ABSTRACT
The properties of polycrystalline materials are often dominated by defects; two-dimensional (2D) crystals can even be divided and disrupted by a line defect1-3. However, 2D crystals are often required to be processed into films, which are inevitably polycrystalline and contain numerous grain boundaries, and therefore are brittle and fragile, hindering application in flexible electronics, optoelectronics and separation1-4. Moreover, similar to glass, wood and plastics, they suffer from trade-off effects between mechanical strength and toughness5,6. Here we report a method to produce highly strong, tough and elastic films of an emerging class of 2D crystals: 2D covalent organic frameworks (COFs) composed of single-crystal domains connected by an interwoven grain boundary on water surface using an aliphatic bi-amine as a sacrificial go-between. Films of two 2D COFs have been demonstrated, which show Young's moduli and breaking strengths of 56.7 ± 7.4 GPa and 73.4 ± 11.6 GPa, and 82.2 ± 9.1 N m-1 and 29.5 ± 7.2 N m-1, respectively. We predict that the sacrificial go-between guided synthesis method and the interwoven grain boundary will inspire grain boundary engineering of various polycrystalline materials, endowing them with new properties, enhancing their current applications and paving the way for new applications.
ABSTRACT
Changes in both lignin biosynthesis and DNA methylation have been reported to be associated with chilling stress in plants. When stored at low temperatures, red-fleshed loquat is prone to lignification, with increased lignin content and fruit firmness, which has deleterious effects on taste and eating quality. Here, we found that 5 °C storage mitigated the increasing firmness and lignin content of red-fleshed 'Dahongpao' ('DHP') loquat fruit that occurred during 0 °C storage. EjNAC5 was identified by integrating RNA sequencing with whole-genome bisulfite sequencing analysis of 'DHP' loquat fruit. The transcript levels of EjNAC5 were positively correlated with changes in firmness and negatively correlated with changes in DNA methylation level of a differentially methylated region in the EjNAC5 promoter. In white-fleshed 'Baisha' ('BS') loquat fruit, which do not undergo chilling-induced lignification at 0 °C, the transcripts of EjNAC5 remained low and the methylation level of the differentially methylated region in the EjNAC5 promoter was higher, compared with 'DHP' loquat fruit. Transient overexpression of EjNAC5 in loquat fruit and stable overexpression in Arabidopsis and liverwort led to an increase in lignin content. Furthermore, EjNAC5 interacts with EjERF39 and EjHB1 and activates the transcription of Ej4CL1 and EjPRX12 genes involved in lignin biosynthesis. This regulatory network involves different transcription factors from those involved in the lignification pathway. Our study indicates that EjNAC5 promoter methylation modulates EjNAC5 transcript levels and identifies novel EjNAC5-EjERF39-Ej4CL1 and EjNAC5-EjHB1-EjPRX12 regulatory modules involved in chilling induced-lignification.
Subject(s)
Cold Temperature , Eriobotrya , Fruit , Lignin , Plant Proteins , Transcription Factors , Eriobotrya/genetics , Eriobotrya/metabolism , Eriobotrya/physiology , Fruit/genetics , Fruit/metabolism , Lignin/metabolism , Lignin/biosynthesis , Transcription Factors/metabolism , Transcription Factors/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , DNA MethylationABSTRACT
BACKGROUND: Allergic asthma is characterized by airway hyperresponsiveness triggered by inhaled allergens. Type 2 innate lymphoid cells (ILC2s) have been demonstrated to play a crucial role in promoting airway inflammation through the secretion of type 2 effector cytokines. However, the mechanisms underlying the functions of lung ILC2s remain unclear. METHODS: In this study, we investigated the expression of IRF3 in ILC2s in both human patients and mouse models of asthma. We utilized IRF3-deficient mice to assess the impact of IRF3 deficiency on ILC2 function in a model of IL33-induced asthma. Additionally, we explored the mechanisms underlying IRF3-mediated regulation of ILC2s, focusing on the involvement of the transcription factor Gata3. RESULTS: Our findings revealed elevated expression of IRF3 in ILC2s of patients and mice with asthma, suggesting a potential role for IRF3 in the pathogenesis of allergic asthma. Furthermore, we demonstrated that IRF3 deficiency impairedthe expansion and function of ILC2s in IL33-induced asthma, highlighting the importance of IRF3 in regulating ILC2-mediated responses. Importantly, we showed that the regulation of ILC2s by IRF3 was independent of Th2 cells and mediated by the transcription factor Gata3. CONCLUSION: This study identifies IRF3 as a novel regulator of lung ILC2s and suggests its potential as a promising immunotherapeutic target for allergic asthma. These findings shed light on the intricate mechanisms underlying asthma pathogenesis and provide insights into potential strategies for the development of targeted therapies for this prevalent airway disease.
ABSTRACT
Due to the enormous chemical and structural diversities and designable properties and functionalities, covalent organic frameworks (COFs) hold great promise as tailored materials for industrial applications in electronics, biology, and energy technologies. They were typically obtained as partially crystalline materials, although a few single-crystal three-dimensional (3D) COFs have been obtained recently with structures probed by diffraction techniques. However, it remains challenging to grow single-crystal COFs with controlled morphology and to elucidate the local structures of 3D COFs, imposing severe limitations on the applications and understanding of the local structure-property correlations. Herein, we develop a method for designed growth of five types of single crystalline flakes of 3D COFs with controlled morphology, front crystal facets, and defined edge structures as well as surface chemistry using surfactants that can be self-assembled into layered structures to confine crystal growth in water. The flakes enable direct observation of local structures including monomer units, pore structure, edge structure, grain boundary, and lattice distortion of 3D COFs as well as gradually curved surfaces in kinked but single crystalline 3D COFs with a resolution of up to â¼1.7 Å. In comparison with flakes of two-dimensional crystals, the synthesized flakes show much higher chemical, mechanical, and thermal stability.
ABSTRACT
Coronavirus disease 2019 (COVID-19) has speedily increased mortality globally. Although they are risk factors for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), less is known about the common molecular mechanisms behind COVID-19, influenza virus A (IAV), and chronic obstructive pulmonary disease (COPD). This research used bioinformatics and systems biology to find possible medications for treating COVID-19, IAV, and COPD via identifying differentially expressed genes (DEGs) from gene expression datasets (GSE171110, GSE76925, GSE106986, and GSE185576). A total of 78 DEGs were subjected to functional enrichment, pathway analysis, protein-protein interaction (PPI) network construct, hub gene extraction, and other potentially relevant disorders. Then, DEGs were discovered in networks including transcription factor (TF)-gene connections, protein-drug interactions, and DEG-microRNA (miRNA) coregulatory networks by using NetworkAnalyst. The top 12 hub genes were MPO, MMP9, CD8A, HP, ELANE, CD5, CR2, PLA2G7, PIK3R1, SLAMF1, PEX3, and TNFRSF17. We found that 44 TFs-genes, as well as 118 miRNAs, are directly linked to hub genes. Additionally, we searched the Drug Signatures Database (DSigDB) and identified 10 drugs that could potentially treat COVID-19, IAV, and COPD. Therefore, we evaluated the top 12 hub genes that could be promising DEGs for targeted therapy for SARS-CoV-2 and identified several prospective medications that may benefit COPD patients with COVID-19 and IAV co-infection.
Subject(s)
COVID-19 , Coinfection , MicroRNAs , Orthomyxoviridae , Humans , Prospective Studies , SARS-CoV-2 , Computational BiologyABSTRACT
The selective capture of low-concentration CO2 from air or confined spaces remains a great challenge. In this study, various functional groups were introduced into UiO-66 to generate functionalized derivatives (UiO-66-R, R = NO2, NH2, OH, and CH3), aiming at significantly enhancing CO2 adsorption and separation efficiency. More significantly, UiO-66-NO2 and UiO-66-NH2 with high polarity exhibit exceptional CO2 affinity and optimal separation characteristics in mixed CO2/O2/N2 (1:21:78). In addition, the impressive stability of UiO-66-NO2 and UiO-66-NH2 endows them with excellent recycling stability. The effective adsorption and separation performances demonstrated by these two functional materials suggest their potential as promising physical adsorbents for capturing low-concentration CO2.
ABSTRACT
INTRODUCTION: During the last decades, the advent of flexible ureteroscopic lithotripsy has revolutionized the management of upper urinary tract stones. We designed a patented tip-bendable ureteral access sheath to facilitate stone clearance. Our current study reported our initial experience of 224 cases. MATERIALS AND METHODS: The study is a descriptive, retrospective analysis. The initial 224 cases, operated consecutively by one surgeon during 16 months, were reviewed. The novel tip-bendable ureteral access sheath was applied in the procedure. Demographics, laboratory tests, and peri- and postoperative findings (operation duration, stone-free rate (SFR), utilization of flexible instruments and complications) were analyzed. RESUTLS: The median age of the patients was 56 years and the mean stones size was 2.3 ± 1.3 cm. There were 63 cases of upper ureteral stone, 93cases of renal stone and 68 cases of ureteral-renal stones. The mean operative time was 69.2 ± 65.2 min. The immediate stone-free rate was 76.8% and the 1 month post-operative stone-free rate was 97.3%. Most cases(95.5%)were success in single session. Two patient experienced post-operative fever. There was no unplanned readmission. The frequency of post-operative complications was estimated at 0.89% (Clavien I). CONCLUSION: Flexible ureteroscopic lithotripsy with tip-bendable ureteral access sheath is a safe and effective procedure, which can achieve excellent stone clearance.
Subject(s)
Kidney Calculi , Lithotripsy , Ureter , Ureteral Calculi , Humans , Middle Aged , Ureteroscopy/methods , Retrospective Studies , Ureter/surgery , Ureteral Calculi/surgery , Ureteral Calculi/complications , Lithotripsy/methods , Kidney Calculi/surgery , Kidney Calculi/complications , Treatment OutcomeABSTRACT
It has been a longstanding challenge to rationally synthesize thin films of organic two-dimensional (2D) crystals with large single-crystalline domains. Here, we present a general strategy for the creation of 2D crystals of covalent organic frameworks (COFs) on the water surface, assisted by a charged polymer. The morphology of the preorganized monomers underneath the charged polymer on the water surface and their diffusion were crucial for the formation of the organic 2D crystals. Thin films of 2D COFs with an average single-crystalline domain size of around 3.57 ± 2.57 µm2 have been achieved, and their lattice structure, molecular structure, and grain boundaries were identified with a resolution down to 3 Å. The swing of chain segments and lattice distortion were revealed as key factors in compensating for the misorientation between adjacent grains and facilitating error corrections at the grain boundaries, giving rise to larger single-crystalline domains. The generality of the synthesis method was further proved with three additional 2D COFs. The oriented single-crystalline domains and clear grain boundaries render the films as model materials to study the dependence of the vertical conductivity of organic 2D crystals on domain sizes and chemical structures, and significant grain boundary effects were illustrated. This study presents a breakthrough in the controlled synthesis of organic 2D crystals with structural control at the molecular level. We envisage that this work will inspire further investigation into the microstructure-intrinsic property correlation of 2D COFs and boost their application in electronics.
ABSTRACT
Loquat fruit are susceptible to chilling injuries induced by postharvest storage at low temperature. The major symptoms are increased lignin content and flesh firmness, which cause a leathery texture. Pretreatment with methyl jasmonate (MeJA) can alleviate this low-temperature-induced lignification, but the mechanism is not understood. In this study, we characterized a novel class III peroxidase, EjPRX12, and studied its relationship to lignification. Transcript levels of EjPRX12 were attenuated following MeJA pretreatment, consistent with the reduced lignin content in fruit. In vitro enzyme activity assay indicated that EjPRX12 polymerized sinapyl alcohol, and overexpression of EjPRX12 in Arabidopsis promoted lignin accumulation, indicating that it plays a functional role in lignin polymerization. We also identified an HD-ZIP transcription factor, EjHB1, repressed by MeJA pretreatment, which directly bound to and significantly activated the EjPRX12 promoter. Overexpression of EjHB1 in Arabidopsis promoted lignin accumulation with induced expression of lignin-related genes, especially AtPRX64. Furthermore, a JAZ-interacting repressor, EjbHLH14, was characterized, and it is proposed that MeJA pretreatment caused EjbHLH14 to be released to repress the expression of EjHB1. These results identified a novel regulatory pathway involving EjbHLH14-EjHB1-EjPRX12 and revealed the molecular mechanism whereby MeJA alleviated lignification of loquat fruit at low temperature.
Subject(s)
Eriobotrya , Acetates , Cyclopentanes , Eriobotrya/genetics , Fruit/genetics , Fruit/metabolism , Gene Expression Regulation, Plant , Lignin/metabolism , Oxylipins , Plant Extracts , Plant Proteins/genetics , Plant Proteins/metabolismABSTRACT
A thermosensitive solid amine fiber SF-AM-co-NIPAM-HBP-NH2 was synthesized by grafting temperature-sensitive monomer N-isopropyl acrylamide (NIPAM) as well as acrylamide (AM) onto the surface of substrate sisal fiber, and further aminating with hyperbranched amine. FTIR, 13C NMR, SEM, EA and TGA were used to confirm the structure and chemical properties of the grafted fibers. Swelling ratio and CO2 adsorption-desorption experiment were investigated to verify the thermo-sensitivity of the grafted fibers and their CO2 adsorption-desorption behavior. Compared with conventional solid amine adsorbents regenerated around 140 °C, SF-AM-co-NIPAM-HBP-NH2 (1:1) with NIPAM could be regenerated at a much lower temperature of 60 °C, while still maintain a high CO2 adsorption capacity (2.61 mmol/g), comparable to that of SF-AM-HBP-NH2 (2.73 mmol/g) before NIPAM introduction. Its excellent regeneration property and the effect of energy consumption reduction make it possible to be used for CO2 adsorption in industrial process.
Subject(s)
Amines , Carbon Dioxide , Adsorption , Biomass , TemperatureABSTRACT
Charged or neutral adamantane guests can be encapsulated into the cavity of cationic metal-organic M6 L4 (bpy-cage, M=PdII (2,2'-bipyridine), L=2,4,6-tri(4-pyridyl)-1,3,5-triazine) cages through hydrophobic interaction. These encapsulations can provide an approach to control the net charge on the resulting cage-guest complexes and regulate their charge-dominated assembly into hollow spherical blackberry-type assemblies in dilute solutions: encapsulation of neutral guests will hardly influence their self-assembly process, including the blackberry structure size, which is directly related to the intercage distance in the assembly; whereas encapsulating negatively (positively) charged guests resulted in a shorter (longer) intercage distance with largerâ (smaller) assemblies formed. Therefore, the host-guest chemistry approach can be used to tune the intercage distance accurately.
ABSTRACT
A spatial resolution improvement scheme for the digital optical frequency comb (DOFC)-based single-shot Brillouin optical time domain analysis (BOTDA) by utilizing multiple pump pulses is demonstrated. Assisted by four pump pulses, the spatial resolution can be improved by four times without decreasing the detection resolution. The response time, and the spatial resolution of our scheme over 10 km fiber, are 0.1 ms and 12.5 m. Distributed temperature and strain measurements are carried out with detection resolutions of 1.6°C and 44 µÏµ, respectively, and the capability of dynamic measurement of this proposed BOTDA is also demonstrated by probing a vibration with frequency up to 1.2 kHz.
ABSTRACT
Mesenchymal stem cells (MSCs) and their secreted exosomes exert a cardioprotective role in jeopardized myocardium. However, the specific effects and underlying mechanisms of exosomes derived from adipose-derived MSCs (ADMSCs) on myocardial ischemia/reperfusion (I/R) injury remain largely unclear. In this study, ADMSC-derived exosomes (ADMSCs-ex) were administrated into the rats subjected to I/R injury and H9c2 cells exposed to hypoxia/reoxygenation (H/R). Consequently, administration of ADMSCs-ex significantly reduced I/R-induced myocardial infarction, accompanied with a decrease in serum levels of creatine kinase-myocardial band, lactate dehydrogenase, and cardiac troponin I (cTnI). Simultaneously, ADMSCs-ex dramatically antagonized I/R-induced myocardial apoptosis, along with the upregulation of Bcl-2 and downregulation of Bax, and inhibition of Caspase 3 activity in rat myocardium. Similarly, ADMSCs-ex significantly reduced cell apoptosis and the expression of Bax, but markedly increased cell viability and the expression of Bcl-2 and Cyclin D1 under H/R. Furthermore, ADMSCs-ex observably induced the activation of Wnt/ß-catenin signaling by attenuating I/R- and H/R-induced inhibition of Wnt3a, p-GSK-3ß (Ser9), and ß-catenin expression. Importantly, treatment with Wnt/ß-catenin inhibitor XAV939 partly neutralized ADMSC-ex-induced antiapoptotic and prosurvival effects in H9c2 cells. In conclusion, we confirmed that ADMSCs-ex protect ischemic myocardium from I/R injury through the activation of Wnt/ß-catenin signaling pathway.
Subject(s)
Adipose Tissue/transplantation , Exosomes/transplantation , Mesenchymal Stem Cells/physiology , Myocardial Reperfusion Injury/prevention & control , Wnt Signaling Pathway/physiology , Animals , Cell Line , Cell Survival/physiology , Male , Myocardial Reperfusion Injury/metabolism , Myocardium/pathology , Rats , Rats, Sprague-DawleyABSTRACT
A joint chromatic dispersion (CD) and 1st order polarization mode dispersion (PMD) monitoring technique for both a coherent and a non-coherent single carrier system based on a pair of cost effective low-bandwidth coherent receivers is proposed and experimentally demonstrated. By jointly detecting the narrow band around ± 1/2 baud rate, the CD and PMD can be estimated simultaneously by time domain correlation and Stokes space rotational angle recovery, respectively. The CD estimation range is theoretically infinite and the PMD estimation range is limited to the maximum of 1/2 symbol period. Simulation results show that for a 28 G baud dual-polarization (DP)-16QAM transmission system, with dual 1 GHz coherent receivers, the monitoring error for CD and differential group delay (DGD) is 30 ps/nm and 0.5 ps, respectively. We also experimentally verified it for a 12 GBit/s NRZ-OOK transmission system with a full-bandwidth coherent receiver and two 1 GHz digital filters to simulate dual 1 GHz coherent receivers. The monitoring error for CD and DGD is 60 ps/nm and 1.5 ps, respectively.
ABSTRACT
Cyantraniliprole is a novel insecticide recently introduced for rice pest control that may cause potential threats to the red swamp crayfish (Procambarus clarkii) in rice-crayfish coculture systems. In this study, we investigated the acute toxicity of cyantraniliprole against P. clarkii with a LC50 value of 149.77 mg/L (96 h), first. Some abnormal behaviors of P. clarkii treated with 125 mg/L cyantraniliprole, including incunabular hyperexcitability, imbalance, inactivity, and increased excretion were observed. Moreover, it was observed that exposure to 5 mg/L cyantraniliprole for 14 days resulted in histopathological alterations in abdominal muscle, gills, hepatopancreas, and intestines. Furthermore, exposure to 0.05 and 5 mg/L cyantraniliprole induced increased activities of several oxidative stress-related enzymes, which was verified by the upregulation of related genes. Additionally, dysregulation of the intestinal microbiota was determined via 16S rRNA sequencing. These results will provide the basis for the utilization of cyantraniliprole in the fields of rice-crayfish integrated system.
Subject(s)
Gastrointestinal Microbiome , Oryza , Pyrazoles , ortho-Aminobenzoates , Animals , Astacoidea/genetics , RNA, Ribosomal, 16S , Oxidative StressABSTRACT
Background and Objective: Timely recognition of risk factors for early progression in older adult patients with COVID-19 is of great significance to the following clinical management. This study aims to analyze the risk factors and create a nomogram for early progression in older adult patients with COVID-19 in the Omicron era. Methods: A total of 272 older adults infected with COVID-19 admitted from December 2022 to February 2023 were retrospectively recruited. Risk factor selection was determined using the logistic and the least absolute shrinkage and selection operator (LASSO) regression. A nomogram was then created to predict early progression, followed by the internal validation and assessment of its performance through plotting the receiver operating characteristic (ROC), calibration, and decision curves. Results: A total of 83 (30.5%) older adult patients presented an early progression on chest CT after 3-5 days of admission under standard initiate therapy. Six independent predictive factors were incorporated into the nomogram to predict the early progression, including CRP > 10 mg/L, IL-6 > 6.6 pg/mL, LDH > 245 U/L, CD4+ T-lymphocyte count <400/µL, the Activities of Daily Living (ADL) score ≤40 points, and the Mini Nutritional Assessment Scale-Short Form (MNA-SF) score ≤7 points. The area under the curve (AUC) of the nomogram in discriminating older adult patients who had risk factors in the training and validation cohort was 0.857 (95% CI 0.798, 0.916) and 0.774 (95% CI 0.667, 0.881), respectively. The calibration and decision curves demonstrated a high agreement in the predicted and observed risks, and the acceptable net benefit in predicting the early progression, respectively. Conclusion: We created a nomogram incorporating highly available laboratory data and the Comprehensive Geriatric Assessment (CGA) findings that effectively predict early-stage progression in older adult patients with COVID-19 in the Omicron era.
Subject(s)
COVID-19 , Nomograms , Humans , Aged , Activities of Daily Living , Retrospective Studies , Risk Factors , Factor Analysis, StatisticalABSTRACT
Applications of post-denitrification processes are subjected to low reaction rates caused by a lack of carbon resources. To offer a solution for reaction rate promotion, this research found a pilot-scale anaerobic/aerobic/anoxic bioreactor treating 55-120 m3/d low-strength municipal wastewater for 273 days. A short hydraulic retention time (HRT, 5-6 h) and a high nitrogen removal rate (63.2 ± 9.3 g-N/m3·d) were achieved using HRT optimization. The effluent total nitrogen concentration was maintained at 5.8 ± 1.4 mg/L while operating at a high nitrogen loading rate of 86.2 ± 12.8 g-N/m3·d. The short aeration (1.25-1.5 h) minimized the Glycogen loss. The endogenous denitrification rate increased to above 1.0 mg/(g-VSS·h). The functional genus Ca. Competibacter enriched to 2.3 %, guaranteeing the efficient post-denitrification process. Dechloromonas rose to 1.1 %, aiding in the synchronous phosphorus removal. These findings offered fresh insights into AOA processes to achieve energy/cost-saving wastewater treatment.
Subject(s)
Waste Disposal, Fluid , Water Purification , Sewage , Denitrification , Anaerobiosis , Nitrogen , Bioreactors , Phosphorus , NitrificationABSTRACT
Correction for 'High-performance p-i-n perovskite photodetectors and image sensors with long-term operational stability enabled by a corrosion-resistant titanium nitride back electrode' by Tian Sun et al., Nanoscale, 2023, 15, 7803-7811, https://doi.org/10.1039/D3NR00410D.
ABSTRACT
INTRODUCTION: Lignin is a principal constituent of the secondary cell wall, which plays a role in both plant growth and defensing against stress, such as low temperature and pest infestation. Additionally, it also accumulates in fleshy fruits and negatively affects fruit quality. Red-fleshed loquat is temperature sensitive and exhibits cold-induced lignification. A number of technologies have been developed, for example, Low Temperature Conditioning (LTC) treatment, which has been applied in order to relieve the symptom of cold injury. OBJECTIVES: The present study seeks to elucidate the regulatory mechanism underlying cold-induced lignification in loquat fruit. METHODS: The target genes were isolated through the analysis of transcriptome. The gene function was analyzed by transient transgenic method in tobacco leaves and loquat fruit, respectively, as well as stable overexpression in liverwort. The regulatory mechanism study was achieved by in vitro protein-protein interaction assays, dual-luciferase assay, and EMSA. RESULTS: In the present study, the Xylem NAC Domain transcription factor EjXND1 was identified as a repressor of loquat fruit lignification. It was demonstrated that EjXND1 could interact with the characterized lignin activator EjHB1, resulting in a diminution of the activation of EjHB1 on EjPRX12 promoter. Furthermore, two highly methylated regions were identified in the promoter of EjXDN1. One of these regions exhibited a negative correlation between methylation level and EjXND1 expression. Additionally, it was shown that hypermethylation of this region weaken the binding affinity of EjXND1 activators to its promoter. CONCLUSION: The EjXND1 plays a role in modified Low Temperature Conditioning (mLTC) treatment that alleviates cold-induced lignification in red-fleshed loquat fruit by targeting the EjHB1-EjPRX12 module and EjXND1 is regulated by the dynamic of DNA methylation level in the promoter.