Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters

Publication year range
1.
J Virol ; 93(9)2019 05 01.
Article in English | MEDLINE | ID: mdl-30787156

ABSTRACT

Reactivation of herpes simplex virus 2 (HSV-2) from latency causes viral shedding that develops into recurrent genital lesions. The immune mechanisms of protection against recurrent genital herpes remain to be fully elucidated. In this preclinical study, we investigated the protective therapeutic efficacy, in the guinea pig model of recurrent genital herpes, of subunit vaccine candidates that were based on eight recombinantly expressed HSV-2 envelope and tegument proteins. These viral protein antigens (Ags) were rationally selected for their ability to recall strong CD4+ and CD8+ T-cell responses from naturally "protected" asymptomatic individuals, who, despite being infected, never develop any recurrent herpetic disease. Out of the eight HSV-2 proteins, the envelope glycoprotein D (gD), the tegument protein VP22 (encoded by the UL49 gene), and ribonucleotide reductase subunit 2 protein (RR2; encoded by the UL40 gene) produced significant protection against recurrent genital herpes. The RR2 protein, delivered either intramuscularly or intravaginally with CpG and alum adjuvants, (i) boosted the highest neutralizing antibodies, which appear to cross-react with both gB and gD, and (ii) enhanced the numbers of functional gamma interferon (IFN-γ)-producing CRTAM+ CFSE+ CD4+ and CRTAM+ CFSE+ CD8+ TRM cells, which express low levels of PD-1 and TIM-3 exhaustion markers and were localized to healed sites of the vaginal mucocutaneous (VM) tissues. The strong B- and T-cell immunogenicity of the RR2 protein was associated with a significant decrease in virus shedding and a reduction in both the severity and frequency of recurrent genital herpes lesions. In vivo depletion of either CD4+ or CD8+ T cells significantly abrogated the protection. Taken together, these preclinical results provide new insights into the immune mechanisms of protection against recurrent genital herpes and promote the tegument RR2 protein as a viable candidate Ag to be incorporated in future genital herpes therapeutic mucosal vaccines.IMPORTANCE Recurrent genital herpes is one of the most common sexually transmitted diseases, with a global prevalence of HSV-2 infection predicted to be over 536 million worldwide. Despite the availability of many intervention strategies, such as sexual behavior education, barrier methods, and the costly antiviral drug treatments, eliminating or at least reducing recurrent genital herpes remains a challenge. Currently, no FDA-approved therapeutic vaccines are available. In this preclinical study, we investigated the immunogenicity and protective efficacy, in the guinea pig model of recurrent genital herpes, of subunit vaccine candidates that were based on eight recombinantly expressed herpes envelope and tegument proteins. We discovered that similar to the dl5-29 vaccine, based on a replication-defective HSV-2 mutant virus, which has been recently tested in clinical trials, the RR2 protein-based subunit vaccine elicited a significant reduction in virus shedding and a decrease in both the severity and frequency of recurrent genital herpes sores. This protection correlated with an increase in numbers of functional tissue-resident IFN-γ+ CRTAM+ CFSE+ CD4+ and IFN-γ+ CRTAM+ CFSE+ CD8+ TRM cells that infiltrate healed sites of the vaginal tissues. Our study sheds new light on the role of TRM cells in protection against recurrent genital herpes and promotes the RR2-based subunit therapeutic vaccine to be tested in the clinic.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Herpes Genitalis/prevention & control , Herpesvirus 2, Human/immunology , Herpesvirus Vaccines/pharmacology , Immunization, Secondary , Ribonucleotide Reductases/pharmacology , Adult , Aged , Animals , CD4-Positive T-Lymphocytes/pathology , CD8-Positive T-Lymphocytes/pathology , Female , Guinea Pigs , Herpes Genitalis/immunology , Herpes Genitalis/pathology , Herpesvirus Vaccines/immunology , Humans , Immunity, Mucosal/drug effects , Male , Middle Aged , Ribonucleotide Reductases/immunology
2.
Proc Natl Acad Sci U S A ; 114(3): E357-E366, 2017 01 17.
Article in English | MEDLINE | ID: mdl-28053228

ABSTRACT

Characterizing the immune response to pneumococcal proteins is critical in understanding this bacterium's epidemiology and vaccinology. Probing a custom-designed proteome microarray with sera from 35 healthy US adults revealed a continuous distribution of IgG affinities for 2,190 potential antigens from the species-wide pangenome. Reproducibly elevated IgG binding was elicited by 208 "antibody binding targets" (ABTs), which included 109 variants of the diverse pneumococcal surface proteins A and C (PspA and PspC) and zinc metalloprotease A and B (ZmpA and ZmpB) proteins. Functional analysis found ABTs were enriched in motifs for secretion and cell surface association, with extensive representation of cell wall synthesis machinery, adhesins, transporter solute-binding proteins, and degradative enzymes. ABTs were associated with stronger evidence for evolving under positive selection, although this varied between functional categories, as did rates of diversification through recombination. Particularly rapid variation was observed at some immunogenic accessory loci, including a phage protein and a phase-variable glycosyltransferase ubiquitous among the diverse set of genomic islands encoding the serine-rich PsrP glycoprotein. Nevertheless, many antigens were conserved in the core genome, and strains' antigenic profiles were generally stable. No strong evidence was found for any epistasis between antigens driving population dynamics, or redundancy between functionally similar accessory ABTs, or age stratification of antigen profiles. These results highlight the paradox of why substantial variation is observed in only a subset of epitopes. This result may indicate only some interactions between immunoglobulins and ABTs clear pneumococcal colonization or that acquired immunity to pneumococci is an accumulation of individually weak responses to ABTs evolving under different levels of functional constraint.


Subject(s)
Antigens, Bacterial/immunology , Streptococcus pneumoniae/immunology , Adhesins, Bacterial/immunology , Adult , Antibodies, Bacterial/immunology , Antibody Formation/immunology , Bacterial Proteins/immunology , Epitopes/immunology , Humans , Immunoglobulin G/immunology , Membrane Proteins/immunology , Membrane Transport Proteins/immunology , Pneumococcal Infections/immunology , Pneumococcal Vaccines/immunology
3.
J Infect Dis ; 218(9): 1436-1446, 2018 09 22.
Article in English | MEDLINE | ID: mdl-29800314

ABSTRACT

Background: Enterotoxigenic Escherichia coli (ETEC) is a major cause of diarrheal illness in the developing world. Enterotoxigenic E coli vaccinology has been challenged by genetic diversity and heterogeneity of canonical antigens. Examination of the antigenic breadth of immune responses associated with protective immunity could afford new avenues for vaccine development. Methods: Antibody lymphocyte supernatants (ALS) and sera from 20 naive human volunteers challenged with ETEC strain H10407 and from 10 volunteers rechallenged 4-6 weeks later with the same strain (9 of whom were completely protected on rechallenge) were tested against ETEC proteome microarrays containing 957 antigens. Results: Enterotoxigenic E coli challenge stimulated robust serum and mucosal (ALS) responses to canonical vaccine antigens (CFA/I, and the B subunit of LT) as well as a small number of antigens not presently targeted in ETEC vaccines. These included pathovar-specific secreted proteins (EtpA, EatA) as well as highly conserved E coli antigens including YghJ, flagellin, and pertactin-like autotransporter proteins, all of which have previously afforded protection against ETEC infection in preclinical studies. Conclusions: Taken together, studies reported here suggest that immune responses after ETEC infection involve traditional vaccine targets as well as a select number of more recently identified protein antigens that could offer additional avenues for vaccine development for these pathogens.


Subject(s)
Antigens, Bacterial/immunology , Enterotoxigenic Escherichia coli/immunology , Escherichia coli Infections/immunology , Escherichia coli Vaccines/immunology , Antibodies, Bacterial/immunology , Carrier Proteins/immunology , Escherichia coli Proteins/immunology , Humans , Membrane Glycoproteins/immunology , Peptide Hydrolases
4.
Transfusion ; 56(8): 2085-99, 2016 08.
Article in English | MEDLINE | ID: mdl-27184823

ABSTRACT

BACKGROUND: Babesia microti is a protozoan parasite responsible for the majority of reported cases of human babesiosis and a major risk to the blood supply. Laboratory screening of blood donors may help prevent transfusion-transmitted babesiosis but there is no Food and Drug Administration-approved screening method yet available. Development of a sensitive, specific, and highly automated B. microti antibody assay for diagnosis of acute babesiosis and blood screening could have an important impact on decreasing the health burden of B. microti infection. STUDY DESIGN AND METHODS: Herein, we take advantage of recent advances in B. microti genomic analyses, field surveys of the reservoir host, and human studies in endemic areas to apply a targeted immunomic approach to the discovery of B. microti antigens that serve as signatures of active or past babesiosis infections. Of 19 glycosylphosphatidylinositol (GPI)-anchored protein candidates (BmGPI1-19) identified in the B. microti proteome, 17 were successfully expressed, printed on a microarray chip, and used to screen sera from uninfected and B. microti-infected mice and humans to determine immune responses that are associated with active and past infection. RESULTS: Antibody responses to various B. microti BmGPI antigens were detected and BmGPI12 was identified as the best biomarker of infection that provided high sensitivity and specificity when used in a microarray antibody assay. CONCLUSION: BmGPI12 alone or in combination with other BmGPI proteins is a promising candidate biomarker for detection of B. microti antibodies that might be useful in blood screening to prevent transfusion-transmitted babesiosis.


Subject(s)
Antigens, Protozoan/immunology , Babesia microti/immunology , Babesiosis/immunology , Biomarkers/analysis , Animals , Genome, Protozoan/genetics , Humans , Kinetics , Mice , Protein Array Analysis
5.
J Immunol ; 193(4): 1812-27, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-25024392

ABSTRACT

Vaccinia virus (VACV) is a useful model system for understanding the immune response to a complex pathogen. Proteome-wide Ab profiling studies reveal the humoral response to be strongly biased toward virion-associated Ags, and several membrane proteins induce Ab-mediated protection against VACV challenge in mice. Some studies have indicated that the CD4 response is also skewed toward proteins with virion association, whereas the CD8 response is more biased toward proteins with early expression. In this study, we have leveraged a VACV strain Western Reserve (VACV-WR) plasmid expression library, produced previously for proteome microarrays for Ab profiling, to make a solubilized full VACV-WR proteome for T cell Ag profiling. Splenocytes from VACV-WR-infected mice were assayed without prior expansion against the soluble proteome in assays for Th1 and Th2 signature cytokines. The response to infection was polarized toward a Th1 response, with the distribution of reactive T cell Ags comprising both early and late VACV proteins. Interestingly, the proportions of different functional subsets were similar to that present in the whole proteome. In contrast, the targets of Abs from the same mice were enriched for membrane and other virion components, as described previously. We conclude that a "nonbiasing" approach to T cell Ag discovery reveals a T cell Ag profile in VACV that is broader and less skewed to virion association than the Ab profile. The T cell Ag mapping method developed in the present study should be applicable to other organisms where expressible "ORFeome" libraries are also available, and it is readily scalable for larger pathogens.


Subject(s)
Antigens, Viral/immunology , Proteome/immunology , Receptors, Antigen, T-Cell/immunology , Vaccinia virus/immunology , Animals , CD8-Positive T-Lymphocytes/immunology , Immunity, Humoral , Immunization , Interferon-gamma/metabolism , Mice , Mice, Inbred C57BL , Spleen/cytology , Th1 Cells/immunology , Th2 Cells/immunology
6.
Malar J ; 14: 95, 2015 Feb 25.
Article in English | MEDLINE | ID: mdl-25849211

ABSTRACT

BACKGROUND: Malaria is a public health problem in parts of Thailand, where Plasmodium falciparum and Plasmodium vivax are the main causes of infection. In the northwestern border province of Tak parasite prevalence is now estimated to be less than 1% by microscopy. Nonetheless, microscopy is insensitive at low-level parasitaemia. The objective of this study was to assess the current epidemiology of falciparum and vivax malaria in Tak using molecular methods to detect exposure to and infection with parasites; in particular, the prevalence of asymptomatic infections and infections with submicroscopic parasite levels. METHODS: Three-hundred microlitres of whole blood from finger-prick were collected into capillary tubes from residents of a sentinel village and from patients at a malaria clinic. Pelleted cellular fractions were screened by quantitative PCR to determine parasite prevalence, while plasma was probed on a protein microarray displaying hundreds of P. falciparum and P. vivax proteins to obtain antibody response profiles in those individuals. RESULTS: Of 219 samples from the village, qPCR detected 25 (11.4%) Plasmodium sp. infections, of which 92% were asymptomatic and 100% were submicroscopic. Of 61 samples from the clinic patients, 27 (44.3%) were positive by qPCR, of which 25.9% had submicroscopic parasite levels. Cryptic mixed infections, misdiagnosed as single-species infections by microscopy, were found in 7 (25.9%) malaria patients. All sample donors, parasitaemic and non-parasitaemic alike, had serological evidence of parasite exposure, with 100% seropositivity to at least 54 antigens. Antigens significantly associated with asymptomatic infections were P. falciparum MSP2, DnaJ protein, putative E1E2 ATPase, and three others. CONCLUSION: These findings suggest that parasite prevalence is higher than currently estimated by local authorities based on the standard light microscopy. As transmission levels drop in Thailand, it may be necessary to employ higher throughput and sensitivity methods for parasite detection in the phase of malaria elimination.


Subject(s)
Malaria, Falciparum/epidemiology , Malaria, Vivax/epidemiology , Plasmodium falciparum , Plasmodium vivax , Adolescent , Adult , Aged , Aged, 80 and over , Antibodies, Protozoan/blood , Asymptomatic Infections , Cluster Analysis , Cross-Sectional Studies , Humans , Malaria, Falciparum/diagnosis , Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology , Malaria, Vivax/diagnosis , Malaria, Vivax/immunology , Malaria, Vivax/parasitology , Middle Aged , Plasmodium falciparum/genetics , Plasmodium falciparum/immunology , Plasmodium vivax/genetics , Plasmodium vivax/immunology , Prevalence , Seroepidemiologic Studies , Thailand/epidemiology , Young Adult
7.
Microorganisms ; 12(3)2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38543471

ABSTRACT

Diarrhoeagenic E. coli (DEC) significantly contributes to the burden of diarrhoea among children. Currently, there is no approved vaccine against DEC, but several vaccines against the enterotoxigenic E. coli (ETEC) pathotype are in advanced clinical trial stages, including the ETVAX® vaccine, undergoing evaluation in Zambia. This study reports on the reactivity of antibodies from ETVAX® vaccine and placebo recipients in a phase I clinical trial to proteins derived from (DEC) other than ETEC. Plasma samples collected at two time points (prior to any vaccination and post-third dose vaccination) from 16 vaccinated and 4 placebo participants in a phase 1 clinical trial examining the safety, tolerability, and immunogenicity of ETVAX® with dmLT adjuvant were evaluated for IgG response to E. coli antigens other than ETEC using the Pan-DEC protein microarray. This was the first field application of the novel pan-DEC array as a new tool in assessing the antigenic breadth of antibody responses induced by the ETVAX vaccine, as well as to assess early life exposure to DEC pathotypes and other bacterial enteric pathogens. We observed that plasma obtained from ETVAX® and placebo recipients had high antibody reactivity to Ipa, SseC and EspB proteins. These findings suggest that there is high exposure early in life to DEC pathogens, like EPEC, EHEC, EAEC and EIEC in addition to ETEC, in the Zambian population. These immunological observations are consistent with the results of recent epidemiological studies assessing the etiology of diarrheal disease among infants and young children in Zambia.

8.
Nat Commun ; 15(1): 355, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38191887

ABSTRACT

Streptococcus pneumoniae (pneumococcus) is a nasopharyngeal commensal and respiratory pathogen. This study characterises the immunoglobulin G (IgG) repertoire recognising pneumococci from birth to 24 months old (mo) in a prospectively-sampled cohort of 63 children using a panproteome array. IgG levels are highest at birth, due to transplacental transmission of maternal antibodies. The subsequent emergence of responses to individual antigens exhibit distinct kinetics across the cohort. Stable differences in the strength of individuals' responses, correlating with maternal IgG concentrations, are established by 6 mo. By 12 mo, children develop unique antibody profiles that are boosted by re-exposure. However, some proteins only stimulate substantial responses in adults. Integrating genomic data on nasopharyngeal colonisation demonstrates rare pneumococcal antigens can elicit strong IgG levels post-exposure. Quantifying such responses to the diverse core loci (DCL) proteins is complicated by cross-immunity between variants. In particular, the conserved N terminus of DCL protein zinc metalloprotease B provokes the strongest early IgG responses. DCL proteins' ability to inhibit mucosal immunity likely explains continued pneumococcal carriage despite hosts' polyvalent antibody repertoire. Yet higher IgG levels are associated with reduced incidence, and severity, of pneumonia, demonstrating the importance of the heterogeneity in response strength and kinetics across antigens and individuals.


Subject(s)
Genomics , Streptococcus pneumoniae , Adult , Infant, Newborn , Child , Infant , Humans , Child, Preschool , Streptococcus pneumoniae/genetics , Immunoglobulin G , Immunity, Mucosal , Antigens, Bacterial
9.
Proc Natl Acad Sci U S A ; 107(33): 14703-8, 2010 Aug 17.
Article in English | MEDLINE | ID: mdl-20668240

ABSTRACT

Considerable effort has been directed toward controlling tuberculosis, which kills almost two million people yearly. High on the research agenda is the discovery of biomarkers of active tuberculosis (TB) for diagnosis and for monitoring treatment outcome. Rational biomarker discovery requires understanding host-pathogen interactions leading to biomarker expression. Here we report a systems immunology approach integrating clinical data and bacterial metabolic and regulatory information with high-throughput detection in human serum of antibodies to the entire Mycobacterium tuberculosis proteome. Sera from worldwide TB suspects recognized approximately 10% of the bacterial proteome. This result defines the M. tuberculosis immunoproteome, which is rich in membrane-associated and extracellular proteins. Additional analyses revealed that during active tuberculosis (i) antibody responses focused on an approximately 0.5% of the proteome enriched for extracellular proteins, (ii) relative target preference varied among patients, and (iii) responses correlated with bacillary burden. These results indicate that the B cell response tracks the evolution of infection and the pathogen burden and replicative state and suggest functions associated with B cell-rich foci seen in tuberculous lung granulomas. Our integrated proteome-scale approach is applicable to other chronic infections characterized by diverse antibody target recognition.


Subject(s)
Antibodies, Bacterial/immunology , Bacterial Proteins/immunology , Mycobacterium tuberculosis/immunology , Proteome/immunology , Tuberculosis/immunology , Antibodies, Bacterial/blood , Antibody Formation/immunology , Antigens, Bacterial/blood , Antigens, Bacterial/immunology , Bacterial Proteins/analysis , Host-Pathogen Interactions/immunology , Humans , Mycobacterium tuberculosis/metabolism , Mycobacterium tuberculosis/physiology , Proteome/analysis , Proteomics , Tuberculosis/blood , Tuberculosis/microbiology
10.
Proc Natl Acad Sci U S A ; 107(15): 6958-63, 2010 Apr 13.
Article in English | MEDLINE | ID: mdl-20351286

ABSTRACT

Abs are central to malaria immunity, which is only acquired after years of exposure to Plasmodium falciparum (Pf). Despite the enormous worldwide burden of malaria, the targets of protective Abs and the basis of their inefficient acquisition are unknown. Addressing these knowledge gaps could accelerate malaria vaccine development. To this end, we developed a protein microarray containing approximately 23% of the Pf 5,400-protein proteome and used this array to probe plasma from 220 individuals between the ages of 2-10 years and 18-25 years in Mali before and after the 6-month malaria season. Episodes of malaria were detected by passive surveillance over the 8-month study period. Ab reactivity to Pf proteins rose dramatically in children during the malaria season; however, most of this response appeared to be short-lived based on cross-sectional analysis before the malaria season, which revealed only modest incremental increases in Ab reactivity with age. Ab reactivities to 49 Pf proteins measured before the malaria season were significantly higher in 8-10-year-old children who were infected with Pf during the malaria season but did not experience malaria (n = 12) vs. those who experienced malaria (n = 29). This analysis also provided insight into patterns of Ab reactivity against Pf proteins based on the life cycle stage at which proteins are expressed, subcellular location, and other proteomic features. This approach, if validated in larger studies and in other epidemiological settings, could prove to be a useful strategy for better understanding fundamental properties of the human immune response to Pf and for identifying previously undescribed vaccine targets.


Subject(s)
Malaria, Falciparum/immunology , Plasmodium falciparum/metabolism , Protein Array Analysis/methods , Adolescent , Adult , Animals , Antigens, Protozoan/immunology , Child , Child, Preschool , Cohort Studies , Humans , Immune System , Malaria Vaccines/chemistry , Mali , Proteomics/methods
11.
Vaccines (Basel) ; 11(5)2023 May 04.
Article in English | MEDLINE | ID: mdl-37243042

ABSTRACT

Developing a broadly protective vaccine covering most ETEC variants has been elusive. The most clinically advanced candidate yet is an oral inactivated ETEC vaccine (ETVAX®). We report on the use of a proteome microarray for the assessment of cross-reactivity of anti-ETVAX® IgG antibodies against over 4000 ETEC antigens and proteins. We evaluated 40 (pre-and post-vaccination) plasma samples from 20 Zambian children aged 10-23 months that participated in a phase 1 trial investigating the safety, tolerability, and immunogenicity of ETVAX® adjuvanted with dmLT. Pre-vaccination samples revealed high IgG responses to a variety of ETEC proteins including classical ETEC antigens (CFs and LT) and non-classical antigens. Post-vaccination reactivity to CFA/I, CS3, CS6, and LTB was stronger than baseline among the vaccinated compared to the placebo group. Interestingly, we noted significantly high post-vaccination responses to three non-vaccine ETEC proteins: CS4, CS14, and PCF071 (p = 0.043, p = 0.028, and p = 0.00039, respectively), suggestive of cross-reactive responses to CFA/I. However, similar responses were observed in the placebo group, indicating the need for larger studies. We conclude that the ETEC microarray is a useful tool for investigating antibody responses to numerous antigens, especially because it may not be practicable to include all antigens in a single vaccine.

12.
J Proteome Res ; 10(10): 4813-24, 2011 Oct 07.
Article in English | MEDLINE | ID: mdl-21863892

ABSTRACT

A complete understanding of the factors that determine selection of antigens recognized by the humoral immune response following infectious agent challenge is lacking. Here we illustrate a systems biology approach to identify the antibody signature associated with Brucella melitensis (Bm) infection in humans and predict proteomic features of serodiagnostic antigens. By taking advantage of a full proteome microarray expressing previously cloned 1406 and newly cloned 1640 Bm genes, we were able to identify 122 immunodominant antigens and 33 serodiagnostic antigens. The reactive antigens were then classified according to annotated functional features (COGs), computationally predicted features (e.g., subcellular localization, physical properties), and protein expression estimated by mass spectrometry (MS). Enrichment analyses indicated that membrane association and secretion were significant enriching features of the reactive antigens, as were proteins predicted to have a signal peptide, a single transmembrane domain, and outer membrane or periplasmic location. These features accounted for 67% of the serodiagnostic antigens. An overlay of the seroreactive antigen set with proteomic data sets generated by MS identified an additional 24%, suggesting that protein expression in bacteria is an additional determinant in the induction of Brucella-specific antibodies. This analysis indicates that one-third of the proteome contains enriching features that account for 91% of the antigens recognized, and after B. melitensis infection the immune system develops significant antibody titers against 10% of the proteins with these enriching features. This systems biology approach provides an empirical basis for understanding the breadth and specificity of the immune response to B. melitensis and a new framework for comparing the humoral responses against other microorganisms.


Subject(s)
Brucella melitensis/metabolism , Brucellosis/metabolism , Gene Expression Regulation , Antibodies/chemistry , Bacterial Proteins/chemistry , Cell Membrane/metabolism , Humans , Immune System , Lipopolysaccharides/chemistry , Mass Spectrometry/methods , Open Reading Frames , Protein Array Analysis , Proteomics/methods , Reproducibility of Results , Systems Biology
13.
Infect Immun ; 79(1): 246-57, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20956570

ABSTRACT

Chlamydia trachomatis infections can lead to severe chronic complications, including trachoma, ectopic pregnancy, and infertility. The only effective approach to disease control is vaccination. The goal of this work was to identify new potential vaccine candidates through a proteomics approach. We constructed a protein chip array (Antigen Discovery, Inc.) by expressing the open reading frames (ORFs) from C. trachomatis mouse pneumonitis (MoPn) genomic and plasmid DNA and tested it with serum samples from MoPn-immunized mice. Two groups of BALB/c female mice were immunized either intranasally or intravaginally with live elementary bodies (EB). Another two groups were immunized by a combination of the intramuscular and subcutaneous routes with UV-treated EB (UV-EB), using either CpG and Montanide as adjuvants to favor a Th1 response or alum to elicit a Th2 response. Serum samples collected at regular intervals postimmunization were tested in the proteome array. The microarray included the expression products of 909 proteins from a total of 921 ORFs of the Chlamydia MoPn genome and plasmid. A total of 185 immunodominant proteins elicited an early and sustained antibody response in the mice immunized with live EB, and of these, 71 were also recognized by the sera from mice immunized with UV-EB. The reactive antigens included some proteins that were previously described as immunogenic, such as the major outer membrane protein, OmpB, Hsp60, and IncA and proteins from the type III secretion system. In addition, we identified in mice several new immunogens, including 75 hypothetical proteins. In summary, we have identified a new group of immunodominant chlamydial proteins that can be tested for their ability to induce protection.


Subject(s)
Chlamydia trachomatis/immunology , Chlamydia trachomatis/metabolism , Immunodominant Epitopes/immunology , Protein Array Analysis , Proteome , Animals , Antibodies, Bacterial/blood , Antigens, Bacterial/immunology , Bacterial Proteins/immunology , Female , Mice , Mice, Inbred BALB C , Open Reading Frames , Pregnancy
14.
Exp Dermatol ; 20(2): 154-6, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21255096

ABSTRACT

We performed partial evaluation of pemphigus vulgaris (PV) autoantibody profile using the protein array technology. The sera from seven patients with acute PV and five healthy donors were probed for the presence of autoantibodies characteristic of the organ-non-specific autoimmune disorders rheumatoid arthritis, lupus erythematosus, scleroderma, diabetes and some other autoimmune disorders, but not to desmosomal proteins. The array targeted 785 human genes amplified using Mammalian Gene Clone Collection with gene-specific primers containing 20-bp nucleotide extension complementary to ends of linear pXT7 vector. The array identified PV antibodies significantly (P<0.05) differentially reactive with 16 antigens, most of which were cell-surface proteins, such as CD2, CD31, CD33, CD36, CD37, CD40, CD54, CD66c and CD84 molecules, nicotinamide/nicotinic acid mononucleotide adenylyltransferase, immunoglobulin heavy chain constant region gamma 2 and others. Reactivity with Fc-IgG helps explain an ability of the chimeric desmoglein constructs to absorb out all disease-causing PV antibodies. Anti-M(1) muscarinic receptor antibody was also identified, consistent with the facts that while blockade of this receptor causes keratinocyte detachment, its activation is therapeutic in PV. Further proteomics analysis of PV antibodies should help elucidate the immunopathogenic mechanisms underlying keratinocyte detachment and blistering.


Subject(s)
Autoantibodies/metabolism , Pemphigus/immunology , Protein Array Analysis/methods , Proteomics , Adult , Aged , Aged, 80 and over , Antigens, Surface/immunology , Autoimmunity , Case-Control Studies , Female , Humans , Male , Middle Aged , Pilot Projects , Receptor, Muscarinic M1/immunology , Reproducibility of Results
15.
PLoS One ; 16(4): e0250317, 2021.
Article in English | MEDLINE | ID: mdl-33886668

ABSTRACT

To identify immunodominant antigens that elicit a humoral immune response following a primary and a secondary genital infection, rhesus monkeys were inoculated cervically with Chlamydia trachomatis serovar D. Serum samples were collected and probed with a protein microarray expressing 864/894 (96.4%) of the open reading frames of the C. trachomatis serovar D genome. The antibody response to the primary infection was analyzed in 72 serum samples from 12 inoculated monkeys. The following criteria were utilized to identify immunodominant antigens: proteins found to be recognized by at least 75% (9/12) of the infected monkeys with at least 15% elevations in signal intensity from week 0 to week 8 post infection. All infected monkeys developed Chlamydia specific serum antibodies. Eight proteins satisfied the selection criteria for immunodominant antigens: CT242 (OmpH-like protein), CT541 (mip), CT681 (ompA), CT381 (artJ), CT443 (omcB), CT119 (incA), CT486 (fliY), and CT110 (groEL). Of these, three antigens, CT119, CT486 and CT381, were not previously identified as immunodominant antigens using non-human primate sera. Following the secondary infection, the antibody responses to the eight immunodominant antigens were analyzed and found to be quite different in intensity and duration to the primary infection. In conclusion, these eight immunodominant antigens can now be tested for their ability to identify individuals with a primary C. trachomatis genital infection and to design vaccine strategies to protect against a primary infection with this pathogen.


Subject(s)
Antigens, Bacterial/immunology , Bacterial Proteins/immunology , Chlamydia Infections/immunology , Chlamydia trachomatis/genetics , Immunodominant Epitopes/immunology , Monkey Diseases/immunology , Vaginal Diseases/immunology , Animals , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Antigens, Bacterial/blood , B-Lymphocytes/immunology , Bacterial Proteins/blood , Chlamydia Infections/blood , Chlamydia Infections/microbiology , Female , Genome, Bacterial , Immunodominant Epitopes/blood , Macaca mulatta , Monkey Diseases/blood , Monkey Diseases/microbiology , Open Reading Frames , Vagina/immunology , Vagina/microbiology , Vaginal Diseases/blood , Vaginal Diseases/microbiology
16.
mBio ; 12(3): e0122921, 2021 06 29.
Article in English | MEDLINE | ID: mdl-34182775

ABSTRACT

We sought to discover links between antibody responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and patient clinical variables, cytokine profiles, and antibodies to endemic coronaviruses. Serum samples from 30 patients of younger (26 to 39 years) and older (69 to 83 years) age groups and with varying clinical severities ranging from outpatient to mechanically ventilated were collected and used to probe a novel multi-coronavirus protein microarray. This microarray contained variable-length overlapping fragments of SARS-CoV-2 spike (S), envelope (E), membrane (M), nucleocapsid (N), and open reading frame (ORF) proteins created through in vitro transcription and translation (IVTT). The array also contained SARS-CoV, Middle East respiratory syndrome coronavirus (MERS-CoV), human coronavirus OC43 (HCoV-OC43), and HCoV-NL63 proteins. IgG antibody responses to specific epitopes within the S1 protein region spanning amino acids (aa) 500 to 650 and within the N protein region spanning aa 201 to 300 were found to be significantly higher in older patients and further significantly elevated in those older patients who were ventilated. Additionally, there was a noticeable overlap between antigenic regions and known mutation locations in selected emerging SARS-CoV-2 variants of current clinical consequence (B.1.1.7, B1.351, P.1, CAL20.C, and B.1.526). Moreover, the older age group displayed more consistent correlations of antibody reactivity with systemic cytokine and chemokine responses than the younger adult group. A subset of patients, however, had little or no response to SARS-CoV-2 antigens and disproportionately severe clinical outcomes. Further characterization of these slow-low-responding individuals with cytokine analysis revealed significantly higher interleukin-10 (IL-10), IL-15, and interferon gamma-induced protein 10 (IP-10) levels and lower epidermal growth factor (EGF) and soluble CD40 ligand (sCD40L) levels than those of seroreactive patients in the cohort. IMPORTANCE As numerous viral variants continue to emerge in the coronavirus disease 2019 (COVID-19) pandemic, determining antibody reactivity to SARS-CoV-2 epitopes becomes essential in discerning changes in the immune response to infection over time. This study enabled us to identify specific areas of antigenicity within the SARS-CoV-2 proteome, allowing us to detect correlations of epitopes with clinical metadata and immunological signals to gain holistic insight into SARS-CoV-2 infection. This work also emphasized the risk of mutation accumulation in viral variants and the potential for evasion of the adaptive immune responses in the event of reinfection. We additionally highlighted the correlation of antigenicity between structural proteins of SARS-CoV-2 and endemic HCoVs, raising the possibility of cross-protection between homologous lineages. Finally, we identified a subset of patients with minimal antibody reactivity to SARS-CoV-2 infection, prompting discussion of the potential consequences of this alternative immune response.


Subject(s)
Antibodies, Viral/blood , Coronavirus NL63, Human/immunology , Coronavirus OC43, Human/immunology , Cytokines/blood , Middle East Respiratory Syndrome Coronavirus/immunology , SARS-CoV-2/immunology , Adult , Age Factors , Aged , Aged, 80 and over , Antibodies, Viral/immunology , COVID-19/immunology , Coronavirus Envelope Proteins/immunology , Coronavirus Nucleocapsid Proteins/immunology , Female , Humans , Immunoglobulin G/immunology , Male , Phosphoproteins/immunology , Protein Array Analysis , Severity of Illness Index , Spike Glycoprotein, Coronavirus/immunology
17.
Microbiol Spectr ; 9(2): e0141621, 2021 10 31.
Article in English | MEDLINE | ID: mdl-34704808

ABSTRACT

The rapid worldwide spread of SARS-CoV-2 has accelerated research and development for controlling the COVID-19 pandemic. A multi-coronavirus protein microarray was created containing full-length proteins, overlapping protein fragments of various lengths, and peptide libraries from SARS-CoV-2 and four other human coronaviruses. Sera from confirmed COVID-19 patients as well as unexposed individuals were applied to multicoronavirus arrays to identify specific antibody reactivity. High-level IgG, IgM, and IgA reactivity to structural proteins S, M, and N of SARS-CoV-2, as well as accessory proteins such as ORF3a and ORF7a, were observed that were specific to COVID-19 patients. Antibody reactivity against overlapping 100-, 50-, and 30-amino acid fragments of SARS-CoV-2 proteins was used to identify antigenic regions. Numerous proteins of SARS-CoV, Middle East respiratory syndrome coronavirus (MERS-CoV), and the endemic human coronaviruses HCoV-NL63 and HCoV-OC43 were also more reactive with IgG, IgM, and IgA in COVID-19 patient sera than in unexposed control sera, providing further evidence of immunologic cross-reactivity between these viruses. Whereas unexposed individuals had minimal reactivity against SARS-CoV-2 proteins that poorly correlated with reactivity against HCoV-NL63 and HCoV-OC43 S2 and N proteins, COVID-19 patient sera had higher correlation between SARS-CoV-2 and HCoV responses, suggesting that de novo antibodies against SARS-CoV-2 cross-react with HCoV epitopes. Array responses were compared with validated spike protein-specific IgG enzyme-linked immunosorbent assays (ELISAs), showing agreement between orthologous methods. SARS-CoV-2 microneutralization titers were low in the COVID-19 patient sera but correlated with array responses against S and N proteins. The multi-coronavirus protein microarray is a useful tool for mapping antibody reactivity in COVID-19 patients. IMPORTANCE With novel mutant SARS-CoV-2 variants of concern on the rise, knowledge of immune specificities against SARS-CoV-2 proteins is increasingly important for understanding the impact of structural changes in antibody-reactive protein epitopes on naturally acquired and vaccine-induced immunity, as well as broader topics of cross-reactivity and viral evolution. A multi-coronavirus protein microarray used to map the binding of COVID-19 patient antibodies to SARS-CoV-2 proteins and protein fragments as well as to the proteins of four other coronaviruses that infect humans has shown specific regions of SARS-CoV-2 proteins that are highly reactive with patient antibodies and revealed cross-reactivity of these antibodies with other human coronaviruses. These data and the multi-coronavirus protein microarray tool will help guide further studies of the antibody response to COVID-19 and to vaccination against this worldwide pandemic.


Subject(s)
Antibodies, Viral/immunology , Coronavirus NL63, Human/immunology , Coronavirus OC43, Human/immunology , Epitopes/immunology , Middle East Respiratory Syndrome Coronavirus/immunology , SARS-CoV-2/immunology , Antibodies, Viral/blood , Binding Sites, Antibody/immunology , COVID-19/immunology , Coronavirus Nucleocapsid Proteins/immunology , Cross Reactions/immunology , Enzyme-Linked Immunosorbent Assay , Humans , Immunoglobulin A/immunology , Immunoglobulin G/immunology , Immunoglobulin M/immunology , Phosphoproteins/immunology , Protein Array Analysis , Spike Glycoprotein, Coronavirus/immunology , Viral Proteins/immunology , Viroporin Proteins/immunology
18.
Elife ; 92020 07 14.
Article in English | MEDLINE | ID: mdl-32662772

ABSTRACT

Tanzanian adult male volunteers were immunized by direct venous inoculation with radiation-attenuated, aseptic, purified, cryopreserved Plasmodium falciparum (Pf) sporozoites (PfSPZ Vaccine) and protective efficacy assessed by homologous controlled human malaria infection (CHMI). Serum immunoglobulin G (IgG) responses were analyzed longitudinally using a Pf protein microarray covering 91% of the proteome, providing first insights into naturally acquired and PfSPZ Vaccine-induced whole parasite antibody profiles in malaria pre-exposed Africans. Immunoreactivity was identified against 2239 functionally diverse Pf proteins, showing a wide breadth of humoral response. Antibody-based immune 'fingerprints' in these individuals indicated a strong person-specific immune response at baseline, with little changes in the overall humoral immunoreactivity pattern measured after immunization. The moderate increase in immunogenicity following immunization and the extensive and variable breadth of humoral immune response observed in the volunteers at baseline suggest that pre-exposure reduces vaccine-induced antigen reactivity in unanticipated ways.


Subject(s)
Immunity, Humoral , Malaria Vaccines/immunology , Proteome , Adult , Biological Variation, Individual , Humans , Malaria, Falciparum/prevention & control , Male , Plasmodium falciparum/immunology , Sporozoites/immunology , Tanzania , Young Adult
19.
Lab Chip ; 19(9): 1524-1533, 2019 04 23.
Article in English | MEDLINE | ID: mdl-30806409

ABSTRACT

There is a growing need to screen multiple infections simultaneously rather than diagnosis of one pathogen at a time in order to improve the quality of healthcare while saving initial screening time and reduce costs. This is the first demonstration of a five-step protein array assay for the multiplexed detection of HIV, HPV and HSV antibodies on an integrated microfluidic system. HIV, HPV and HSV reactive antibodies from both serum and saliva were rapidly detected by acoustic streaming-based mixing and pumping to enable an integrated, rapid and simple-to-use multiplexed assay device. We validated this device with 37 serum and saliva samples to verify reactivity of patient antibodies with HIV, HPV and HSV antigens. Our technology can be adapted with different protein microarrays to detect a variety of other infections, thus demonstrating a powerful platform to detect multiple putative protein biomarkers for rapid detection of infectious diseases. This integrated microfluidic protein array platform is the basis of a potent strategy to delay progression of primary infection, reduce the risk of co-infections and prevent onward transmission of infections by point-of-care detection of multiple pathogens in both serum and oral fluids.


Subject(s)
Acoustics/instrumentation , Immunoassay/instrumentation , Lab-On-A-Chip Devices , Saliva/virology , Virus Diseases/blood , Virus Diseases/diagnosis , Humans , Virus Diseases/immunology
20.
NPJ Vaccines ; 4: 37, 2019.
Article in English | MEDLINE | ID: mdl-31482013

ABSTRACT

Enterotoxigenic Escherichia coli (ETEC) infections are a common cause of severe diarrheal illness in low- and middle-income countries. The live-attenuated ACE527 ETEC vaccine, adjuvanted with double mutant heat-labile toxin (dmLT), affords clear but partial protection against ETEC challenge in human volunteers. Comparatively, initial wild-type ETEC challenge completely protects against severe diarrhea on homologous re-challenge. To investigate determinants of protection, vaccine antigen content was compared to wild-type ETEC, and proteome microarrays were used to assess immune responses following vaccination and ETEC challenge. Although molecular interrogation of the vaccine confirmed expression of targeted canonical antigens, relative to wild-type ETEC, vaccine strains were deficient in production of flagellar antigens, immotile, and lacked production of the EtpA adhesin. Similarly, vaccination ± dmLT elicited responses to targeted canonical antigens, but relative to wild-type challenge, vaccine responses to some potentially protective non-canonical antigens including EtpA and the YghJ metalloprotease were diminished or absent. These studies highlight important differences in vaccine and wild-type ETEC antigen content and call attention to distinct immunologic signatures that could inform investigation of correlates of protection, and guide vaccine antigen selection for these pathogens of global importance.

SELECTION OF CITATIONS
SEARCH DETAIL