Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Analyst ; 149(3): 836-845, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38167890

ABSTRACT

With the vigorous development of biotechnology, genetically modified organisms (GMOs) have become more and more common. In order to effectively supervise and administrate them, the rapid and accurate detection of GMOs is urgently demanded. Here, GMO gene-specific sensing methods based on colorimetry and surface-enhanced Raman scattering (SERS) were proposed based on the lateral branch cleavage function of the CRISPR/Cas12a system. Two transgenes, pCaMV35S and M810 Cry1Ab, were chosen as targets for transgenic crops. By using these methods, we performed transgenic detection on five types of maize leaves and successfully distinguished transgenic from non-transgenic samples. The colorimetric method is rapid, economical and available for field detection. The SERS approach, giving a higher sensitivity to 100 fM, is more suitable for laboratory application scenarios. This study explores practical transgenic detection approaches and will be valuable for the supervision of GMOs.


Subject(s)
CRISPR-Cas Systems , Zea mays , Plants, Genetically Modified/genetics , Zea mays/genetics , CRISPR-Cas Systems/genetics , Transgenes
2.
Talanta ; 278: 126548, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39008932

ABSTRACT

Cytokine expression is an important biomarker in understanding hypoxia microenvironments in tumor growth and metastasis. In-droplet-based immunoassays performed above the target cell membrane were employed to track the cytokines of single cells with the aid of three types of immuno-nanoprobes (one capture nanoprobe and two reporter nanoprobes). Single cells and nanoprobes were co-packaged in water-in-oil microdroplets (about 100 µm in diameter) using a cross-shaped microfluidic chip. In each droplet, capture nanoprobes would be first fixed to the cell surface by linking to membrane proteins that have been streptavidinized. Then, the capture nanoprobes can collect cell-secreted cytokines (VEGF and IL-8) by the antibodies, followed by two reporter nanoprobes that emit distinguishable fluorescence. Fluorescence imaging was utilized to record the signal outputs of two reporter probes, which reflect cytokine expressions secreted by a single tumor cell. The cytokine levels at different degrees of hypoxia induction were assessed. Multiple chemometric methods were adopted to distinguish differences in the secretion of two cytokines and the results demonstrated a positive correlation. This study developed an in-droplet, dual-target, simultaneous biosensing strategy for a single cell, which is helpful for understanding the impacts of hypoxia microenvironments on cell cytokines that are vital for assessing early cancer diagnosis and prognosis.


Subject(s)
Single-Cell Analysis , Immunoassay/methods , Humans , Single-Cell Analysis/methods , Cytokines/metabolism , Cytokines/analysis , Interleukin-8/analysis , Interleukin-8/metabolism , Vascular Endothelial Growth Factor A/analysis , Vascular Endothelial Growth Factor A/metabolism , Lab-On-A-Chip Devices , Cell Hypoxia , Hypoxia/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL