Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 140
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Lab Invest ; 104(6): 102058, 2024 06.
Article in English | MEDLINE | ID: mdl-38626874

ABSTRACT

In clinical practice, programmed death ligand 1 (PD-L1) detection is prone to nonspecific staining due to the complex cellular composition of pleural effusion smears. In this study, diaminobenzidine (DAB) and 3-amino-9-ethylcarbazole (AEC) immunohistochemistry double staining was performed to investigate PD-L1 expression in tumor cells from malignant pleural effusion (MPE). MPE was considered as a metastasis in non-small cell lung cancer patients; thus, the heterogeneity between metastatic and primary lung cancer was revealed as well. Ninety paired specimens of MPE cell blocks and matched primary lung cancer tissues from non-small cell lung cancer patients were subjected to PD-L1 and thyroid transcription factor-1(TTF-1)/p63 immunohistochemistry double staining. Two experienced pathologists independently evaluated PD-L1 expression using 3 cutoffs (1%, 10%, and 50%). PD-L1 expression in MPE was strongly correlated with that in matched primary lung cancer tissues (R = 0.813; P < .001). Using a 4-tier scale (cutoffs: 1%, 10%, and 50%), the concordance was 71.1% (Cohen's κ = .534). Using a 2-tier scale, the concordance was 75.6% (1%, Cohen's κ = 0.53), 78.9% (10%, Cohen's κ = 0.574), and 95.6% (50%, Cohen's κ = 0.754). The rates of PD-L1 positivity in MPE (56.7%) were higher than that in lung tissues (32.2%). All 27 discordant cases had higher scores in MPE. The double-staining method provided superior identification of PD-L1-positive tumor cells on a background with nonspecific staining. In conclusion, PD-L1 expression was moderately concordant between metastatic MPE cell blocks and matched primary lung carcinoma tissues, with variability related to tumor heterogeneity. MPE should be considered to detect PD-L1 when histological specimens are unattainable, especially when PD-L1 expression is >50%. PD-L1 positivity rates were higher in MPE. Double staining can improve PD-L1 detection by reducing false-negative/positive results.


Subject(s)
B7-H1 Antigen , Carcinoma, Non-Small-Cell Lung , Immunohistochemistry , Lung Neoplasms , Humans , B7-H1 Antigen/metabolism , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Female , Male , Middle Aged , Aged , Pleural Effusion, Malignant/metabolism , Pleural Effusion, Malignant/pathology , Aged, 80 and over , Adult , Biomarkers, Tumor/metabolism
2.
BMC Cancer ; 24(1): 749, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902688

ABSTRACT

BACKGROUND: To explore challenges of liquid-based cytology (LBC) specimens for next-generation sequencing (NGS) in lung adenocarcinoma and evaluate the efficacy of targeted therapy. METHODS: A retrospective analysis was conducted on the NGS test of 357 cases of advanced lung adenocarcinoma LBC specimens and compared with results of histological specimens to assess the consistency. The impact of tumor cellularity on NGS test results was evaluated. The utility of epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) was collected. Clinical efficacy evaluation was performed and survival curve analysis was conducted using the Kaplan-Meier method. RESULTS: There were 275 TKI-naive and 82 TKI-treated specimens, the mutation rates of cancer-related genes detected in both groups were similar (86.2% vs. 86.6%). The EGFR mutation rate in the TKI treated group was higher than that in the TKI-naive group (69.5% > 54.9%, P = 0.019). There was no significant difference in the EGFR mutation frequency among different tumor cellularity in the TKI-naive group. However, in the TKI treated group, the frequency of EGFR sensitizing mutation and T790M resistance mutation in specimens with < 20% tumor cellularity was significantly lower than that in specimens with ≥ 20% tumor cellularity. Among 22 cases with matched histological specimens, 72.7% (16/22) of LBC specimens were completely consistent with results of histological specimens. Among 92 patients with EGFR-mutant lung adenocarcinoma treated with EGFR-TKIs in the two cohorts, 88 cases experienced progression, and the median progression-free survival (PFS) was 12.1 months. CONCLUSIONS: Cytological specimens are important sources for gene detection of advanced lung adenocarcinoma. When using LBC specimens for molecular testing, it is recommended to fully evaluate the tumor cellularity of the specimens.


Subject(s)
Adenocarcinoma of Lung , ErbB Receptors , High-Throughput Nucleotide Sequencing , Lung Neoplasms , Molecular Targeted Therapy , Mutation , Protein Kinase Inhibitors , Humans , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/pathology , Female , High-Throughput Nucleotide Sequencing/methods , Male , Middle Aged , Retrospective Studies , Aged , Lung Neoplasms/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , ErbB Receptors/genetics , Protein Kinase Inhibitors/therapeutic use , Molecular Targeted Therapy/methods , Adult , Liquid Biopsy/methods , Aged, 80 and over , Biomarkers, Tumor/genetics , Cytology
3.
J Cardiovasc Magn Reson ; : 101111, 2024 Oct 19.
Article in English | MEDLINE | ID: mdl-39433255

ABSTRACT

AIM: Strain analysis offers a valuable tool to assess myocardial mechanics, allowing for the detection of impairments in heart function. This study aims to evaluate the pattern of myocardial strain in patients with heart failure (HF). METHODS: In the present study, myocardial strain was measured by cardiac magnetic resonance imaging feature tracking in 35 control subjects without HF and 195 HF patients. The HF patients were further categorized as HF with preserved ejection fraction (HFpEF, n=80), with mid-range ejection fraction (HFmrEF, n=34), and with reduced ejection fraction (HFrEF, n=81). Additionally, quantitative tissue evaluation parameters, including native T1 relaxation time and extracellular volume (ECV), were examined. RESULTS: Compared to controls, patients in all HF groups (HFpEF, HFmrEF, and HFrEF) demonstrated impaired left ventricular (LV) strains and systolic and diastolic strain rates in all three directions (radial, circumferential, and longitudinal) (p < 0.05 for all). LV strains also showed significant correlations with left ventricular ejection fraction and brain natriuretic peptide levels (p < 0.001 for all). Notably, septal contraction was significantly affected in HFpEF compared to controls. While LV torsion was slightly increased in HFpEF, it was decreased in HFrEF. Native T1 relaxation times and ECV fractions were significantly higher in HFrEF compared to HFpEF (p < 0.05). Overall, myocardial strain parameters demonstrated good performance in differentiating HF categories. CONCLUSIONS: The myocardial strain impairments exhibit a spectrum of severity in patients with HFpEF, HFmrEF, and HFrEF compared to controls. Assessment of myocardial mechanics using strain analysis may offer a clinically useful tool for monitoring the progression of systolic and diastolic dysfunction in HF patients.

4.
Plant Cell Rep ; 43(8): 203, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39080075

ABSTRACT

KEY MESSAGE: Multiple regulatory pathways of Zostera japonica to salt stress were identified through growth, physiological, transcriptomic and metabolomic analyses. Seagrasses are marine higher submerged plants that evolved from terrestrial monocotyledons and have fully adapted to the high saline seawater environment during the long evolutionary process. As one of the seagrasses growing in the intertidal zone, Zostera japonica not only has the ability to quickly adapt to short-term salt stress but can also survive at salinities ranging from the lower salinity of the Yellow River estuary to the higher salinity of the bay, making it a good natural model for studying the mechanism underlying the adaptation of plants to salt stress. In this work, we screened the growth, physiological, metabolomic, and transcriptomic changes of Z. japonica after a 5-day exposure to different salinities. We found that high salinity treatment impeded the growth of Z. japonica, hindered its photosynthesis, and elicited oxidative damage, while Z. japonica increased antioxidant enzyme activity. At the transcriptomic level, hypersaline stress greatly reduced the expression levels of photosynthesis-related genes while increasing the expression of genes associated with flavonoid biosynthesis. Meanwhile, the expression of candidate genes involved in ion transport and cell wall remodeling was dramatically changed under hypersaline stress. Moreover, transcription factors signaling pathways such as mitogen-activated protein kinase (MAPK) were also significantly influenced by salt stress. At the metabolomic level, Z. japonica displayed an accumulation of osmolytes and TCA mediators under hypersaline stress. In conclusion, our results revealed a complex regulatory mechanism in Z. japonica under salt stress, and the findings will provide important guidance for improving salt resistance in crops.


Subject(s)
Gene Expression Regulation, Plant , Metabolomics , Salt Stress , Signal Transduction , Zosteraceae , Zosteraceae/genetics , Zosteraceae/physiology , Zosteraceae/metabolism , Salt Stress/genetics , Signal Transduction/genetics , Salt Tolerance/genetics , Gene Expression Profiling , Transcriptome/genetics , Salinity , Photosynthesis/genetics , Photosynthesis/drug effects , Metabolome/genetics
5.
Arch Gynecol Obstet ; 310(1): 525-533, 2024 07.
Article in English | MEDLINE | ID: mdl-38709268

ABSTRACT

OBJECTIVE: To clarify the epidemiologic characteristics and risk of other tumors in survivors of gynecological tumors. MATERIALS AND METHODS: This is a retrospective study based on the Surveillance, Epidemiology, and End Results database (SEER). RESULTS: The morbidity of other malignant tumors in patients with gynecological cancer was 8.07%. The most common subsequent tumors are breast, lung, colorectal, thyroid, and bladder cancers. Taking the incidence rate of the general population as reference, the second tumor with the highest relative risk in patients with cervical cancer is vulvar cancer. Bladder cancer is the second tumor with the highest relative risk value both in patients with corpus and ovarian cancer. The median period from the diagnosis of the initial tumor to the diagnosis of the second tumor was 5 years. Most patients with other tumors following gynecological cancer showed worse prognosis than patients with gynecological tumors only. However, thyroid cancer following ovarian cancer is a protective factor in survival. CONCLUSION: Patients with gynecological tumors have a significantly higher risk of malignant tumors in other systems compared to ordinary population. It is necessary to be vigilant against subsequent high-risk tumors and tumors with poor prognosis within 5 years of initial diagnosis.


Subject(s)
Cancer Survivors , Genital Neoplasms, Female , Neoplasms, Second Primary , SEER Program , Humans , Female , Retrospective Studies , Genital Neoplasms, Female/epidemiology , Genital Neoplasms, Female/mortality , Middle Aged , Neoplasms, Second Primary/epidemiology , Aged , Adult , Cancer Survivors/statistics & numerical data , Incidence , Risk Factors , United States/epidemiology
6.
BMC Plant Biol ; 23(1): 104, 2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36814193

ABSTRACT

BACKGROUND: Seagrasses are a polyphyletic group of monocotyledonous angiosperms that have evolved to live entirely submerged in marine waters. Thus, these species are ideal for studying plant adaptation to marine environments. Herein, we sequenced the chloroplast (cp) genomes of two seagrass species (Zostera muelleri and Halophila ovalis) and performed a comparative analysis of them with 10 previously published seagrasses, resulting in various novel findings. RESULTS: The cp genomes of the seagrasses ranged in size from 143,877 bp (Zostera marina) to 178,261 bp (Thalassia hemprichii), and also varied in size among different families in the following order: Hydrocharitaceae > Cymodoceaceae > Ruppiaceae > Zosteraceae. The length differences between families were mainly related to the expansion and contraction of the IR region. In addition, we screened out 2,751 simple sequence repeats and 1,757 long repeat sequence types in the cp genome sequences of the 12 seagrass species, ultimately finding seven hot spots in coding regions. Interestingly, we found nine genes with positive selection sites, including two ATP subunit genes (atpA and atpF), three ribosome subunit genes (rps4, rps7, and rpl20), one photosystem subunit gene (psbH), and the ycf2, accD, and rbcL genes. These gene regions may have played critical roles in the adaptation of seagrasses to diverse environments. In addition, phylogenetic analysis strongly supported the division of the 12 seagrass species into four previously recognized major clades. Finally, the divergence time of the seagrasses inferred from the cp genome sequences was generally consistent with previous studies. CONCLUSIONS: In this study, we compared chloroplast genomes from 12 seagrass species, covering the main phylogenetic clades. Our findings will provide valuable genetic data for research into the taxonomy, phylogeny, and species evolution of seagrasses.


Subject(s)
Alismatales , Genome, Chloroplast , Hydrocharitaceae , Zosteraceae , Phylogeny , Alismatales/genetics , Zosteraceae/genetics , Hydrocharitaceae/genetics , Chloroplasts/genetics , Genomics , Evolution, Molecular
7.
Radiology ; 307(5): e222965, 2023 06.
Article in English | MEDLINE | ID: mdl-37310243

ABSTRACT

Background Coronary Artery Disease Reporting and Data System (CAD-RADS) was developed to standardize and optimize disease management in patients after coronary CT angiography (CCTA), but the impact of CAD-RADS management recommendations on clinical outcomes remains unclear. Purpose To retrospectively assess the association between the appropriateness of post-CCTA management according to CAD-RADS version 2.0 and clinical outcomes. Materials and Methods From January 2016 to January 2018, consecutive participants with stable chest pain referred for CCTA were prospectively included in a Chinese registry and followed for 4 years. Retrospectively, CAD-RADS 2.0 classification and the appropriateness of post-CCTA management were determined. Propensity score matching (PSM) was used to adjust for confounding variables. Hazard ratios (HRs) for a major adverse cardiovascular event (MACE), relative risks for invasive coronary angiography (ICA), and the corresponding number needed to treat were estimated. Results Of the 14 232 included participants (mean age, 61 years ± 13 [SD]; 8852 male), 2330, 2756, and 2614 were retrospectively categorized in CAD-RADS 1, 2, and 3, respectively. Only 26% of participants with CAD-RADS 1-2 disease and 20% with CAD-RADS 3 received appropriate post-CCTA management. After PSM, appropriate post-CCTA management was associated with lower risk of MACEs (HR, 0.34; 95% CI: 0.22, 0.51; P < .001), corresponding to a number needed to treat of 21 in CAD-RADS 1-2 but not CAD-RADS 3 (HR, 0.86; 95% CI: 0.49, 1.85; P = .42). Appropriate post-CCTA management was associated with decreased use of ICA in CAD-RADS 1-2 (relative risk, 0.40; 95% CI: 0.29, 0.55; P < .001) and 3 (relative risk, 0.33; 95% CI: 0.28, 0.39; P < .001), resulting in a number needed to treat of 14 and 2, respectively. Conclusion In this retrospective secondary analysis, appropriate disease management after CCTA according to CAD-RADS 2.0 was associated with lower risk of MACEs and more prudent use of ICA. ClinicalTrials.gov registration no. NCT04691037 © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Leipsic and Tzimas in this issue.


Subject(s)
Coronary Artery Disease , Humans , Male , Middle Aged , Chest Pain/diagnostic imaging , Chest Pain/etiology , Computed Tomography Angiography , Coronary Artery Disease/complications , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/therapy , East Asian People , Retrospective Studies , Aged , Registries
8.
Mol Cell Biochem ; 478(7): 1457-1464, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36357641

ABSTRACT

We aimed to build cellular aggregates of TS/A and normal fibroblasts (LX-2) or CAFs (ME-iLX-2), verifying the value of this model in the screening of anticancer drugs and demonstrating the effect of CD44 on aggregate formation. We improved soft agar culture medium to coculture CAFs (NFs) and TS/A and compared the amount and area of cellular aggregates. Eugenol was added to this model to test its value. The transcription of human CD44 was analyzed through RT-qPCR. Cellular aggregates were formed, and both the amount and area of aggregates in the TS/A-ME-iLX-2 coculture group were higher than those in other groups. The eugenol inhibited the formation of TS/A-fibroblasts aggregates. Human CD44 was highly transcripted in TS/A-ME-iLX-2 aggregates. Cocultured cellular aggregates of fibroblasts and TS/A were successfully formed in the improved soft agar culture medium, and the promotion effect of CAFs on cancer cells was further confirmed. The eugenol test showed its value in the screening of anticancer drugs. The RT-qPCR results demonstrated the important effect of CD44 on aggregate formation.


Subject(s)
Breast Neoplasms , Humans , Animals , Mice , Female , Agar , Eugenol , Fibroblasts , Coculture Techniques , Cell Line, Tumor , Culture Media , Cell Proliferation
9.
BMC Musculoskelet Disord ; 24(1): 628, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37532990

ABSTRACT

BACKGROUND: The contralateral seventh cervical (cC7) nerve root transfer represents a cornerstone technique in treating total brachial plexus avulsion injury. Traditional cC7 procedures employ the entire ulnar nerve as a graft, which inevitably compromises its restorative capacity. OBJECTIVE: Our cadaveric study seeks to assess this innovative approach aimed at preserving the motor branch of the ulnar nerve (MBUN). This new method aims to enable future repair stages, using the superficial radial nerve (SRN) as a bridge connecting cC7 and MBUN. METHODS: We undertook a comprehensive dissection of ten adult cadavers, generously provided by the Department of Anatomy, Histology, and Embryology at Fudan University, China. It allowed us to evaluate the feasibility of our proposed technique. For this study, we harvested only the dorsal and superficial branches of the ulnar nerve, as well as the SRN, to establish connections between the cC7 nerve and recipient nerves (both the median nerve and MBUN). We meticulously dissected the SRN and the motor and sensory branches of the ulnar nerve. Measurements were made from the reverse point of the SRN to the wrist flexion crease and the coaptation point of the SRN and MBUN. Additionally, we traced the MBUN from distal to proximal ends, recording its maximum length. We also measured the diameters of the nerve branches and tallied the number of axons. RESULTS: Our modified approach proved technically viable in all examined limbs. The distances from the reverse point of the SRN to the wrist flexion crease were 8.24 ± 1.80 cm and to the coaptation point were 6.60 ± 1.75 cm. The maximum length of the MBUN was 7.62 ± 1.03 cm. The average axon diameters in the MBUN and the anterior and posterior branches of the SRN were 1.88 ± 0.42 mm、1.56 ± 0.38 mm、2.02 ± 0.41 mm,respectively. The corresponding mean numbers of axons were 1426.60 ± 331.39 and 721.50 ± 138.22, and 741.90 ± 171.34, respectively. CONCLUSION: The SRN demonstrated the potential to be transferred to the MBUN without necessitating a nerve graft. A potential advantage of this modification is preserving the MBUN's recovery potential.


Subject(s)
Brachial Plexus , Radial Nerve , Adult , Humans , Radial Nerve/anatomy & histology , Radial Nerve/transplantation , Ulnar Nerve/surgery , Ulnar Nerve/anatomy & histology , Brachial Plexus/injuries , Wrist , Median Nerve/surgery
10.
BMC Genomics ; 23(1): 800, 2022 Dec 03.
Article in English | MEDLINE | ID: mdl-36463111

ABSTRACT

BACKGROUND: Seagrasses are higher marine flowering plants that evolved from terrestrial plants, but returned to the sea during the early evolution of monocotyledons through several separate lineages. Thus, they become a good model for studying the adaptation of plants to the marine environment. Sequencing of the mitochondrial (mt) genome of seagrasses is essential for understanding their evolutionary characteristics. RESULTS: In this study, we sequenced the mt genome of two endangered seagrasses (Zostera japonica and Phyllospadix iwatensis). These data and data on previously sequenced mt genomes from monocotyledons provide new evolutionary evidence of genome size reduction, gene loss, and adaptive evolution in seagrasses. The mt genomes of Z. japonica and P. iwatensis are circular. The sizes of the three seagrasses (including Zostera marine) that have been sequenced to date are smaller than that of other monocotyledons. Additionally, we found a large number of repeat sequences in seagrasses. The most abundant long repeat sequences were 31-40 bp repeats. Our study also found that seagrass species lost extensive ribosomal protein genes during evolution. The rps7 gene and the rpl16 gene of P. iwatensis are exceptions to this trend. The phylogenetic analysis based on the mt genome strongly supports the previous results. Furthermore, we identified five positive selection genes (atp8, nad3, nad6, ccmFn, and matR) in seagrasses that may be associated with their adaptation to the marine environment. CONCLUSIONS: In this study, we sequenced and annotated the mt genomes of Z. japonica and P. iwatensis and compared them with the genome of other monocotyledons. The results of this study will enhance our understanding of seagrass adaptation to the marine environment and can inform further investigations of the seagrass mt genome.


Subject(s)
Genome, Mitochondrial , Magnoliopsida , Genome, Mitochondrial/genetics , Phylogeny , Acclimatization/genetics , Genome Size
11.
Biochem Biophys Res Commun ; 604: 123-129, 2022 05 14.
Article in English | MEDLINE | ID: mdl-35303678

ABSTRACT

Many regulators controlling arterial identity are well described; however, transcription factors that promote vein identity and vascular patterning have remained largely unknown. We previously identified the transcription factors Islet2 (Isl2) and Nr2f1b required for specification of the vein and tip cell identity mediated by notch pathway in zebrafish. However, the interaction between Isl2 and Nr2f1b is not known. In this study, we report that Nr2f2 plays minor roles on vein and intersegmental vessels (ISV) growth and dissect the genetic interactions among the three transcription factors Isl2, Nr2f1b, and Nr2f2 using a combinatorial knockdown strategy. The double knockdown of isl2/nr2f1b, isl2/nr2f2, and nr2f1b/nr2f2 showed the enhanced defects in vasculature including less completed ISV, reduced veins, and ISV cells. We further tested the genetic relationship among these three transcription factors. We found isl2 can regulate the expression of nr2f1b and nr2f2, suggesting a model where Isl2 functions upstream of Nr2f1b and Nr2f2. We hypothsized that Isl2 and Nr2f1b can function together through cis-regulatory binding motifs. In-vitro luciferase assay results, we showed that Isl2 and Nr2f1b can cooperatively enhance gene expression. Moreover, co-immunoprecipitation results indicated that Isl2 and Nr2f1b interact physically. Together, we showed that the interaction of the Nr2f1b and Nr2f2 transcription factors in combination with the Islet2 play coordinated roles in the vascular development of zebrafish.


Subject(s)
Arteries , LIM-Homeodomain Proteins , Transcription Factors , Zebrafish Proteins , Zebrafish , Animals , Arteries/growth & development , LIM-Homeodomain Proteins/genetics , LIM-Homeodomain Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Veins , Zebrafish/genetics , Zebrafish/growth & development , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
12.
Respir Res ; 23(1): 317, 2022 Nov 19.
Article in English | MEDLINE | ID: mdl-36403022

ABSTRACT

BACKGROUND: Emerging experimental and epidemiological evidence highlights a crucial cross-talk between the intestinal flora and the lungs, termed the "gut-lung axis". However, the function of the gut microbiota in bronchiectasis remains undefined. In this study, we aimed to perform a multi-omics-based approach to identify the gut microbiome and metabolic profiles in patients with bronchiectasis. METHODS: Fecal samples collected from non-CF bronchiectasis patients (BE group, n = 61) and healthy volunteers (HC group, n = 37) were analyzed by 16 S ribosomal RNA (rRNA) sequencing. The BE group was divided into two groups based on their clinical status: acute exacerbation (AE group, n = 31) and stable phase (SP group, n = 30). Further, metabolome (lipid chromatography-mass spectrometry, LC-MS) analyses were conducted in randomly selected patients (n = 29) and healthy volunteers (n = 31). RESULTS: Decreased fecal microbial diversity and differential microbial and metabolic compositions were observed in bronchiectasis patients. Correlation analyses indicated associations between the differential genera and clinical parameters such as bronchiectasis severity index (BSI). Disease-associated gut microbiota was screened out, with eight genera exhibited high accuracy in distinguishing SP patients from HCs in the discovery cohort and validation cohort using a random forest model. Further correlation networks were applied to illustrate the relations connecting disease-associated genera and metabolites. CONCLUSION: The study uncovered the relationships among the decreased fecal microbial diversity, differential microbial and metabolic compositions in bronchiectasis patients by performing a multi-omics-based approach. It is the first study to characterize the gut microbiome and metabolome in bronchiectasis, and to uncover the gut microbiota's potentiality as biomarkers for bronchiectasis. TRIAL REGISTRATION:  This study is registered with ClinicalTrials.gov, number NCT04490447.


Subject(s)
Bronchiectasis , Microbiota , Adult , Humans , Bronchiectasis/diagnosis , Fibrosis , Metabolome , Microbiota/genetics , RNA, Ribosomal, 16S/genetics
13.
BMC Infect Dis ; 22(1): 632, 2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35858876

ABSTRACT

BACKGROUND: The outbreak of SARS-CoV-2 at the end of 2019 sounded the alarm for early inspection on acute respiratory infection (ARI). However, diagnosis pathway of ARI has still not reached a consensus and its impact on prognosis needs to be further explored. METHODS: ESAR is a multicenter, open-label, randomized controlled, non-inferiority clinical trial on evaluating the diagnosis performance and its impact on prognosis of ARI between mNGS and multiplex PCR. Enrolled patients will be divided into two groups with a ratio of 1:1. Group I will be directly tested by mNGS. Group II will firstly receive multiplex PCR, then mNGS in patients with severe infection if multiplex PCR is negative or inconsistent with clinical manifestations. All patients will be followed up every 7 days for 28 days. The primary endpoint is time to initiate targeted treatment. Secondary endpoints include incidence of significant events (oxygen inhalation, mechanical ventilation, etc.), clinical remission rate, and hospitalization length. A total of 440 participants will be enrolled in both groups. DISCUSSION: ESAR compares the efficacy of different diagnostic strategies and their impact on treatment outcomes in ARI, which is of great significance to make precise diagnosis, balance clinical resources and demands, and ultimately optimize clinical diagnosis pathways and treatment strategies. Trial registration Clinicaltrial.gov, NCT04955756, Registered on July 9th 2021.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Hospitalization , Humans , Multicenter Studies as Topic , Randomized Controlled Trials as Topic , Respiration, Artificial , Treatment Outcome
14.
BMC Med Imaging ; 22(1): 107, 2022 06 03.
Article in English | MEDLINE | ID: mdl-35659198

ABSTRACT

BACKGROUND: Diffusion tensor imaging (DTI) was used to quantitatively study the characteristics of the related spinal cord and nerve root compression parameters in patients with cervical spondylosis (CS), and diffusion tensor tractography (DTT) was used to visualize the spinal cord and nerve root and analyze their relevance to clinical evaluation. METHODS: A total of 67 patients with CS and 30 healthy volunteers received 3.0 T magnetic resonance imaging. Cervical DTI and DTT were performed in all the participants, where the b value of DTI was set at 800 s/mm2. Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values of the spinal cord and cervical nerve roots were measured by using DTI. Patients with CS were scored according to the modified Japanese Orthopedic Association (mJOA) score. RESULTS: In all the participants, the spinal cord and cervical nerve roots were clearly visible by DTT. Compared to the healthy volunteers, the FA values were significantly decreased and ADC values were significantly increased in patients with CS. mJOA score was significantly correlated with the DTI index (ADC and FA) values. Receiver operator characteristic curve analysis revealed that FA and ADC could identify mild, moderate, and severe CS. CONCLUSIONS: DTI parameters of cervical spinal cord and nerve root compression are associated with the clinical evaluation of patients with CS and may be helpful in assessing the severity of CS.


Subject(s)
Cervical Cord , Radiculopathy , Spondylosis , Cervical Cord/diagnostic imaging , Cervical Cord/pathology , Cervical Vertebrae/diagnostic imaging , Cervical Vertebrae/pathology , Diffusion Tensor Imaging/methods , Humans , Radiculopathy/complications , Radiculopathy/pathology , Spinal Cord , Spondylosis/diagnostic imaging , Spondylosis/pathology
15.
BMC Med Imaging ; 22(1): 72, 2022 04 18.
Article in English | MEDLINE | ID: mdl-35436880

ABSTRACT

BACKGROUND: We aimed to analyze the distribution of knee cartilage degeneration in young patients with mild symptoms using quantitative magnetic resonance imaging (MRI) T2 mapping. MATERIALS AND METHODS: This study included sixty six patients (case group) and twenty eight healthy volunteers (control group). The participants underwent 3.0 T conventional MRI plus a multi-echo sequence. The cartilage of each participant was divided into twenty eight subregions. We then calculated the T2 mean values and standard deviation or median and quartile range for each subregion according to whether the normal distribution was satisfied. Besides, we employed Kruskal-Wallis test to determine the statistical differences of each subregion in the control group while the Mann-Whitney U test was used to define the statistical difference between the case group and the control group and between the control group and subjects aged less than or equal to 35 years in the case group. RESULTS: In the case group, age of 30 male patients was 31.5 ± 9.3 and age of 36 female patients was 35.7 ± 8.3. In the two groups, the superficial central lateral femoral region exhibited relatively high T2 values (control/case group: 49.6 ± 2.7/55.9 ± 8.8), and the deep medial patellar region exhibited relatively low T2 values (control/case group: 34.2 ± 1.3/33.5(32.2, 35.5)). Comparison of the T2 values between the case and the control group demonstrated a statistically significant increase in nine subregions (P1 < 0.05) and there were five subregions in the case group with age ≤ 35 years (P2 < 0.05). In particular, the p-values for four subregions of the patellofemoral joint were all less than 0.05 (P1 = 0.002, 0.015, 0.036, 0.005). CONCLUSION: T2 values of patients were significantly different with values of healthy groups, especially in the superficial cartilage of the patellofemoral joint. It made T2 mapping helpful to early identify patients with knee cartilage degeneration.


Subject(s)
Cartilage, Articular , Cartilage, Articular/diagnostic imaging , Cartilage, Articular/pathology , Female , Healthy Volunteers , Humans , Knee Joint/diagnostic imaging , Magnetic Resonance Imaging/methods , Male
16.
BMC Pulm Med ; 22(1): 2, 2022 Jan 03.
Article in English | MEDLINE | ID: mdl-34980056

ABSTRACT

BACKGROUND: Serum lactate dehydrogenase (LDH), carcinoembryonic antigen (CEA) and CYFRA21-1 are the commonly used biomarkers to identify patients with autoimmune pulmonary alveolar proteinosis (APAP). However, it is not clear which of the biomarkers is more sensitive to the severity of the patient's condition. METHODS: APAP patients numbering 151 were enrolled in this study. All patients' severity was assessed through the severity and prognosis score of PAP (SPSP). According to the respective laboratory upper limits of serum levels of LDH, CEA and CYFRA21-1, APAP patients were divided into higher and lower-level groups. Patients were divided into five groups based on SPSP. 88 patients had completed six months of follow-up. We calculated sensitivity, specificity, and critical point of LDH, CEA and CYFRA21-1 between APAP patients and normal control group, and between grade 1-2 and 3-5 through receiving operating characteristics (ROC) curve. RESULTS: Serum LDH, CEA and CYFRA21-1 levels of patients with PAP were higher and distinctly related to PaO2, FVC, FEV1, DLCO, HRCT scores and SPSP. The SPSP of patients in higher-level LDH, CEA and CYFRA21-1 groups were higher than those of corresponding lower-level groups. Based on SPSP results, the patients were divided into five groups (grade I, 20; grade II, 37; grade III, 40; grade IV, 38; grade V, 16). The serum level of CYFRA21-1 of patients with APAP in grade II was higher than that of patients in grade I and lower than that of patients in grade III. Serum CYFRA21-1 of patients with APAP after six months were higher than the baseline among the aggravated group. Serum LDH, CEA and CYFRA21-1 levels after six months among patients in the relieved group of patients with APAP were lower than the baseline. ROC correlating LDH, CEA and CYFRA21-1 values with APAP severity (between grade 1-2 and 3-5) showed an optimal cutoff of LDH of over 203 U/L (< 246 U/L), CEA of over 2.56 ug/L (< 10 ug/L), and CYFRA21-1 of over 5.57 ng/ml (> 3.3 ng/ml) (AUC: 0.815, 95% CI [0.748-0.882], sensitivity: 0.606, specificity: 0.877). CONCLUSION: Serum CYFRA21-1 level was more sensitive in revealing the severity of APAP than LDH and CEA levels among mild to moderate forms of disease.


Subject(s)
Antigens, Neoplasm/blood , Biomarkers/blood , Keratin-19/blood , Pulmonary Alveolar Proteinosis/blood , Severity of Illness Index , Adult , Aged , China , Female , Forced Expiratory Volume , Humans , L-Lactate Dehydrogenase/blood , Male , Middle Aged , Retrospective Studies , Sensitivity and Specificity
17.
Appl Energy ; 310: 118303, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35043028

ABSTRACT

Affected by the new coronavirus (COVID-19) pandemic, global energy production and consumption have changed a lot. It is unknown whether conventional short-term load forecasting methods based on single-task, single-region, and conventional indicators can accurately capture the load pattern during the COVID-19 and should be carefully studied. In this paper, we make the following contributions: 1) A mobility-optimized load forecasting method based on multi-task learning and long short-term memory network is innovatively proposed to alleviate the impact of the COVID-19 on short-term load forecasting. The incorporation of mobility data and data sharing layers potentially reduces the difficulty of capturing the load patterns and improves the generalization of the load forecasting models. 2) The real public data collected from multiple agencies and companies in the United States and European countries are used to conduct horizontal and vertical tests. These tests prove the failure of the conventional models and methods in the COVID-19 and demonstrate the high accuracy (error mostly less than 1%) and robustness of the proposed model. 3) The Shapley additive explanations technology based on game theory is innovatively introduced to improve the objectivity of the models. It visualizes that mobility indicators are of great help to the accurate load forecasting. Besides, the non-synchronous relationships between the indicators' correlations and contributions to the load have been proved.

18.
Anal Chem ; 93(13): 5529-5536, 2021 04 06.
Article in English | MEDLINE | ID: mdl-33752323

ABSTRACT

Cervical cancer is the fourth leading cause of death in women, especially in developing countries. Specific and economic methodologies for HPV typing are crucial in cancer diagnosis and further disease control. However, routine assays based on real-time polymerase chain reaction (qPCR) or DNA-chip hybridization are either incapable of offering detailed subtype information or involve tedious open-tube operations with the risk of cross-contamination from PCR amplicons. Herein, we proposed a multiplex visualized closed-tube PCR (Multi-Vision) for HPV typing. Using gold nanoparticle probes (AuNPs) as a color change indicator combined with a Hamming distance 2 coding scheme, 13 high-risk HPVs and two subtypes associated with high-incidence benign lesions were successfully typed by performing six closed-tube PCRs. The assay demonstrates high specificity with no cross-reaction among different subtypes under several artificial sample concentrations (from 100 to 103 copies per reaction) and enables highly sensitive detection of as low as 0.5 copies/µL. Further, 105 clinical samples were successfully analyzed using our method with a high concordance rate of 99.05% (104/105) compared to a HPV typing kit. The inconsistent sample was confirmed by sequencing to be consistent with the typing results determined by our method, indicating that Multi-Vision could be a useful tool for HPV detection, especially in resource-limited regions.


Subject(s)
Metal Nanoparticles , Papillomavirus Infections , DNA, Viral/genetics , Female , Gold , Humans , Papillomaviridae/genetics , Papillomavirus Infections/diagnosis , Sensitivity and Specificity
19.
Anal Chem ; 93(27): 9593-9601, 2021 07 13.
Article in English | MEDLINE | ID: mdl-34191475

ABSTRACT

DNA walkers have shown superior performance in biosensing due to their programmability to design molecular walking behaviors with specific responses to different biological targets. However, it is still challenging to make DNA walkers capable of distinguishing DNA targets with single-base differences, so that DNA walkers that can be used for circulating tumor DNA sensing are rarely reported. Herein, a flap endonuclease 1 (FEN 1)-assisted DNA walker has been proposed to achieve mutant biosensing. The target DNA is captured on a gold nanoparticle (AuNP) as a walking strand to walk by hybridizing to the track strands on the surface of the AuNP. FEN 1 is employed to report the walking events by cleaving the track strands that must form a three-base overlapping structure recognized by FEN 1 after hybridizing with the captured target DNA. Owing to the high specificity of FEN 1 for structure recognition, the one-base mutant DNA target can be discriminated from wild-type DNA. By constructing a sensitivity-enhanced DNA walker system, as low as 1 fM DNA targets and 0.1% mutation abundance can be sensed, and the theoretical detection limits for detecting the DNA target and mutation abundance achieve 0.22 fM and 0.01%, respectively. The results of epidermal growth factor receptor (EGFR) L858R mutation detection on cell-free DNA samples from 15 patients with nonsmall cell lung cancer were completely consistent with that of next-generation sequencing, indicating that our DNA walker has potential for liquid biopsy.


Subject(s)
Biosensing Techniques , Carcinoma, Non-Small-Cell Lung , Circulating Tumor DNA/analysis , Lung Neoplasms , Metal Nanoparticles , Flap Endonucleases , Gold , Humans
20.
FASEB J ; 34(2): 3253-3266, 2020 02.
Article in English | MEDLINE | ID: mdl-31912575

ABSTRACT

Calcineurin B homologous proteins (CHPs) belong to the EF-hand Ca2+ -binding protein (EFCaBP) family. They have multiple important functions including the regulation of the Na+ /H+ exchanger 1 (NHE1). The human isoforms CHP1 and CHP2 share high sequence similarity, but have distinct expression profiles with CHP2 levels for instance increased in malignant cells. These CHPs bind Ca2+ with high affinity. Biochemical data indicated that Ca2+ can regulate their functions. Experimental evidence for Ca2+ -modulated structural changes was lacking. With a newly established fluorescent probe hydrophobicity (FPH) assay, we detected Ca2+ -induced conformational changes in both CHPs. These changes are in line with an opening of their hydrophobic pocket that binds the CHP-binding region (CBD) of NHE1. Whereas the pocket is closed in the absence of Ca2+ in CHP2, it is still accessible for the dye in CHP1. Both CHPs interacted with CBD in the presence and absence of Ca2+ . Isothermal titration calorimetry (ITC) analysis revealed high binding affinity for both CHPs to CBD with equilibrium dissociation constants (KD s) in the nanomolar range. The KD for CHP1:CBD was not affected by Ca2+ , whereas Ca2+ -depletion increased the KD 7-fold for CHP2:CBD showing a decreased affinity. The data indicate an isoform specific regulatory interaction of CHP1 and CHP2 with NHE1.


Subject(s)
Calcium-Binding Proteins/chemistry , Calcium/metabolism , Sodium-Hydrogen Exchanger 1/metabolism , Binding Sites , Calcium-Binding Proteins/metabolism , Humans , Hydrophobic and Hydrophilic Interactions , Protein Binding , Sodium-Hydrogen Exchanger 1/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL