Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 255
Filter
1.
Chemistry ; : e202403585, 2024 Nov 05.
Article in English | MEDLINE | ID: mdl-39498765

ABSTRACT

A cascade phosphorylation cycloisomerization of readily accessible ynones and diphenylphosphine oxides facilitated by potassium phosphate is described, allowing for the straightforward synthesis of C4-phosphorylated quinoline scaffolds. The formation of a C-P bond and a C-N bond is achieved in a single procedure without the need for pre-assembled quinoline cores prior to phosphorylation. This transformation operates without the requirement for metals or oxidants and exhibits excellent compatibility with various functional groups. Furthermore, antimicrobial activity evaluation demonstrated that the synthesized C4 phosphorylated quinoline derivatives exhibited potent inhibitory activity against Staphylococcus aureus.

2.
J Org Chem ; 89(16): 11136-11147, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39106492

ABSTRACT

C-Alkyl glycosides, an important class of C-glycosides, are widely found in various drugs and natural products. The synthesis of C-alkyl glycosides has attracted considerable attention. Herein, we developed a Ni/photoredox catalyzed decarboxylative C(sp3)-C(sp3) coupling reaction of stable glycosylcarboxylic acids with simple aliphatic bromides to generate C-alkyl glycosides. The method successfully linked several functional molecular fragments (natural products or drugs) to a sugar moiety, showing the extensive application prospects of this transformation. Controlled experiments and DFT calculations demonstrated that the reaction pathway contains a free radical process, and a possible mechanism is proposed.

3.
J Org Chem ; 89(20): 14710-14719, 2024 Oct 18.
Article in English | MEDLINE | ID: mdl-39383326

ABSTRACT

A novel and efficient palladium-catalyzed highly regioselective reaction of 1-[2-(2,2-dibromoethenyl)phenyl]-1H-pyrrole with allenes was realized to synthesize pyrrolo[1,2-a]quinolones. The tandem process involves intermolecular cyclization and intramolecular direct arylation, leading to the formation three new C-C bonds and two new rings. Notably, this transformation exhibits broad substrate scope and high functional group tolerance.

4.
J Org Chem ; 89(11): 7741-7746, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38741558

ABSTRACT

A novel three-component cyclization carbonylation reaction of iodoarene-tethered propargyl ethers with amine and CO is reported. This palladium-catalyzed cascade reaction undergoes a sequence of oxidative addition, unsaturated bond migration, carbonyl insertion, and nucleophilic attack to deliver the benzofuran skeleton. Both aromatic amines and aliphatic amines could proceed smoothly in this transformation under one atm of CO.

5.
Chemistry ; 29(32): e202203351, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-36943394

ABSTRACT

In recent years, the synthesis of C-aryl glycosides hrough C-H functionalization has attracted extensive attention of organic synthesis chemists due to its steps and atomic economy. In this concept, we systematically summarizes the synthesis of C-aryl glycosides with diverse regioselectivity and diastereoselectivity from the perspective of C-H arylation of glycosides and C-H glycosylation of arenes. It can be found that a series of recently developed C-H glycosylation reactions have higher site-selectivity and diastereomeric selectivity than Friedel-Crafts glycosylation reaction. The reaction conditions are milder, which can be compatible with acid-sensitive protective groups, such as acetals or ketals, and the deprotection is more convenient. It can be seen that there are few reports on remote C-H glycosylation of aromatic hydrocarbons, which is a new field and needs further research. In addition, C-H glycosylation has a lot of shortcomings, which need to be further explored: a) the precise regulation of stereoselectivity in the reaction process also needs further optimization; b) the research on the reaction mechanism is almost limited to DFT calculation, and there is no exact experimental evidence. For key parts, such as the specific reaction mechanism between cyclo-metal intermediates and glycosyl donors in ortho-CAr -H glycosylation is still unclear; c) due to the fact that aryl glycoside compounds contain bare hydroxyl groups in practical applications, it is an urgent problem to realize the compatibility of glycoside substrates containing naked hydroxyl groups or to remove the protective groups on hydroxyl groups by a mild and efficient method after the reaction; d) In this rapidly developing field, we need to study a greener, more economical and more practical C-H glycosylation of arenes in the future, which will be conducive to the synthesis of C-aryl glycosides with more biological application significance.


Subject(s)
Glycosides , Metals , Glycosides/chemistry , Glycosylation , Chemistry Techniques, Synthetic/methods
6.
J Org Chem ; 88(22): 16007-16017, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37906678

ABSTRACT

An elegant Lewis acid catalyzed, protection-free, and straightforward synthetic strategy for the assembly of a series of sophisticated polycyclic quinoline skeletons employing propargylic alcohols and 2-vinylanilines as the substrates in the presence of Yb(OTf)3 (10 mol %) and AgOTf (10 mol %) in tetrahydrofuran has been described. This annulation protocol, which proceeds through a sequential Meyer-Schuster rearrangement/nucleophilic substitution/deprotonation sequence, provides a versatile, practical, and atom-economical approach for accessing quinoline derivatives in moderate-to-good yields.

7.
J Org Chem ; 88(3): 1786-1795, 2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36657999

ABSTRACT

Carbazole, as one of the most important organic frameworks, has been used in optoelectronic materials and biochemistry. However, the synthesis of C4-substituted carbazole has always been an unsolved problem. This report describes the one-step synthesis of C4-aminated carbazoles and their derivatives through the series reaction of C-H amination and arylation. The substrate scope is wide. C4-Amino carbazoles substituted by C2, C6, C7, and C8 methyl groups, especially carbazole derivatives of fused rings, pyridine, and dibenzofuran, can be synthesized.

8.
J Org Chem ; 88(3): 1403-1410, 2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36656018

ABSTRACT

A nickel-catalyzed three-component tandem radical cyclization reaction of aryl bromides with 1,3-enynes and aryl boric acids to construct γ-lactam-substituted allene derivatives has been described. This protocol provides lactam alkyl radicals through the free radical cyclization process, which can be effectively used to participate in the subsequent multicomponent coupling reaction so that 1,3-enynes could directly convert into corresponding poly-substituted allene compounds. In addition, this efficient method enjoys a broad substrate scope and provides a series of 1,5-difunctionalized allenes in a one-pot reaction.

9.
J Org Chem ; 88(23): 16539-16546, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37947111

ABSTRACT

This report describes the use of a simple Pd/NBE catalytic system to achieve ortho C-H oxylation and phosphonylation and other functionalizations of aryl iodide through templated conversion reactions. Dimethylamine is introduced in the ortho-site of aryl iodide through C-H amination, and aryl dimethylamine is quickly converted to methyl quaternary ammonium salt precipitation. Methyl quaternary ammonium salt avoids Hofmann elimination in subsequent functionalization. This method solves various ortho functionalization reactions of aryl iodide that have not been achieved for a long time in the field of Pd/NBE chemistry indirectly.

10.
Org Biomol Chem ; 21(24): 4926-4954, 2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37260190

ABSTRACT

Fluorinated organic compounds are an important class of organic molecules and play a key role in both academic and industrial communities due to the unique nature of fluorine. Among the fluorine-containing functional groups, the OCF3 group is of vital importance because of its favorable physicochemical properties, so it frequently acts as the pivotal skeletal motif in a broad spectrum of pharmaceutical molecules, agrochemicals, natural products, and materials. Over the past few decades, a wider range of strategies for the efficient, versatile, and practical synthesis of trifluoromethoxylated compounds have been the focus of a number of research initiatives. These synthesis approaches are especially fascinating in the context of the design of agrochemicals and new drugs as established pathways for installing the OCF3 moiety. In this review, the state of the art of the synthesis of OCF3-containing compounds is summarized. It can be segmented into six categories: (1) de novo formation of the OCF3 group; (2) construction of trifluoromethoxylated compounds via trifluoromethylation of the corresponding alcohol or phenol; (3) construction of trifluoromethoxylated compounds via installing the entire OCF3 group straightaway onto a complex molecule; (4) visible-light-induced trifluoromethoxylation; (5) transition metal-catalyzed trifluoromethoxylation; and (6) construction of the trifluoromethoxylated compounds via rearrangement reactions.

11.
Angew Chem Int Ed Engl ; 62(28): e202304447, 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37145118

ABSTRACT

The aryl-to-vinyl nickel 1,4-migration (1,4-Ni migration) reaction has been reported for the first time. The generated alkenyl Ni species undergo a reductive coupling reaction with unactivated brominated alkanes affording a series of trisubstituted olefins. This tandem reaction exhibits mild conditions, a broad substrate scope, high regioselectivity, and excellent Z/E stereoselectivity. A series of controlled experiments have shown that the critical 1,4-Ni migration process is reversible. In addition, the alkenyl nickel intermediates obtained after migration are highly Z/E stereoselective and do not undergo Z/E isomerization. The obtained trace isomerization products are caused by the instability of the product.

12.
Biomacromolecules ; 23(9): 3766-3778, 2022 09 12.
Article in English | MEDLINE | ID: mdl-35980819

ABSTRACT

It is becoming increasingly important to synthesize efficient biomacromolecule lubricants suitable for medical devices. Even though the development of biomimetic lubricants has made great progress, the current system suitable for hydrophobic silicone-based medical devices is highly limited. In this work, we synthesize one kind of novel polysaccharide-derived macromolecule lubricant of chitosan (CS) grafted polyethylene glycol (PEG) chains and catechol groups (CT) (CS-g-PEG-g-CT). CS-g-PEG-g-CT shows good adsorption ability by applying quantitative analysis of quartz crystal microbalance (QCM), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), and confocal fluorescence imaging technique, as well as the typical shear-thinning feature. CS-g-PEG-g-CT exhibits low and stable coefficients of friction (COFs) (0.01-0.02) on polydimethylsiloxane (PDMS) surfaces at a wide range of mass concentrations in diverse media including pure water, physiological saline, and PBS buffer solution and is even tolerant to various normal loads and sliding frequencies for complex pressurizing or shearing environments. Subsequently, systematic surface characterizations are used to verify the dynamic attachment ability of the CS-g-PEG-g-CT lubricant on the loading/shearing process. The lubrication mechanism of CS-g-PEG-g-CT can be attributed to the synergy of strong adsorption from catechol groups to form a uniform assembly layer, excellent hydration effect from PEG chains, and typical shear-thinning feature to dissipate viscous resistance. Surprisingly, CS-g-PEG-g-CT exhibits efficient lubricity on silicone-based commercial contact lenses and catheters. The current macromolecule lubricant demonstrates great real application potential in the fields of medical devices and disease treatments.


Subject(s)
Polyethylene Glycols , Silicon , Catechols , Lubricants/chemistry , Lubrication , Polyethylene Glycols/chemistry , Polysaccharides
13.
J Org Chem ; 87(16): 10917-10927, 2022 Aug 19.
Article in English | MEDLINE | ID: mdl-35948085

ABSTRACT

An elegant Pd-catalyzed intramolecular Heck dearomative alkenylation of aryl iodides with functionalized N-tosylhydrazones proceeded through a sequential dearomative carbopalladation, migratory insertion, and ß-hydride elimination in the presence of Pd(CF3COO)2 (10 mol %), PPh3 (30 mol %), and Cs2CO3 (2.0 equiv) in 1,4-dioxane (2.0 mL) at 120 °C for 14 h under an argon atmosphere. This cascade cycloaddition protocol provided a reliable and versatile approach to a sequence of structurally diverse indolines in moderate to good yields with good functional group compatibility. In addition, the synthetic robustness of the methodology is highlighted by a scaled-up experiment and derivatization of products via epoxidation and reduction reactions.

14.
Angew Chem Int Ed Engl ; 61(32): e202205656, 2022 08 08.
Article in English | MEDLINE | ID: mdl-35674418

ABSTRACT

C-aryl glycosides are popular basic skeletons in biochemistry and pharmaceutical chemistry. Herein, ruthenium-catalyzed highly stereo- and site-selective ortho- and meta-CAr -H glycosylation is described. A series of C-aryl pyranosides and furanosides were synthesized by this method. The strategy showed good substrate scope, and various N-heterocyclic directing groups were compatible with the reaction system. A mechanistic study suggested that the key pathway of ortho-CAr -H glycosylation might involve oxidative addition/reduction elimination, whereas aryl meta-C-H glycosylation was mediated by σ-activation. Density functional theory calculations also showed that the high stereoselectivity of meta-CAr -H glycosylation was due to steric hindrance.


Subject(s)
Ruthenium , Catalysis , Glycosylation , Oxidation-Reduction
15.
J Am Chem Soc ; 143(20): 7868-7875, 2021 05 26.
Article in English | MEDLINE | ID: mdl-33974798

ABSTRACT

The first synthesis of highly strained spirocyclobutane-pyrrolines via a palladium-catalyzed tandem Narasaka-Heck/C(sp3 or sp2)-H activation reaction is reported here. The key step in this transformation is the activation of a δ-C-H bond via an in situ generated σ-alkyl-Pd(II) species to form a five-membered spiro-palladacycle intermediate. The concerted metalation-deprotonation (CMD) process, rate-determining step, and energy barrier of the entire reaction were explored by density functional theory (DFT) calculations. Moreover, a series of control experiments was conducted to probe the rate-determining step and reversibility of the C(sp3)-H activation step.

16.
J Org Chem ; 86(21): 14640-14651, 2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34645261

ABSTRACT

An unprecedented Pd-catalyzed asymmetric intramolecular cascade cyclization of aryl halides with readily available arylboronic acids proceeds through a Heck-type dearomative cyclization terminated with arylation in the presence of Pd2(dba)3 (10 mol %), Cu2O (5 mol %), and Cs2CO3 (2.0 equiv) in 1,2-dichloroethane (1.0 mL) at 100 °C for 15 h in air using BINOL-based phosphoramidite as the chiral ligand. This dearomative Heck protocol, which tolerates a broad variety of functional groups, is amenable to the generation of optically active indoline derivatives bearing all-carbon quaternary stereogenic centers in one step in moderate to excellent yields, with excellent diastereoselectivities (>20:1) and enantioselectivities (up to >99% ee). It is worth mentioning that no decrease in the enantiopurity of the indoline derivatives was observed during the synthetic transformations of the products.

17.
Org Biomol Chem ; 19(25): 5659, 2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34137424

ABSTRACT

Correction for 'Visible-light-mediated borylation of aryl and alkyl halides with a palladium complex' by Jia-Hui Zhao, et al., Org. Biomol. Chem., 2020, 18, 4390-4394, DOI: 10.1039/D0OB00028K.

18.
J Org Chem ; 85(14): 9301-9312, 2020 Jul 17.
Article in English | MEDLINE | ID: mdl-32614579

ABSTRACT

A palladium-catalyzed, photochemical tandem cyclization/dicarbofunctionalization of unactivated alkyl halides containing an alkene moiety offers an appealing route to produce five- or six-membered rings in a redox-neutral fashion. Multisubstituted carbo- and heterocyclic compounds were prepared through the formation of new C-B or C-O bonds, which provides a convenient synthetic route for further transformations. This protocol is characterized by the reaction of alkene regio- and stereoselectivities, good functional group compatibility, wide substrate scope, and mild reaction conditions.

19.
J Org Chem ; 85(12): 7666-7673, 2020 06 19.
Article in English | MEDLINE | ID: mdl-32479726

ABSTRACT

Copper-catalyzed three-component redox-neutral ring opening of benzothiazoles with aryl iodides and O-benzoyl hydroxylamines for the synthesis of 1-amino-N-(2-(phenylthio)phenyl)methanimine has been developed. This one-pot reaction undergoes C-S and N-O bond cleavage and new C-S and C-N bond construction. Several control experiments excluded a free radical procedure and also demonstrated the secondary amine as a possible intermediate, which was vital to the catalytic reaction. Meanwhile, the deuteration experiment got rid of the C-H activation dehydroisomerization of the benzothiazole mechanism.

20.
J Org Chem ; 85(12): 7817-7839, 2020 06 19.
Article in English | MEDLINE | ID: mdl-32441518

ABSTRACT

This report describes a palladium-catalyzed dearomatization and amination tandem reaction of 2,3-disubstituted indoles and benzofurans via the Catellani strategy. This reaction provides a new method for the construction of amino-substituted indoline-fused cyclic and benzofuran spiro compounds in good yields. The reaction has broad functional group compatibility and substrate scope.

SELECTION OF CITATIONS
SEARCH DETAIL