ABSTRACT
Emerging numbers of endogenous circular RNAs (circRNAs) have gained much attention to serve as essential regulators in the carcinogenesis of human cancers. Unfortunately, the occurrence of paclitaxel (PTX) resistance to ovarian cancer remains to be responsible for the poor prognosis. Herein, the aim of our study is to reveal a dysregulation of a particular circRNA, circANKRD17 (has_circ_0007883), and its exact role involving in chemoresistance of ovarian cancer. Expression patterns of circANKRD17 in PTX-resistant ovarian cancer tissues and cell lines was examined using quantitative real-time PCR analysis. Role of circANKRD17 on drug resistance and cell viability was evaluated by CCK-8 assay. Colony formation was subjected to measure cell proliferation. Flow cytometry was employed to evaluate cell cycle either or cell apoptosis. Xenograft models were constructed for further in vivo confirmation. The cicrANKRD17/FUS/FOXR2 axis was demonstrated using bioinformatics analysis, RNA pull-down, as well as RNA immunoprecipitation assays. Dramatically high expressed circANKRD17 observed in ovarian cancer tissues and cells was correlated with PTX resistance, which indicated the poor prognosis. Functionally, knockdown of circANKRD17 decreased PTX resistance via inhibiting cell viability and inducing cell apoptosis. Mechanistically, circANKRD17 interacted with the RNA-binding protein, fused in sarcoma (FUS) to stabilize FOXR2. In summary, our study uncovered a novel machinery of circANKRD17/FUS/FOXR2 referring to ovarian cancer drug sensitivity and tumorigenesis, highlighting a potential strategy for circRNAs in chemoresistance.
Subject(s)
MicroRNAs , Ovarian Neoplasms , Humans , Female , Paclitaxel/pharmacology , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , RNA, Circular/genetics , Carcinogenesis , Cell Transformation, Neoplastic , Cell Proliferation , Drug Resistance, Neoplasm/genetics , Cell Line, Tumor , Forkhead Transcription Factors , RNA-Binding Protein FUSABSTRACT
Activation of the NF-κB pathway is strictly regulated to prevent excessive inflammatory and immune responses. In a well-known negative feedback model, IκBα-dependent NF-κB termination is a delayed response pattern in the later stage of activation, and the mechanisms mediating the rapid termination of active NF-κB remain unclear. Here, we showed IκBα-independent rapid termination of nuclear NF-κB mediated by CLK2, which negatively regulated active NF-κB by phosphorylating the RelA/p65 subunit of NF-κB at Ser180 in the nucleus to limit its transcriptional activation through degradation and nuclear export. Depletion of CLK2 increased the production of inflammatory cytokines, reduced viral replication and increased the survival of the mice. Mechanistically, CLK2 phosphorylated RelA/p65 at Ser180 in the nucleus, leading to ubiquitinâproteasome-mediated degradation and cytoplasmic redistribution. Importantly, a CLK2 inhibitor promoted cytokine production, reduced viral replication, and accelerated murine psoriasis. This study revealed an IκBα-independent mechanism of early-stage termination of NF-κB in which phosphorylated Ser180 RelA/p65 turned off posttranslational modifications associated with transcriptional activation, ultimately resulting in the degradation and nuclear export of RelA/p65 to inhibit excessive inflammatory activation. Our findings showed that the phosphorylation of RelA/p65 at Ser180 in the nucleus inhibits early-stage NF-κB activation, thereby mediating the negative regulation of NF-κB.