Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Zhongguo Zhong Yao Za Zhi ; 49(9): 2355-2363, 2024 May.
Article in Zh | MEDLINE | ID: mdl-38812136

ABSTRACT

This study explored the effects of 4-hydroxy-2(3H)-benzoxazolone(HBOA) on the proliferation and apoptosis of pancreatic cancer cells and its molecular mechanism. The L3.6 cells cultured in vitro were treated with HBOA of 0-1.0 mmol·L~(-1). The cell viability was detected by the cell counting kit-8(CCK-8) method, and the half inhibitory concentration(IC_(50)) was analyzed to determine the drug concentration and time. The cell morphology was observed under an inverted microscope and by acridine orange(AO) staining. The ability of proliferation and self-renewal were evaluated through live cell counting and colony formation experiments. The cell cycle progression and cell apoptosis rate were detected by flow cytometry. The morphology of cell apoptosis was observed by scanning electron microscopy. The mRNA expression of proliferating cell nuclear antigen(PCNA), cyclinA1, cyclinA2, cyclin dependent kinase 2(CDK2), and cyclin dependent kinase inhibitor 1A(P21) were determined by qPCR. The level of reactive oxygen species(ROS), lipid peroxide, and mitochondrial membrane potential were measured by flow cytometry. The activity of protein kinase B(Akt)/mammalian target of rapamycin(mTOR) signaling pathway was detected by Western blot. Compared with the control group, the cells treated with HBOA exhibited a significant decrease in viability. Then the optimal concentration and intervention time of HBOA were determined to be 0.4 mmol·L~(-1), 0.6 mmol·L~(-1), and 48 h. Compared with the control group, groups with HBOA of 0.4 mmol·L~(-1 )and 0.6 mmol·L~(-1) showed a significant suppression in cell proliferation and colony formation ability, down-regulated mRNA of PCNA, cyclinA1, cyclinA2, and CDK2, up-regulated P21 mRNA, S-phase cell cycle arrest, and increased cell apoptosis rate. There was an appearance of apoptotic bodies, increased ROS and lipid peroxide, decreased mitochondrial membrane potential(with a significant decrease in 0.6 mmol·L~(-1) group), and down-regulated p-Akt and p-mTOR proteins. The results show that HBOA inhibits the proliferation of pancreatic cancer L3.6 cells and induces cell apoptosis, which may be related to the increase in reactive oxygen species and the inhibition of the Akt/mTOR pathway.


Subject(s)
Apoptosis , Cell Proliferation , Pancreatic Neoplasms , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/metabolism , Cell Proliferation/drug effects , Apoptosis/drug effects , Humans , Cell Line, Tumor , Benzoxazoles/pharmacology , Proliferating Cell Nuclear Antigen/genetics , Proliferating Cell Nuclear Antigen/metabolism , Cell Cycle/drug effects , Cyclin-Dependent Kinase 2/genetics , Cyclin-Dependent Kinase 2/metabolism , Cell Survival/drug effects , Reactive Oxygen Species/metabolism
2.
Eur Radiol ; 33(5): 3478-3487, 2023 May.
Article in English | MEDLINE | ID: mdl-36512047

ABSTRACT

OBJECTIVES: Accurate detection of carotid plaque using ultrasound (US) is essential for preventing stroke. However, the diagnostic performance of junior radiologists (with approximately 1 year of experience in carotid US evaluation) is relatively poor. We thus aim to develop a deep learning (DL) model based on US videos to improve junior radiologists' performance in plaque detection. METHODS: This multicenter prospective study was conducted at five hospitals. CaroNet-Dynamic automatically detected carotid plaque from carotid transverse US videos allowing clinical detection. Model performance was evaluated using expert annotations (with more than 10 years of experience in carotid US evaluation) as the ground truth. Model robustness was investigated on different plaque characteristics and US scanning systems. Furthermore, its clinical applicability was evaluated by comparing the junior radiologists' diagnoses with and without DL-model assistance. RESULTS: A total of 1647 videos from 825 patients were evaluated. The DL model yielded high performance with sensitivities of 87.03% and 94.17%, specificities of 82.07% and 74.04%, and areas under the receiver operating characteristic curve of 0.845 and 0.841 on the internal and multicenter external test sets, respectively. Moreover, no significant difference in performance was noted among different plaque characteristics and scanning systems. Using the DL model, the performance of the junior radiologists improved significantly, especially in terms of sensitivity (largest increase from 46.3 to 94.44%). CONCLUSIONS: The DL model based on US videos corresponding to real examinations showed robust performance for plaque detection and significantly improved the diagnostic performance of junior radiologists. KEY POINTS: • The deep learning model based on US videos conforming to real examinations showed robust performance for plaque detection. • Computer-aided diagnosis can significantly improve the diagnostic performance of junior radiologists in clinical practice.


Subject(s)
Deep Learning , Humans , Prospective Studies , Carotid Arteries/diagnostic imaging , Diagnosis, Computer-Assisted , Ultrasonography
3.
J Nanobiotechnology ; 21(1): 258, 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37550685

ABSTRACT

The development of osteoarthritis (OA) correlates with the expansion of senescent cells in cartilage, which contributes to an inflammatory microenvironment that accelerates matrix degradation and hampers cartilage generation. To address OA, we synthesized small copper sulfide nanoparticles functionalized with anti-beta-2-microglobulin antibodies (B2M-CuS NPs) that catalyze the formation of toxic •OH from H2O2 via peroxidase-like activity. These B2M-CuS NPs are specifically targeted to induce apoptosis in senescent chondrocytes while showing no toxicity toward normal chondrocytes. Furthermore, B2M-CuS NPs enhance the chondrogenesis of normal chondrocytes. Thus, B2M-CuS NPs can effectively treat OA by clearing senescent chondrocytes and promoting cartilage regeneration after intra-articular injection into the knee joints of surgery-induced OA mice. This study uses smart nanomaterials to treat OA with a synergistic strategy that both remodels senescent cartilage and creates a pro-chondrogenic microenvironment.


Subject(s)
Nanoparticles , Osteoarthritis , Mice , Animals , Copper Sulfate , Chondrogenesis , Hydrogen Peroxide , Cartilage/metabolism , Osteoarthritis/drug therapy , Osteoarthritis/metabolism
4.
Biomed Chromatogr ; 37(5): e5609, 2023 May.
Article in English | MEDLINE | ID: mdl-36811170

ABSTRACT

Post-menopausal osteoporosis (PMOP) is a common metabolic bone malady characterized by bone mass loss and bone microarchitectural deterioration; however, there is currently no effective drug for its management. According to our previous study, oroxylin A (OA) could effectively protect ovariectomized (OVX)-osteoporotic mice from bone loss; however, its therapeutic targets are still unclear. From a metabolomic perspective, we studied serum metabolic profiles to discover potential biomarkers and OVX-related metabolic networks, which could assist us to comprehend the impact of OA on OVX. Five metabolites were identified as biomarkers associated with 10 related metabolic pathways, including phenylalanine, tyrosine and tryptophan biosynthesis, and phenylalanine, tryptophan and glycerophospholipid metabolism. After OA treatment, the expression of multiple biomarkers changed, with lysophosphatidylcholine (18:2) being a major significantly regulated biomarker. Our study demonstrated that OA's effects on OVX are probably related to the regulation of phenylalanine, tyrosine and tryptophan biosynthesis. Our findings explain the role of OA against PMOP in terms of metabolism and pharmacology and provide a pharmacological foundation for OA treatment of PMOP.


Subject(s)
Osteoporosis, Postmenopausal , Animals , Female , Humans , Mice , Biomarkers , Metabolomics , Osteoporosis, Postmenopausal/drug therapy , Osteoporosis, Postmenopausal/metabolism , Phenylalanine , Tryptophan , Tyrosine , Mass Spectrometry
5.
Mikrochim Acta ; 190(11): 433, 2023 10 09.
Article in English | MEDLINE | ID: mdl-37814099

ABSTRACT

A chiral sensor for the electrochemical identification of tryptophan (Trp) isomers is described. The electrochemical sensor was prepared based on the combination of (a) carbon black (CB-COOH) as conductive material, (b) Cu2+-modified ß-cyclodextrin (Cu-ß-CD), and (c) ß-CD-based metal-organic frameworks (ß-CD-MOF) as chiral selectors. The Cu-ß-CD can be self-assembled into the CB-COOH and ß-CD-MOF through electrostatic interactions, which was characterized by zeta potential analysis. UV-vis spectroscopy proved that Cu-ß-CD displays a higher combination for D-Trp than L-Trp, and the ß-CD-MOF at the surface of the GCE has a higher affinity for L-Trp than D-Trp, which endow an easier permeation of L-Trp to the surface of the electrode, thus leading to a larger electrochemical signal of differential pulse voltammetry (DPV). The enantioselectivity for L-Trp over D-Trp (IL/ID) is 2.13, with a low detection limit for D-Trp (11.18 µM) and L-Trp (5.48 µM). In addition, the proposed chiral sensor can be chosen to determine  the percentage of D-Trp in enantiomer mixture solutions and real sample detection with a recovery from 98.2 to 102.8% for L-Trp and 97.9 to 101.1% for D-Trp.


Subject(s)
Tryptophan , beta-Cyclodextrins , Tryptophan/chemistry , Soot , Electrochemical Techniques/methods , beta-Cyclodextrins/chemistry , Stereoisomerism
6.
Molecules ; 28(13)2023 Jun 24.
Article in English | MEDLINE | ID: mdl-37446628

ABSTRACT

To reduce the issue of tri-primary color reabsorption, a new approach for single-phase phosphors as light-emitting diodes (LEDs) has been recommended. The structures, morphology, photoluminescence, thermal stability, and luminescence mechanism of a variety of Ca3Bi (PO4)3 (CBPO): Ce3+/Dy3+ phosphors were investigated. XRD characterization showed that all CBPO samples were eulytite structures. Furthermore, the energy transfer process from Ce3+ to Dy3+ in CBPO is systematically investigated in this work, and the color of light can be adjusted by changing the ratio of doped ions. Under UV light, energy is transferred from Ce3+-Dy3+ mainly through quadrupole-quadrupole interactions in the CBPO host, and doping with different Dy3+ concentrations tunes the emission color from blue to white. The thermal stability of the CBPO: 0.04Ce3+, 0.08Dy3+ samples is outstanding, and the CIE coordinates of the samples after emission have little effect with temperature, while their emission intensity at 423 K is as strong as that at room temperature, reaching 90%. The above results indicate that this CBPO material has great potential as a white light phosphor under near-UV excitation at the optimized concentration of Ce3+ and Dy3+.


Subject(s)
Dysprosium , Luminescence , Dysprosium/chemistry , Ultraviolet Rays , Energy Transfer , Temperature
7.
Reprod Biomed Online ; 45(6): 1197-1206, 2022 12.
Article in English | MEDLINE | ID: mdl-36075848

ABSTRACT

RESEARCH QUESTION: Can a novel deep learning-based follicle volume biomarker using three-dimensional ultrasound (3D-US) be established to aid in the assessment of oocyte maturity, timing of HCG administration and the individual prediction of ovarian hyper-response? DESIGN: A total of 515 IVF cases were enrolled, and 3D-US scanning was carried out on HCG administration day. A follicle volume biomarker established by means of a deep learning-based segmentation algorithm was used to calculate optimal leading follicle volume for predicting number of mature oocytes retrieved and optimizing HCG trigger timing. Performance of the novel biomarker cut-off value was compared with conventional two-dimensional ultrasound (2D-US) follicular diameter measurements in assessing oocyte retrieval outcome. Moreover, demographics, infertility work-up and ultrasound biomarkers were used to build models for predicting ovarian hyper-response. RESULTS: On the basis of the deep learning method, the optimal cut-off value of the follicle volume biomarker was determined to be 0.5 cm3 for predicting number of mature oocytes retrieved; its performance was significantly better than the conventional method (two-dimensional diameter measurement ≥10 mm). The cut-off value for leading follicle volume to optimize HCG trigger timing was determined to be 3.0 cm3 and was significantly associated with a higher number of mature oocytes retrieved (P = 0.01). Accuracy of the multi-layer perceptron model was better than two-dimensional diameter measurement (0.890 versus 0.785) and other multivariate classifiers in predicting ovarian hyper-response (P < 0.001). CONCLUSIONS: Deep learning segmentation methods and multivariate classifiers based on 3D-US were found to be potentially effective approaches for assessing mature oocyte retrieval outcome and individual prediction of ovarian hyper-response.


Subject(s)
Artificial Intelligence , Ovulation Induction , Female , Animals , Ovulation Induction/methods , Oocytes/physiology , Prospective Studies , Oocyte Retrieval/methods , Biomarkers , Fertilization in Vitro/methods
8.
Pharmacol Res ; 184: 106400, 2022 10.
Article in English | MEDLINE | ID: mdl-35988868

ABSTRACT

BACKGROUND AND OBJECTIVE: Bone loss occurs in several inflammatory diseases because of chronic persistent inflammation that activates osteoclasts (OCs) to increase bone resorption. Currently available antiresorptive drugs have severe side effects or contraindications. Herein, we explored the effects and mechanism of Alpinetin (Alp) on receptor activator of nuclear factor κB ligand (RANKL)-mediated OCs differentiation, function, and in inflammatory osteolysis of mice. METHOD: Primary mouse bone marrow-derived macrophages (BMMs) induced by RANKL and macrophage colony-stimulating factor (M-CSF) were utilized to test the impact of Alp on OCs differentiation, function, and intracellular reactive oxygen species (ROS) production, respectively. Expression of oxidant stress relevant factors and OCs specific genes were assessed via real-time quantitative PCR. Further, oxidative stress-related factors, NF-κB, MAPK, PI3K/AKT/GSK3-ß, and NFATc1 pathways were examined via Western blot. Finally, LPS-induced mouse calvarial osteolysis was used to investigate the effect of Alp on inflammatory osteolysis in vivo. RESULT: Alp suppressed OCs differentiation and resorption function, and down-regulated the ROS production. Alp inhibited IL-1ß, TNF-α and osteoclast-specific gene transcription. It also blocked the gene and protein expression of Nox1 and Keap1, but enhanced Nrf2, CAT, and HO-1 protein levels. Additionally, Alp suppressed the phosphorylation of PI3K and P38, and restrained the expression of osteoclast-specific gene Nfatc1 and its auto-amplification, hence minimizing LPS-induced osteolysis in mice. CONCLUSION: Alp is a novel candidate or therapeutics for the osteoclast-associated inflammatory osteolytic ailment.


Subject(s)
Bone Density Conservation Agents , Osteolysis , Animals , Bone Density Conservation Agents/pharmacology , Cell Differentiation , Flavanones , Glycogen Synthase Kinase 3/metabolism , Inflammation/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Lipopolysaccharides/pharmacology , Macrophage Colony-Stimulating Factor/metabolism , Macrophage Colony-Stimulating Factor/pharmacology , Macrophage Colony-Stimulating Factor/therapeutic use , Mice , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Osteoclasts , Osteolysis/chemically induced , Osteolysis/drug therapy , Oxidants/metabolism , Oxidants/pharmacology , Oxidants/therapeutic use , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RANK Ligand/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism
9.
J Biochem Mol Toxicol ; 36(7): e23049, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35307913

ABSTRACT

Chinese herbal medicine has well-established therapeutic effects in various diseases. Corilagin (Cor), a gallic acid tannin in Phyllanthus niruri L., has anti-inflammatory and antioxidant effects in many diseases. However, its role in osteoclast-related bone diseases has not been determined. In vitro, bone marrow macrophages (BMMs) were extracted and isolated to differentiate into osteoclasts. The effects of Cor on osteoclast formation, bone resorption, and reactive oxygen species (ROS) production were performed. In addition, quantitative real-time polymerase chain reaction and western blot analysis were used to evaluate the effect of Cor on oxidative stress-related pathways, which are nuclear factors-κB ligand-receptor activator (RANKL) stimulates important downstream pathways. Furthermore, microcomputed tomography and bone histomorphometry were performed to analyze the therapeutic effect of Cor in mouse models of lipopolysaccharide (LPS)-mediated bone defects in vivo. Cor influenced the nuclear factor of activated T cells 1 (NFATc1) signaling pathway and reduced ROS in RANKL-treated osteoclasts, thereby inhibiting osteoclast formation and bone resorption. Moreover, Cor protected against LPS-mediated skull defects in vivo. In sum, our results confirm that Cor can inhibit osteoclastogenesis and intracellular oxidative stress. In addition, the inflammatory bone defect induced by LPS was also attenuated by Cor. Accordingly, Cor is a new candidate therapeutic agent for osteoclast-mediated osteolytic diseases.


Subject(s)
Osteoclasts , Osteolysis , Animals , Cell Differentiation , Glucosides , Hydrolyzable Tannins , Lipopolysaccharides/pharmacology , Mice , Mice, Inbred C57BL , Osteoclasts/metabolism , Osteogenesis , Osteolysis/chemically induced , Osteolysis/drug therapy , Osteolysis/metabolism , Reactive Oxygen Species/metabolism , X-Ray Microtomography
10.
BMC Musculoskelet Disord ; 23(1): 465, 2022 May 17.
Article in English | MEDLINE | ID: mdl-35581617

ABSTRACT

BACKGROUND: Diabetes-associated osteoporosis are partly caused by accumulation of advanced glycation endproducts (AGEs). Glucagon-like peptide-1 (GLP-1) has been shown to regulate bone turnover. Here we explore whether GLP-1 receptor agonist (GLP1RA) can have a beneficial effect on bone in diabetes by ameliorating AGEs. METHODS: In the present study, we evaluated the effects of the GLP-1 receptor agonist liraglutide, insulin and dipeptidyl peptidase-4 inhibitor saxagliptin on Zucker diabetic fatty rats. Meanwhile, we observed the effect of GLP-1 on AGEs-mediated osteoblast proliferation and differentiation and the signal pathway. RESULTS: Liraglutide prevented the deterioration of trabecular microarchitecture and enhanced bone strength. Moreover, it increased serum Alpl, Ocn and P1NP levels and decreased serum CTX. In vitro we confirmed that GLP-1 could attenuate AGEs-mediated damage in osteogenic proliferation and differentiation. Besides, GLP-1 down-regulated the ROS that caused by AGEs and the mRNA and protein expression of Rage . CONCLUSIONS: Altogether, our findings suggest that GLP-1 receptor agonist promotes osteoblastogenesis and suppresses bone resorption on obese type 2 diabetic rats to a certain degree. The mechanism of these effects may be partly mediated by AGEs-RAGE-ROS pathway via the interaction with GLP-1 receptor.


Subject(s)
Diabetes Mellitus, Experimental , Osteoporosis , Animals , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide 1/pharmacology , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/metabolism , Humans , Liraglutide/pharmacology , Liraglutide/therapeutic use , Osteoporosis/drug therapy , Osteoporosis/etiology , Rats , Rats, Zucker , Reactive Oxygen Species/metabolism
11.
J Cell Physiol ; 236(2): 1432-1444, 2021 02.
Article in English | MEDLINE | ID: mdl-32853427

ABSTRACT

Revision operations have become a new issue after successful artificial joint replacements, and periprosthetic osteolysis leading to prosthetic loosening is the main cause of why the overactivation of osteoclasts (OCs) plays an important role. The effect of biochanin A (BCA) has been examined in osteoporosis, but no study on the role of BCA in prosthetic loosening osteolysis has been conducted yet. In this study, we utilised enzyme-linked immunosorbent assay, computed tomography imaging, and histological analysis. Results showed that BCA downregulated the secretion levels of tumor necrosis factor-α, interleukin-1α (IL-1α), and IL-1ß to suppress inflammatory responses. The secretion levels of receptor-activated nuclear factor-κB ligand, CTX-1, and osteoclast-associated receptor as well as Ti-induced osteolysis were also reduced. BCA effectively inhibited osteoclastogenesis and suppressed hydroxyapatite resorption by downregulating OC-related genes in vitro. Analysis of mechanisms indicated that BCA inhibited the signalling pathways of mitogen-activated protein kinase (P38, extracellular signal-regulated kinase, and c-JUN N-terminal kinase) and nuclear factor-κB (inhibitor κB-α and P65), thereby downregulating the expression of nuclear factor of activated T cell 1 and c-Fos. In conclusion, BCA may be an alternative choice for the prevention of prosthetic loosening caused by OCs.


Subject(s)
Bone Resorption/genetics , Genistein/pharmacology , Inflammation/genetics , Osteogenesis/genetics , Osteoporosis/genetics , Animals , Arthroplasty, Replacement/adverse effects , Bone Resorption/chemically induced , Bone Resorption/pathology , Bone Resorption/prevention & control , Cell Line , Durapatite/chemistry , Durapatite/metabolism , Extracellular Signal-Regulated MAP Kinases/genetics , Gene Expression Regulation, Developmental/drug effects , Humans , Inflammation/chemically induced , Inflammation/pathology , Inflammation/prevention & control , Interleukin-1alpha/genetics , Interleukin-1beta/genetics , Mice , NF-kappa B/genetics , Osteoclasts/drug effects , Osteoclasts/pathology , Osteolysis/genetics , Osteolysis/pathology , Osteolysis/prevention & control , Osteoporosis/chemically induced , Osteoporosis/pathology , Osteoporosis/prevention & control , Prostheses and Implants/adverse effects , Signal Transduction/drug effects , Titanium/toxicity , Tumor Necrosis Factor-alpha/genetics
12.
J Cell Physiol ; 234(10): 17812-17823, 2019 08.
Article in English | MEDLINE | ID: mdl-30815894

ABSTRACT

Aseptic prosthetic loosening and periprosthetic infection resulting in inflammatory osteolysis is a leading complication of total joint arthroplasty (TJA). Excessive bone destruction around the bone and prosthesis interface plays a key role in the loosening prostheses leading to revision surgery. The bacterial endotoxins or implant-derived wear particles-induced inflammatory response is the major cause of the elevated osteoclast formation and activity. Thus, agents or compounds that can attenuate the inflammatory response and/or inhibit the elevated osteoclastogenesis and excessive bone resorption would provide a promising therapeutic avenue to prevent aseptic prosthetic loosening in TJA. Daphnetin (DAP), a natural coumarin derivative, is clinically used in Traditional Chinese Medicine for the treatment of rheumatoid arthritis due to its anti-inflammatory properties. In this study, we report for the first time that DAP could protect against lipopolysaccharide-induced inflammatory bone destruction in a murine calvarial osteolysis model in vivo. This protective effect of DAP can in part be attributed to its direct inhibitory effect on RANKL-induced osteoclast differentiation, fusion, and bone resorption in vitro. Biochemical analysis found that DAP inhibited the activation of the ERK and NFATc1 signaling cascades. Collectively, our findings suggest that DAP as a natural compound has potential for the treatment of inflammatory osteolysis.


Subject(s)
MAP Kinase Signaling System/drug effects , NFATC Transcription Factors/metabolism , Osteogenesis/drug effects , Osteolysis/drug therapy , RANK Ligand/metabolism , Signal Transduction/drug effects , Umbelliferones/pharmacology , Animals , Anti-Inflammatory Agents/pharmacology , Bone Resorption/drug therapy , Bone Resorption/metabolism , Cell Differentiation/drug effects , Cell Line , Inflammation/drug therapy , Inflammation/metabolism , Lipopolysaccharides/pharmacology , Male , Mice , Mice, Inbred C57BL , Osteoclasts/drug effects , Osteoclasts/metabolism , Osteolysis/chemically induced , Osteolysis/metabolism , RAW 264.7 Cells
13.
Health Sci Rep ; 7(2): e1859, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38410497

ABSTRACT

Background: Thyroid cancer (TC) is a prevalent and increasingly common malignant tumor. In most cases, TC progresses slowly and runs a virtually benign course. However, challenges remain with the treatment of refractory TC, which does not respond to traditional management or is subject to relapse or metastasis. Therefore, new therapeutic regimens for TC patients with poor outcomes are urgently needed. Methods: The differentially expressed RNAs were identified from the expression profile data of RNA from TC downloaded from The Cancer Genome Atlas database. Multiple databases were utilized to investigate the regulatory relationship among RNAs. Subsequently, a competitive endogenous RNA (ceRNA) network was established to elucidate the ceRNA axis that is responsible for the clinical prognosis of TC. To understand the potential mechanism of ceRNA axis in TC, location analysis, functional enrichment analysis, and immune-related analysis were conducted. Results: A ceRNA network of TC was constructed, and the TIMP3/hsa-miR-181b-5p/PAX8-AS1 ceRNA axis associated with the prognosis of TC was successfully identified. Our results showed that the axis might influence the prognosis of TC through its regulation of regulating tumor immunity. Conclusions: Our findings provide evidence that TIMP3/hsa-miR-181b-5p/PAX8-AS1 axis is significantly related to the prognosis of TC. The molecules involved in this axis may serve as novel therapeutic approaches for TC treatment.

14.
J Orthop Surg Res ; 19(1): 350, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38867234

ABSTRACT

OBJECTIVES: The objectives of this paper is to conduct a bibliometric analysis to examine the research status and development trend of anterior cruciate ligament injury and reconstruction in children and adolescents over the past 20 years. DESIGN: Descriptive Research. METHODS: This study obtained information regarding studies on Anterior Cruciate Ligament Reconstruction in Children and Adolescents from the Web of Science Core Collection database. Visual and bibliometric analysis were conducted using VOSviewer, Origin 2022, Pajek64 5.18and Excel 2019. These analytic tools facilitated the analysis of various aspects, including countries/regions, institutions, authors, journals and keywords related to the research. RESULTS: From 2003 to 2023, a total of 1328 articles were retrieved in WOS, and 637 articles were selected by two authors. The most productive institutions are Childrens Hosp Philadelphia, Kocher, ms. Their articles have the highest number of publications and citations. The American journal of sports medicine is the most frequently cited journal for articles on anterior cruciate ligament reconstruction in children and adolescents. The most common keywords used in these articles were "anterior cruciate ligament reconstruction", "injury, children, adolescent", and "skeletally immature patients". CONCLUSIONS: This study provides valuable insights into the research focus of anterior cruciate ligament reconstruction in children and adolescents. In recent years, there has been significant attention paid to areas of "the return to sport, re-repture rate and functional recovery after anterior cruciate ligament reconstruction" in this specific population. These aspects have emerged as key directions for future research in this field.


Subject(s)
Anterior Cruciate Ligament Injuries , Anterior Cruciate Ligament Reconstruction , Bibliometrics , Humans , Anterior Cruciate Ligament Reconstruction/trends , Anterior Cruciate Ligament Reconstruction/methods , Adolescent , Child , Anterior Cruciate Ligament Injuries/surgery
15.
Zootaxa ; 5301(2): 246-256, 2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37518563

ABSTRACT

The genus Pluma, gen. nov. is established to accommodate two new species of limacodid moths, P. shuni sp. nov. and P. yuensis sp. nov., from South China. Based on morphological and molecular characters, the species cannot be placed in any existing genus and therefore they placed in the newly erected one. The new taxa are supported by morphological characters and DNA barcode data. Male adults, including wing venation and genitalia, are illustrated, along with a barcode-based tree.


Subject(s)
Lepidoptera , Moths , Animals , Moths/genetics , Genitalia , China , Trees , Animal Distribution
16.
Sci Total Environ ; 873: 162334, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36813204

ABSTRACT

Aminated lignin (AL) was prepared and first applied to remediation of cadmium (Cd) pollution in soil. Meanwhile, the nitrogen mineralization characteristics of AL in soil and its effect on soil physicochemical properties were elucidated by soil incubation experiment. The results showed that the Cd availability was dramatically lowered in soil by adding the AL. The DTPA-extractable Cd content of AL treatments was considerably reduced by 40.7-71.4 %. The soil pH (5.77-7.01) and absolute value of zeta potential (30.7-34.7 mV) enhanced simultaneously as the AL additions increased. The content of soil organic matter (SOM) (99.0-264.0 %) and total nitrogen (95.9-301.3 %) were gradually enhanced due to high C (63.31 %) and N (9.69 %) content in AL. Moreover, AL significantly elevated the content of mineral nitrogen (77.2-142.4 %) and available nitrogen (95.5-301.7 %). The first-order kinetic equation of soil nitrogen mineralization revealed that AL greatly enhanced nitrogen mineralization potential (84.7-143.9 %) and reduced environmental pollution by lowering the loss of soil inorganic nitrogen. AL could effectively reduce the availability of Cd through direct (self-adsorption) and indirect effects (improvement of soil pH, SOM and reduction of soil zeta potential), thereby achieving passivation of Cd in soil. In short, this work will develop a novel approach and technical support for soil heavy metal remediation, which is of great significance for improving the sustainable development of agricultural production.

17.
Zootaxa ; 5323(3): 429-434, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-38220956

ABSTRACT

A new species of Griseothosea nigrifasciata sp. nov. is described and illustrated from Wuyishan National Park, Fujian province, China. It differs from other members of Griseothosea by the male genitalia: uncus with strongly curved lateral margin, juxta with two finger-shaped protrusion apically, and aedeagus shorter and slenderer. The new species is supported molecularly by the analysis of a 658 bp fragment of the COI gene. A key to Griseothosea is provided.


Subject(s)
Lepidoptera , Moths , Male , Animals , Moths/genetics , Parks, Recreational , Genitalia , Animal Distribution , China
19.
Biomed Pharmacother ; 161: 114508, 2023 May.
Article in English | MEDLINE | ID: mdl-37002582

ABSTRACT

Heterotopic ossification (HO) denotes the presence of mature bone tissue in soft tissues or around joints. Inflammation is a key driver of traumatic HO, and macrophages play an important role in this process. Ethyl caffeate (ECF), a critical active compound found in Petunia, exerts significant anti-inflammatory effects. Herein, we established a mouse model of HO by transection of the Achilles tendon and back burn and found abundant macrophage infiltration in the early stage of HO, which decreased with time. In vitro and in vivo experiments indicated that ECF inhibited macrophage polarization, and mechanistic studies showed that it inhibited the SIRT1/NF-κB signalling pathway, thereby suppressing the release of downstream inflammatory cytokines. ECF reduced HO in mice, and its effect was comparable to indomethacin (INDO). In vitro studies revealed that ECF did not directly affect the mineralization of mesenchymal stem cells (MSCs) or osteogenic differentiation but inhibited these processes by reducing the level of inflammatory cytokines in the conditioned medium (CM). Thus, M1 macrophages may play a crucial role in the pathogenesis of HO, and ECF is a prospective candidate for the prevention of trauma-induced HO. DATA AVAILABILITY: Data will be made available on request.


Subject(s)
NF-kappa B , Ossification, Heterotopic , Mice , Animals , NF-kappa B/metabolism , Osteogenesis , Sirtuin 1 , Macrophages/metabolism , Cytokines/pharmacology
20.
Int J Mol Med ; 51(5)2023 May.
Article in English | MEDLINE | ID: mdl-37052260

ABSTRACT

Postmenopausal osteoporosis is a systemic metabolic disease that chronically endangers public health and is typically characterized by low bone mineral density and marked bone fragility. The excessive bone resorption activity of osteoclasts is a major factor in the pathogenesis of osteoporosis; therefore, strategies aimed at inhibiting osteoclast activity may prevent bone decline and attenuate the process of osteoporosis. Casticin (Cas), a natural compound, has anti­inflammatory and antitumor properties. However, the role of Cas in bone metabolism remains largely unclear. The present study found that the receptor activator of nuclear factor­κΒ (NF­κB) ligand­induced osteoclast activation and differentiation were inhibited by Cas. Tartrate­resistant acid phosphatase staining revealed that Cas inhibited osteoclast differentiation, and bone resorption pit assays demonstrated that Cas affected the function of osteoclasts. Cas significantly reduced the expression of osteoclast­specific genes and related proteins, such as nuclear factor of activated T cells, cytoplasmic 1 and c­Fos at the mRNA and protein level in a concentration­dependent manner. Cas inhibited osteoclast formation by blocking the AKT/ERK and NF­κB signaling pathways, according to the intracellular signaling analysis. The microcomputed tomography and tissue staining of tibiae from ovariectomized mice revealed that Cas prevented the bone loss induced by estrogen deficiency and reduced osteoclast activity in vivo. Collectively, these findings indicated that Cas may be used to prevent osteoporosis.


Subject(s)
Bone Diseases, Metabolic , Bone Resorption , Osteoporosis , Female , Animals , Mice , Humans , Osteogenesis , NF-kappa B/metabolism , Proto-Oncogene Proteins c-akt/metabolism , X-Ray Microtomography/adverse effects , Signal Transduction , Osteoclasts/metabolism , Bone Resorption/drug therapy , Bone Resorption/etiology , Bone Resorption/prevention & control , Cell Differentiation , Osteoporosis/drug therapy , Osteoporosis/etiology , Osteoporosis/prevention & control , Bone Diseases, Metabolic/complications , Bone Diseases, Metabolic/metabolism , Bone Diseases, Metabolic/pathology , Ovariectomy/adverse effects , RANK Ligand/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL