/metabolism , Cell Adhesion Molecules/metabolism , Cell Death , Cell Proliferation , Cells, Cultured , Ceramides/metabolism , Cerebral Arteries/metabolism , Cerebral Arteries/physiopathology , Cytoprotection , Disease Models, Animal , Endothelial Cells/pathology , Female , Gene Transfer Techniques , Green Fluorescent Proteins/genetics , Humans , Infant, Newborn , Insulin-Like Growth Factor Binding Protein 3/genetics , Male , Mesenteric Arteries/metabolism , Mesenteric Arteries/physiopathology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microfilament Proteins/metabolism , Nitric Oxide Synthase Type III/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphoproteins/metabolism , Pregnancy , Proto-Oncogene Proteins c-akt/metabolism , Rats , Rats, Sprague-Dawley , Retinal Neovascularization/pathology , Retinal Neovascularization/physiopathology , Retinal Vessels/pathology , Retinal Vessels/physiopathology , Retinopathy of Prematurity/pathology , Retinopathy of Prematurity/physiopathology , Scavenger Receptors, Class B/metabolism , Signal Transduction , Sphingomyelins/metabolism , Stem Cells/pathology , Vasodilation
17.
Diabetes ; 70(8): 1738-1753, 2021 08.
Article in English | MEDLINE | ID: mdl-33975909

ABSTRACT

The current understanding of the molecular pathogenesis of diabetic retinopathy does not provide a mechanistic link between early molecular changes and the subsequent progression of the disease. In this study, we found that human diabetic retinas overexpressed TRIB3 and investigated the role of TRIB3 in diabetic retinal pathobiology in mice. We discovered that TRIB3 controlled major molecular events in early diabetic retinas via HIF1α-mediated regulation of retinal glucose flux, reprogramming cellular metabolism, and governing of inflammatory gene expression. These early molecular events further defined the development of neurovascular deficit observed in mice with diabetic retinopathy. TRIB3 ablation in the streptozotocin-induced mouse model led to significant retinal ganglion cell survival and functional restoration accompanied by a dramatic reduction in pericyte loss and acellular capillary formation. Under hypoxic conditions, TRIB3 contributed to advanced proliferative stages by significant upregulation of GFAP and VEGF expression, thus controlling gliosis and aberrant vascularization in oxygen-induced retinopathy mouse retinas. Overall, our data reveal that TRIB3 is a master regulator of diabetic retinal pathophysiology that may accelerate the onset and progression of diabetic retinopathy to proliferative stages in humans and present TRIB3 as a potentially novel therapeutic target for diabetic retinopathy.


Subject(s)
Cell Cycle Proteins/genetics , Diabetic Retinopathy/genetics , Protein Serine-Threonine Kinases/antagonists & inhibitors , Repressor Proteins/genetics , Retina/metabolism , Animals , Capillaries/metabolism , Capillaries/pathology , Cell Cycle Proteins/metabolism , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Diabetic Retinopathy/metabolism , Diabetic Retinopathy/pathology , Disease Progression , Humans , Mice , Pericytes/metabolism , Pericytes/pathology , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Repressor Proteins/metabolism , Retina/pathology
18.
Microvasc Res ; 79(3): 207-16, 2010 May.
Article in English | MEDLINE | ID: mdl-20188747

ABSTRACT

Bone-marrow-derived endothelial progenitor cells (EPCs) contribute to angiogenesis-mediated pathological neovascularization, and recent studies have begun to recognize the biological significance of this contribution. This review will discuss the ability of EPCs to contribute to neovascularization in both physiological and pathological conditions. Circulating EPCs were originally identified in 1997 by Asahara as CD34(+) VEGFR2(+) mononuclear cells. These cells differentiated into an endothelial phenotype, expressed endothelial markers, and incorporated into neovessels at sites of ischemia (Asahara et al., 1997). EPCs provide both instructive (release of pro-angiogenic cytokines) and structural (vessel incorporation and stabilization) functions that contribute to the initiation of neo-angiogenesis. EPC populations can be characterized based on surface markers of freshly isolated cells, or they can be described by their in vitro characteristics once placed in culture. However, a major stumbling block to progress in the field has been the lack of consensus among investigators as to the optimal characterization of EPCs. This review intends to address the role of both EPC classes and evaluate how they interact in the setting of pathological angiogenesis. Since the EPCs may be responsible for turning on the "angiogenic switch," strategies have been employed to keep this switch in the "off" position for diseases like cancer, retinopathy, and wet AMD. The expectation is that EPCs will evolve into clinically useful prognostic and predictive tools in cancer and in ocular diseases associated with pathological neovascularization and that targeting this cell type is a key to successful management of patients suffering from diseases associated with pathological neovascularization.


Subject(s)
Endothelial Cells/pathology , Neoplasms/blood supply , Neovascularization, Pathologic/pathology , Stem Cells/pathology , Angiogenesis Inhibitors/therapeutic use , Animals , Cell Differentiation , Cell Lineage , Cell Proliferation , Endothelial Cells/drug effects , Humans , Neoplasms/drug therapy , Neovascularization, Pathologic/physiopathology , Neovascularization, Pathologic/prevention & control , Neovascularization, Physiologic , Phenotype , Retinal Neovascularization/pathology , Retinal Neovascularization/physiopathology , Stem Cell Niche , Stem Cells/drug effects
19.
Mol Ther ; 17(9): 1594-604, 2009 09.
Article in English | MEDLINE | ID: mdl-19584817

ABSTRACT

The ability to control the differentiation of adult hematopoietic stem cells (HSCs) would promote development of new cell-based therapies to treat multiple degenerative diseases. Systemic injection of NaIO(3) was used to ablate the retinal pigment epithelial (RPE) layer in C57Bl6 mice and initiate neural retinal degeneration. HSCs infected ex vivo with lentiviral vector expressing the RPE-specific gene RPE65 restored a functional RPE layer, with typical RPE phenotype including coexpression of another RPE-specific marker, CRALBP, and photoreceptor outer segment phagocytosis. Retinal degeneration was prevented and visual function, as measured by electroretinography (ERG), was restored to levels similar to that found in normal animals. None of the controls (no HSCs, HSCs alone and HSCs infected with lentiviral vector expressing LacZ) showed these effects. In vitro gene array studies demonstrated that infection of HSC with RPE65 increased adenylate cyclase mRNA. In vitro exposure of HSCs to a pharmacological agonist of adenylate cyclase also led to in vitro differentiation of HSCs to RPE-like cells expressing pigment granules and the RPE-specific marker, CRALBP. Our data confirm that expression of the cell-specific gene RPE65 promoted fate determination of HSCs toward RPE for targeted tissue repair, and did so in part by activation of adenylate cyclase signaling pathways. Expression by HSCs of single genes unique to a differentiated cell may represent a novel experimental paradigm to influence HSC plasticity, force selective differentiation, and ultimately lead to identification of pharmacological alternatives to viral gene delivery.


Subject(s)
Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/physiology , Animals , Carrier Proteins/genetics , Carrier Proteins/physiology , Cell Differentiation , Cells, Cultured , Electroretinography , Eye Proteins/genetics , Eye Proteins/physiology , Female , Genetic Vectors/genetics , Hematopoietic Stem Cells/metabolism , Humans , Immunohistochemistry , Lentivirus/genetics , Mice , Mice, Inbred C57BL , Microscopy, Electron, Transmission , Oligonucleotide Array Sequence Analysis , Polymerase Chain Reaction , Retinal Degeneration/genetics , Retinal Degeneration/metabolism , Retinal Degeneration/therapy , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology , Retinal Pigment Epithelium/ultrastructure , cis-trans-Isomerases
20.
Diabetes ; 69(9): 1875-1886, 2020 09.
Article in English | MEDLINE | ID: mdl-32669391

ABSTRACT

Individuals with diabetes suffering from coronavirus disease 2019 (COVID-19) exhibit increased morbidity and mortality compared with individuals without diabetes. In this Perspective, we critically evaluate and argue that this is due to a dysregulated renin-angiotensin system (RAS). Previously, we have shown that loss of angiotensin-I converting enzyme 2 (ACE2) promotes the ACE/angiotensin-II (Ang-II)/angiotensin type 1 receptor (AT1R) axis, a deleterious arm of RAS, unleashing its detrimental effects in diabetes. As suggested by the recent reports regarding the pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), upon entry into the host, this virus binds to the extracellular domain of ACE2 in nasal, lung, and gut epithelial cells through its spike glycoprotein subunit S1. We put forth the hypothesis that during this process, reduced ACE2 could result in clinical deterioration in COVID-19 patients with diabetes via aggravating Ang-II-dependent pathways and partly driving not only lung but also bone marrow and gastrointestinal pathology. In addition to systemic RAS, the pathophysiological response of the local RAS within the intestinal epithelium involves mechanisms distinct from that of RAS in the lung; however, both lung and gut are impacted by diabetes-induced bone marrow dysfunction. Careful targeting of the systemic and tissue RAS may optimize clinical outcomes in subjects with diabetes infected with SARS-CoV-2.


Subject(s)
Angiotensin II/metabolism , Betacoronavirus/metabolism , Coronavirus Infections/metabolism , Diabetes Mellitus/metabolism , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/metabolism , Receptor, Angiotensin, Type 1/metabolism , Renin-Angiotensin System , Angiotensin-Converting Enzyme 2 , Bone Marrow/metabolism , COVID-19 , Coronavirus Infections/mortality , Coronavirus Infections/physiopathology , Humans , Intestinal Mucosa/metabolism , Pandemics , Pneumonia, Viral/mortality , Pneumonia, Viral/physiopathology , SARS-CoV-2 , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL