Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
J Cell Mol Med ; 26(3): 813-827, 2022 02.
Article in English | MEDLINE | ID: mdl-34953037

ABSTRACT

Despite the growing recognition of ITGB3BP as an essential feature of various cancers, the relationship between ITGB3BP and glioma remains unclear. The main aim of this study was to determine the prognostic and diagnostic value of ITGB3BP in glioma. RNA-Seq and microarray data from 2222 glioma patients were included, and we found that the expression level of ITGB3BP in glioma tissues was significantly higher than that in normal brain tissues. Moreover, ITGB3BP can be considered an independent risk factor for poor prognosis and has great predictive value for the prognosis of glioma. Gene Set Enrichment Analysis results showed that ITGB3BP contributes to the poor prognosis of glioma by activating tumour-related signalling pathways. Some small-molecule drugs were identified, such as hexestrol, which may specifically inhibit ITGB3BP and be useful in the treatment of glioma. The TIMER database analysis results revealed a correlation between the expression of ITGB3BP and the infiltration of various immune cells in glioma. Our findings provide the first evidence that the up-regulation of ITGB3BP correlates with poor prognosis in human glioma. Thus, ITGB3BP is a potential new biomarker that can be used for the clinical diagnosis and treatment of glioma.


Subject(s)
Brain Neoplasms , Glioma , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Brain Neoplasms/diagnosis , Brain Neoplasms/genetics , Glioma/diagnosis , Glioma/genetics , Glioma/metabolism , Humans , Nuclear Proteins/genetics , Signal Transduction , Up-Regulation
2.
Mol Med ; 27(1): 117, 2021 09 23.
Article in English | MEDLINE | ID: mdl-34556022

ABSTRACT

BACKGROUND: GINS4, an indispensable component of the GINS complex, is vital for a variety of cancer. However, no known empirical research has focused on exploring relationships between GINS4 and glioma. Thus, this study aims to understand and explain the role of GINS4 in glioma. METHOD: First, we used the data in the CGGA, TCGA, GEO, GEPIA, and HPA databases to explore the expression level of GINS4 in glioma, the correlation between GINS4 expression and the clinical features of glioma, its impact on the survival of glioma patients, and verified the analysis results through RT-qPCR, IHC, and meta-analysis. Subsequently, GSEA enrichment analysis is used to find the potential molecular mechanism of GINS4 to promote the malignant process of glioma and the anti-glioma drugs that may target GINS4 screened by CMap analysis. Moreover, we further explored the influence of the GINS4 expression on the immune microenvironment of glioma patients through the TIMER database. RESULTS: Our results suggested that GINS4 was elevated in glioma, and the overexpression of GINS4 was connected with a vast number of clinical features. The next, GINS4 as an independent prognostic factor, which can result in an unfavorable prognosis of glioma. Once more, GINS4 may be participating in the oncogenesis of glioma through JAK-STAT signaling pathways, etc. 6-thioguanine, Doxazosin, and Emetine had potential value in the clinical application of drugs targeting GINS4. Finally, the expression exhibited a close relationship with some immune cells, especially Dendritic cells. CONCLUSION: GINS4 is an independent prognostic factor that led to a poor prognosis of glioma. The present study revealed the probable underlying molecular mechanisms of GINS4 in glioma and provided a potential target for improving the prognosis of glioma.


Subject(s)
Biomarkers, Tumor/genetics , Brain Neoplasms/genetics , Chromosomal Proteins, Non-Histone/genetics , Gene Expression Regulation, Neoplastic , Glioma/genetics , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/metabolism , Brain Neoplasms/metabolism , Cell Line, Tumor , Chromosomal Proteins, Non-Histone/metabolism , Female , Gene Expression Profiling/methods , Glioma/metabolism , Humans , Male , Middle Aged , Prognosis , RNA-Seq/methods , Signal Transduction/genetics , Survival Analysis , Tumor Microenvironment/genetics
3.
Mol Med ; 27(1): 52, 2021 05 29.
Article in English | MEDLINE | ID: mdl-34051735

ABSTRACT

BACKGROUND: XRCC2, a homologous recombination-related gene, has been reported to be associated with a variety of cancers. However, its role in glioma has not been reported. This study aimed to find out the role of XRCC2 in glioma and reveal in which glioma-specific biological processes is XRCC2 involved based on thousands of glioma samples, thereby, providing a new perspective in the treatment and prognostic evaluation of glioma. METHODS: The expression characteristics of XRCC2 in thousands of glioma samples from CGGA and TCGA databases were comprehensively analyzed. Wilcox or Kruskal test was used to analyze the expression pattern of XRCC2 in gliomas with different clinical and molecular features. The effect of XRCC2 on the prognosis of glioma patients was explored by Kaplan-Meier and Cox regression. Gene set enrichment analysis (GSEA) revealed the possible cellular mechanisms involved in XRCC2 in glioma. Connectivity map (CMap) was used to screen small molecule drugs targeting XRCC2 and the expression levels of XRCC2 were verified in glioma cells and tissues by RT-qPCR and immunohistochemical staining. RESULTS: We found the overexpression of XRCC2 in glioma. Moreover, the overexpressed XRCC2 was associated with a variety of clinical features related to prognosis. Cox and meta-analyses showed that XRCC2 is an independent risk factor for the poor prognosis of glioma. Furthermore, the results of GSEA indicated that overexpressed XRCC2 could promote malignant progression through involved signaling pathways, such as in the cell cycle. Finally, doxazosin, quinostatin, canavanine, and chrysin were identified to exert anti-glioma effects by targeting XRCC2. CONCLUSIONS: This study analyzed the expression pattern of XRCC2 in gliomas and its relationship with prognosis using multiple datasets. This is the first study to show that XRCC2, a novel oncogene, is significantly overexpressed in glioma and can lead to poor prognosis in glioma patients. XRCC2 could serve as a new biomarker for glioma diagnosis, treatment, and prognosis evaluation, thus bringing new insight into the management of glioma.


Subject(s)
Biomarkers, Tumor , DNA-Binding Proteins/genetics , Gene Expression , Glioma/genetics , Glioma/mortality , Adult , Aged , Computational Biology , DNA-Binding Proteins/metabolism , Drug Discovery , Female , Gene Expression Profiling , Glioma/diagnosis , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Neoplasm Grading , Neoplasm Staging , Prognosis , ROC Curve , Risk Factors , Signal Transduction , Structure-Activity Relationship
4.
Article in English | MEDLINE | ID: mdl-38954574

ABSTRACT

Granular-ball support vector machine (GBSVM) is a significant attempt to construct a classifier using the coarse-to-fine granularity of a granular ball as input, rather than a single data point. It is the first classifier whose input contains no points. However, the existing model has some errors, and its dual model has not been derived. As a result, the current algorithm cannot be implemented or applied. To address these problems, we fix the errors of the original model of the existing GBSVM and derive its dual model. Furthermore, a particle swarm optimization (PSO) algorithm is designed to solve the dual problem. The sequential minimal optimization (SMO) algorithm is also carefully designed to solve the dual problem. The latter is faster and more stable. The experimental results on the UCI benchmark datasets demonstrate that GBSVM is more robust and efficient. All codes have been released in the open source library available at: http://www.cquptshuyinxia.com/GBSVM.html or https://github.com/syxiaa/GBSVM.

5.
Front Oncol ; 12: 726556, 2022.
Article in English | MEDLINE | ID: mdl-35928884

ABSTRACT

Purpose: GNG12 influences a variety of tumors; however, its relationship with glioma remains unclear. The aim of this study was to comprehensively investigate the relationship between GNG12 and the clinical characteristics and prognosis of glioma patients and reveal the mechanisms causing the malignant process of GNG12. Materials and Methods: We obtained information on clinical samples from multiple databases. The expression level of GNG12 was validated using a RT-qPCR and IHC. KM curves were used to assess the correlation between the GNG12 expression and OS of glioma patients. An ROC curve was drawn to assess the predictive performance of GNG12. Univariate and multivariate Cox analyses were performed to analyze the factors affecting the prognosis of patients with glioma. GSEA and TIMER databases were used to estimate the relationship between GNG12 expression, possible molecular mechanisms, and immune cell infiltration. CMap analysis was used to screen candidate drugs for glioma. Subsequent in vitro experiments were used to validate the proliferation and migration of glioma cells and to explore the potential mechanisms by which GNG12 causes poor prognosis in gliomas. Results: GNG12 was overexpressed in glioma patients and GNG12 expression level correlated closely with clinical features, including age and histological type, etc. Subsequently, the K-M survival analysis indicated that the expression level of GNG12 was relevant to the prognosis of glioma, and the ROC curve implied that GNG12 can predict glioma stability. Univariate and multivariate analyses showed that GNG12 represents a risk factor for glioma occurrence. GNG12 expression is closely associated with some immune cells. Additionally, several in vitro experiments demonstrated that down-regulation of GNG12 expression can inhibits the proliferation and migration capacity of glioma cells. Ultimately, the results for the GSEA and WB experiments revealed that GNG12 may promote the malignant progression of gliomas by regulating the cell adhesion molecule cell signaling pathway. Conclusion: In this study, we identified GNG12 as a novel oncogene elevated in gliomas. Reducing GNG12 expression inhibits the proliferation and migration of glioma cells. In summary, GNG12 can be used as a novel biomarker for the early diagnosis of human gliomas and as a potential therapeutic target.

6.
Cell Cycle ; 21(22): 2387-2402, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35852388

ABSTRACT

HOXA4 is a novel oncogene that has been observed in many kinds of tumors, but its role during glioma carcinogenesis and its clinical significance in diagnosing and prognosis human glioma remains unknown. In the present study, the Chinese Glioma Atlas (CGGA)-RNA sequencing database, CGGA microarray, and The Cancer Genome Atlas (TCGA)-RNA seq data from 1674 glioma patients were obtained from online databases and analyzed using quantitative reverse transcription-polymerase chain reaction (RT-qPCR) to detect changes in the expression level of HOXA4 and characterize the relationship between HOXA4 and the clinical characteristics and prognosis of patients with glioma. Gene set enrichment analysis (GSEA) was used to reveal how HOXA4 regulates tumor-related pathways. HOXA4 mRNA levels in glioma tissue were higher than those in adjacent brain tissue. HOXA4 expression was also closely related to the clinical and molecular characteristics of gliomas, such as tumor grade and isocitrate dehydrogenase (IDH) mutation. Functional enrichment analysis revealed that HOXA4 could regulate cancer-related signal pathways, such as Cell cycle, Cell adhesion molecules cams, and JAK/STAT signaling pathway. Results of in vitro experiments confirmed that knockdown of HOXA4 blocks the cell cycle pathway and inhibits the proliferation, invasion and chemotherapy resistance in gliomas. We concluded that HOXA4 was an independent risk factor for glioma and may have clinical diagnostic potential. Meanwhile, our findings revealed that HOXA4 could be used as a biomarker for glioma diagnosis and treatment.


Subject(s)
Brain Neoplasms , Glioma , Humans , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Glioma/pathology , Isocitrate Dehydrogenase/genetics , Mutation/genetics , Oncogenes , Transcription Factors/genetics , Homeodomain Proteins/genetics
7.
Front Cell Dev Biol ; 9: 707906, 2021.
Article in English | MEDLINE | ID: mdl-34485294

ABSTRACT

Gliomas, particularly the advanced grade glioblastomas, have poor 5-year survival rates and worse outcomes. lncRNAs and EMT have been extensively studied in gliomas but the disease progression remains poorly understood. SNHG6 has been shown to affect glioma cell proliferation but its effect on EMT of glioma cells along with its effect on disease progression is not known. We screened four glioma cell lines; H4, A172, U87MG, and SW088 and grouped them based on high vs. low SNHG6 expression. Transfections with SNHG6 specific siRNA resulted in induction of apoptosis of high SNHG6 expressing A172 and U87MG cells. This was accompanied by inhibition of EMT and downregulation of EMT-modulating factor Notch1, ß-catenin activity and the cancer stem cell marker Sox2. The regulation was not found to be reciprocal as silencing of Notch1 and Sox2 failed to affect SNHG6 levels. The levels of SNHG6 and Notch1 were also found elevated in Grade IV glioma patients (n = 4) relative to Grade II glioma patients (n = 5). These results identify SNHG6 and Notch1 as valid targets for glioma therapy.

8.
Oncol Lett ; 21(4): 254, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33664818

ABSTRACT

The undetectable onset of glioma and the difficulty of surgery lead to a poor prognosis. Appropriate biomarkers for diagnosis and treatment need to be identified. Interleukin-1 receptor-associated kinase 4 (IRAK4) is involved in the initiation and progression of cancer. However, up until now, no report has revealed the relationship between IRAK4 and glioma. The present study aimed to examine the expression of IRAK4 in glioma, and to determine if there was a relationship between IRAK4 expression and clinical outcomes or survival prognosis. Thousands of glioma tissue samples and corresponding clinical information were obtained from various databases. Then a series of bioinformatics methods were used to reveal the role of IRAK4 in glioma. Finally, reverse transcription-quantitative PCR technology was used to verify the bioinformatics results. The study found that the expression of IRAK4 was significantly increased in glioma compared with the control brain tissue samples, and IRAK4, as an independent prognostic factor, shortened the overall survival time of patients with glioma. Gene Set Enrichment Analysis showed that IRAK4 promoted the activation of cell signalling pathways, such as NOD-like and Toll-like receptor signalling pathways. Co-expression analysis showed that the expression of IRAK4 was correlated with CMTM6, MOB1A and other genes. The present study demonstrated the role of IRAK4 as an oncogene in the pathological process of glioma for the first time, and highlights the potential of IRAK4 as a biomarker for prognostic evaluation and treatment of glioma.

9.
Exp Ther Med ; 22(5): 1224, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34539820

ABSTRACT

Studies have indicated that collagen α-1 (IV) chain (COL4A1) has an indispensable regulatory role in the complex pathological mechanisms of numerous types of malignant tumor. However, its role in the development of glioma has remained elusive. Therefore, the present study sought to determine the association between the expression levels of COL4A1 and the clinical characteristics of gliomas by analyzing large samples. First, analysis of thousands of glioma tissue samples collected from the Gene expression profiling interactive analysis, Gene Expression Omnibus database, the Ivy glioblastoma atlas, The Human Protein Atlas, Chinese Glioma Genome Atlas and The Cancer Genome Atlas. In addition, glioma tissues and normal brain tissues from patients with glioma and epilepsy undergoing surgical resection were collected. These samples, which were subjected to a variety of different detection techniques (including sequencing data, chip data, reverse transcription-quantitative PCR, cell lines and tissue samples, in situ hybridization and immunology) revealed that COL4A1 expression was not only increased at the mRNA level but also at the protein level as compared with that in normal brain tissue. Furthermore, Kaplan-Meier analysis revealed that COL4A1 expression was associated with reduced overall survival of patients, particularly those with World Health Organization grade III glioma. Receiver operating characteristic analysis suggested that COL4A1 had a moderate diagnostic value for glioma. In addition, the Mann-Whitney U-test or Kruskal-Wallis test indicated that the expression levels of COL4A1 were positively associated with the histological type and historical grade of the tumor, patient age, 'Primary, Recurrent, Secondary' type and the chemotherapy status, and negatively associated with isocitrate dehydrogenase mutation and 1p19q co-deletion (P<0.001). Gene-set enrichment analysis indicated that overexpression of COL4A1 promoted cancer-associated pathways, such as the JAK/STAT signaling pathway and cell cycle regulation. Finally, an MTT assay, immunohistochemical analysis of the cell cycle regulator KI67 and a wound-healing assay further confirmed that knockdown of COL4A1 inhibited the proliferation and migration ability of glioma cells. In conclusion, COL4A1, as a novel oncogene, is a marker for poor prognosis in patients with glioma. The present study expanded the understanding of the pathogenesis of glioma and identified COL4A1 as a potential target for the diagnosis and treatment of gliomas.

10.
PeerJ ; 9: e10820, 2021.
Article in English | MEDLINE | ID: mdl-33614284

ABSTRACT

BACKGROUND: Homeobox D11 (HOXD11) plays an important role in a variety of cancers, but its precise role in gliomas remains unclear. This study aimed to explore the relationship between HOXD11 and gliomas by combining bioinformatics methods with basic experimental validation. MATERIALS AND METHODS: Obtain gene expression information and clinical information of glioma and non-tumor brain tissue samples from multiple public databases such as TCGA (666 glioma samples), CGGA (749 glioma samples), GEPIA(163 glioblastoma samples and 207 normal control samples), GEO (GSE4290 and GSE15824). Nine cases of glioma tissue and five cases of normal control brain tissue were collected from the clinical department of Henan Provincial People's Hospital for further verification. A series of bioinformatic analysis methods were used to confirm the relationship between HOXD11 expression and overall survival and clinical molecular characteristics of patients with glioma. RT-qPCR was used to verify the change of expression level of HOXD11 in glioma cells and tissues. MTT assay, colony formation assay, wound-healing assay, immunofluorescence staining, flow cytometry and western blotting were used to detect the effect of HOXD11 on the biological behavior of glioma cell line U251. RESULTS: The high expression of HOXD11 was significantly related to age, World Health Organization (WHO) grade, chemotherapy status, histological type, and even 1p19q codeletion data and isocitrate dehydrogenase (IDH) mutation. HOXD11, as an independent risk factor, reduces the overall survival of glioma patients and has diagnostic value for the prognosis of glioma. Gene Set Enrichment Analysis (GSEA) showed that HOXD11 was significantly enriched in cell signaling pathway such as cell cycle, DNA replication and so on. Finally, we confirmed that the knockout of HOXD11 can inhibit the proliferation and invasion of U251 glioma cells, and change the biological behavior of tumor cells by preventing the progression of cell cycle. CONCLUSIONS: HOXD11 may be used as a candidate biomarker for the clinical application of targeted drug and prognostic assessment treatment of glioma. In addition, This study will help to explore the pathological mechanism of glioma.

11.
Mol Clin Oncol ; 15(3): 171, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34276990

ABSTRACT

In recent years, major discoveries have indicated that Ras homology family member C (RHOC) is involved in the occurrence and pathological progression of a number of malignant tumours; nevertheless, the role served by RHOC in glioma remains unclear. The present study aimed to gain further insight into the biological function and expression of RHOC in human glioma based on the Chinese Glioma Genome Atlas (CGGA). The current study analysed ~1,000 glioma samples from the CGGA. First, RHOC expression was analysed according to the clinical features associated with the prognosis of glioma, such as clinical stage, histological type and age. Second, the Kaplan-Meier method was used, revealing that the survival rate of patients with glioma with high RHOC expression was significantly lower than that of patients with low RHOC expression. Receiver operating characteristic curve analysis indicated that RHOC had moderate diagnostic value for patients with glioma. Gene set enrichment analysis indirectly indicated that RHOC mainly participated in the pathological mechanism of glioma through p53, extracellular matrix receptor interaction and focal adhesion. Finally, the aforementioned results were further verified using The Cancer Genome Atlas data and reverse transcription-quantitative PCR technology. To the best of our knowledge, the present study was the first comprehensive in-depth analysis of RHOC, revealing the potential value of RHOC as a novel oncogene in glioma. The current study provided a novel potential biomarker for the diagnosis and prognosis of glioma, and re-examined the pathological mechanism of glioma from a new perspective.

12.
Cancer Med ; 10(15): 5218-5234, 2021 08.
Article in English | MEDLINE | ID: mdl-34264013

ABSTRACT

BACKGROUND: The carcinogenic effect of NUP37 has been reported recently in a variety of tumors, but its research in the field of glioma has not been paid attention. The main purpose of this study is to reveal the relationship between NUP37 and prognosis or clinical characteristics of glioma patients. METHODS: First, as a retrospective study, this study included thousands of tissue samples based on a variety of public databases and clinicopathological tissues. Second, a series of bioinformatics analysis methods were used to analyze the NUP37 and glioma samples from multiple databases such as the CGGA, TCGA, GEO, HPA, and GEPIA. Third, to analyze the relationship between the expression level of NUP37 in tumor tissues and cells and a variety of clinical prognostic molecular characteristics, whether it can be an independent risk factor leading to poor prognosis in glioma and whether it has clinical diagnostic value; GSEA was used to analyze the cancer-related signaling pathways that may be activated by high expression of NUP37. Fifth, CMap was used to analyze small molecule drugs that may inhibit NUP37 expression. Finally, the meta-analysis of thousands of tissue samples from seven datasets and cell proliferation and migration experiments confirmed that NUP37 has a malignant effect on glioma. RESULTS: NUP37 is highly expressed in glioma patient tissues and glioma cells, significantly correlates with reduced overall survival, and may serve as an independent prognostic factor with some diagnostic value. Silencing NUP37 suppresses malignant biological behaviors of glioma cells. 4 small molecule drugs that had potential targeting inhibitory effects on NUP37 overexpression. CONCLUSIONS: This study demonstrates for the first time a malignant role of NUP37 in glioma and provides a vision to unravel the complex pathological mechanisms of glioma and a potentially valuable biomarker for implementing individualized diagnosis and treatment of glioma.


Subject(s)
Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Cell Proliferation/physiology , Glioma/metabolism , Glioma/pathology , Neoplasm Proteins/metabolism , Nuclear Pore Complex Proteins/metabolism , Brain Neoplasms/mortality , Cell Line, Tumor , Cell Movement , Computational Biology/methods , Databases, Factual/statistics & numerical data , Databases, Genetic , Glioma/mortality , Humans , Neoplasm Proteins/drug effects , Neoplasm Proteins/genetics , Nuclear Pore Complex Proteins/drug effects , Nuclear Pore Complex Proteins/genetics , Prognosis , Protein Array Analysis , Retrospective Studies , Signal Transduction
13.
Front Oncol ; 11: 608748, 2021.
Article in English | MEDLINE | ID: mdl-34976781

ABSTRACT

ETS transcription factor ELK3 (ELK3), a novel oncogene, affects pathological processes and progression of many cancers in human tissues. However, it remains unclear whether ELK3, as a key gene, affects the pathological process of gliomas and the prognosis of patients with gliomas. This study aimed to comprehensively and systematically reveal the correlation between ELK3 and the malignant progression of gliomas by analyzing clinical sample information stored in multiple databases. We revealed the putative mechanism of ELK3 involvement in malignant gliomas progression and identified a new and efficient biomarker for glioma diagnosis and targeted therapy. Based on the sample data from multiple databases and real-time quantitative polymerase chain reaction (RT-qPCR), the abnormally high expression of ELK3 in gliomas was confirmed. Kaplan-Meier and Cox regression analyses demonstrated that a high ELK3 expression was markedly associated with low patient survival and served as an independent biomarker of gliomas. Wilcox and Kruskal-Wallis tests revealed that expression of ELK3 was positively correlated with several clinical characteristics of patients with gliomas, such as age, WHO classification, and recurrence. Moreover, Cell Counting Kit-8 (CCK-8), immunofluorescence, and wound healing assays confirmed that ELK3 overexpression markedly promoted the proliferation and migration of glioma cells. Finally, gene set enrichment analysis (GSEA) and western blotting confirmed that overexpression of ELK3 regulated the JAK-STAT signaling pathway and upregulate the expression of signal transducer and activator of transcription 3 (STAT3) and phosphorylated STAT3 (P-STAT3) to promote the malignant transition of gliomas. Therefore, ELK3 may serve as an efficient biomarker for the diagnosis and prognosis of gliomas and it can also be used as a therapeutic target to improve the poor prognosis of patients with gliomas.

14.
Front Genet ; 12: 666106, 2021.
Article in English | MEDLINE | ID: mdl-34512713

ABSTRACT

Research has confirmed that extra spindle pole bodies-like 1 (ESPL1), an etiological factor, promotes the malignant progression of cancers. However, the relationship between ESPL1 and glioma has not yet been demonstrated. The purpose of this study was to reveal the potential mechanisms of ESPL1-mediated malignant glioma progression. Gene expression data and detailed clinical information of glioma cases were obtained from multiple public databases. Subsequently, a series of bioinformatics analyses were used to elucidate the effects of ESPL1 on glioma. The results demonstrated that the mRNA and protein levels of ESPL1 in glioma were higher than those in normal brain tissues. In addition, ESPL1 expression was considerably associated with the clinical and pathological features of gliomas, such as World Health Organization grade, histology, and 1p19q co-deletion status. Importantly, ESPL1 reduced the overall survival (OS) of glioma patients and had prognostic value for gliomas. Gene set enrichment analysis (GSEA) indirectly revealed that ESPL1 regulates the activation of cancer-related pathways, such as the cell cycle and base excision repair pathways. In addition, we used the Connectivity Map (CMap) database to screen three molecular drugs that inhibit ESPL1: thioguanosine, antimycin A, and zidovudine. Finally, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to detect the expression levels of ESPL1 in glioma cell lines. This study plays an important role in revealing the etiology of glioma by revealing the function of ESPL1, providing a potential molecular marker for the diagnosis and treatment of glioma, especially low-grade glioma.

15.
Medicine (Baltimore) ; 99(33): e21731, 2020 Aug 14.
Article in English | MEDLINE | ID: mdl-32872057

ABSTRACT

BACKGROUND: This meta-analysis was performed to incorporate newly published, high-quality randomized controlled trials (RCTs) to determine the effects of cemented versus uncemented hemiarthroplasty for elderly patients with displaced fracture of the femoral neck. METHODS: The following electronic databases were extensively searched from the inception of the database through December 2018: EMBASE, Medline, the Cochrane Library, and Web of Science. RCTs focusing on the outcomes of cemented and uncemented hemiarthroplasty were reviewed and screened for eligibility. We used the Cochrane Collaboration's Review Manager Software to perform meta-analyses. Two independent reviewers extracted the data and assessed the study quality and bias risk through the Cochrane Collaboration tool. Use fixed effect model or random effect model to pooled data. Cochran's Q statistic was used to evaluate heterogeneity, and I statistic was used to quantify heterogeneity. RESULTS: Fifteen RCTs were enrolled (n = 3790) (uncemented hemiarthroplasty group = 1015; cemented hemiarthroplasty group = 1037) (mean age ranged from 70-85.3 years; all patients > 65 years). The meta-analysis showed that cemented hemiarthroplasty has a longer operating time (weighted mean difference, 8.03; 95% confidence interval (CI) 4.83-11.23; P < .00001), less pain (odds ratio, 0.48; 95% CI 4.83-11.23; P = .02), lower mortality 1-year (odds ratio, 0.78; 95% CI 0.62-0.98; P = .03) and fewer implant-related complications (odds ratio, 0.20; 95% CI 0.13-0.30; P < .00001) than Uncemented hemiarthroplasty. However, there are still some limitations in our study, such as the uniformity of the surgery administration programme and rehabilitation scheme, and the small sample size of the included studies. CONCLUSIONS: Cemented hemiarthroplasty for elderly patients with displaced fracture of femoral neck may acquire better functional results.


Subject(s)
Bone Cements , Femoral Neck Fractures/surgery , Hemiarthroplasty/mortality , Aged , Blood Loss, Surgical , Humans , Operative Time , Postoperative Complications , Randomized Controlled Trials as Topic , Reoperation
16.
Cell Cycle ; 19(13): 1632-1640, 2020 07.
Article in English | MEDLINE | ID: mdl-32436804

ABSTRACT

In recent years, studies have revealed HOXA2 as a new oncogene, but its function is unknown in gliomas. We aimed to reveal the relationship between HOXA2 and glioma based on the Chinese Glioma Genome Atlas(CGGA) and the cancer genome atlas (TCGA). HOXA2 expression data and clinically relevant information of glioma patients were obtained from the CGGA and TCGA containing 1447 glioma tissues and five non-tumor brain tissues. The Wilcox or Kruskal tests were used to detect the correlation between the HOXA2 expression level and clinical data of glioma patients. the Kaplan-Meier method were used to examine the relationship between HOXA2 and overall patient survival. Gene set enrichment analysis (GSEA) was conducted to indirectly reveal the signaling pathways involved in HOXA2, and RT-PCR was used to detect HOXA2 expression in gliomas and non-tumor brain tissues. High HOXA2 expression was found to be positively correlated with clinical grade, histological type, age, and tumor recurrence, but negatively correlated with 1p19 codeletion and isocitrate dehydrogenase mutation status.RT-PCR results showed that HOXA2 expression levels were significantly higher in tumor tissues than in non-tumor brain tissues. GSEA showed that HOXA2 promoted the activation of the activation of the JAK-STAT-signaling pathway, focal adhesion, cell-adhesion-molecules-CAMS pathway, cytosolic DNA sensing pathway, and natural killer cell-mediated cytotoxicity. This study revealed for the first time that the novel oncogene,HOXA2, leads to poor prognosis in gliomas, and can be used as a biomarker for the diagnosis and treatment of gliomas.


Subject(s)
Brain Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Glioma/genetics , Homeodomain Proteins/genetics , Adult , Brain Neoplasms/pathology , Glioma/pathology , Homeodomain Proteins/metabolism , Humans , Kaplan-Meier Estimate , Multivariate Analysis , Phenotype , Prognosis , Reproducibility of Results , Risk Factors , Signal Transduction
17.
Medicine (Baltimore) ; 98(10): e14750, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30855470

ABSTRACT

BACKGROUND: Previous studies have reported that acupuncture combined Bobath approach (BA) can be used to treat limbs paralysis (LP) after hypertensive intracerebral hemorrhage (HICH) effectively. However, no systematic review has explored its effectiveness and safety for LP following HICH. In this systematic review, we aim to assess the effectiveness and safety of acupuncture plus BA for the treatment of LP following HICH. METHODS: The following 7 databases will be searched from their inception to the February 1, 2019: Cochrane Central Register of Controlled Trials, EMBASE, PUBMED, the Cumulative Index to Nursing and Allied Health Literature, the Allied and Complementary Medicine Database, Chinese Biomedical Literature Database, and China National Knowledge Infrastructure without any language restrictions. The randomized controlled trials (RCTs) of acupuncture plus BA that evaluate the effectiveness and safety for LP after HICH will be included. The methodological quality of all included studies will be assessed by using Cochrane risk of bias tool. Two authors will independently perform study selection, data extraction, and methodological quality evaluation. Any disagreements occurred between 2 authors will be resolved by a third author involved through discussion. Data will be pooled and analyzed by using RevMan 5.3 Software. RESULTS: This review will evaluate the effectiveness and safety of acupuncture combined BA for LP following HICH. The primary outcome is limbs function. The secondary outcomes are muscle strength, muscle tone, and quality of life, as well as the adverse events. CONCLUSION: The results of this study will summarize the latest evidence of acupuncture combined BA for LP following HICH.


Subject(s)
Acupuncture Therapy/methods , Extremities/physiopathology , Intracranial Hemorrhage, Hypertensive/complications , Paralysis , Physical Therapy Modalities , Humans , Paralysis/etiology , Paralysis/therapy , Systematic Reviews as Topic , Treatment Outcome
18.
Biomed Pharmacother ; 98: 1-8, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29241069

ABSTRACT

Pathological cardiac hypertrophy is the main determinant of the development of heart failure, for which there is often no effective therapy. The dysregulation of autophagy is implicated in hypertrophy, but the mechanism linking these processes is unclear. In this study, we characterized the regulatory role of miR-208a-3p in autophagy in H9c2 cardiomyoblasts induced by Angiotensin II (Ang II). We found that miR-208a-3p was up-regulated in Ang II-induced H9c2 cardiomyoblasts and in starvation-induced autophagy. The overexpression of miR-208a-3p increased Ang II-induced autophagy, and this was accompanied by the inhibition of programmed cell death protein (PDCD4) and upregulation of autophagy protein 5 (ATG5). A dual-luciferase report assay confirmed the direct binding between miR-208a-3p and PDCD4. PDCD4 knockdown up-regulated autophagy, and its overexpression down-regulated this process. Moreover, the PDCD4-mediated regulation of autophagy was modulated by ATG5. Taken together, these findings indicate that miR-208a-3p promotes autophagy during Ang II-induced hypertrophy and provide a basis for the development of therapies for hypertrophic-induced cardiac dysfunction.


Subject(s)
Angiotensin II/pharmacology , Apoptosis Regulatory Proteins/metabolism , Autophagy-Related Protein 5/metabolism , Autophagy/drug effects , MicroRNAs/metabolism , Myoblasts/metabolism , Myocytes, Cardiac/metabolism , Animals , Cardiomegaly/genetics , Cardiomegaly/metabolism , Cell Line , Down-Regulation/drug effects , Humans , Myoblasts/drug effects , Myocytes, Cardiac/drug effects , RNA-Binding Proteins/metabolism , Rats , Up-Regulation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL