Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
J Nanobiotechnology ; 20(1): 231, 2022 May 14.
Article in English | MEDLINE | ID: mdl-35568912

ABSTRACT

BACKGROUND: Chikungunya virus (CHIKV) is a re-emerged mosquito-borne alphavirus that can cause musculoskeletal diseases, imposing a substantial threat to public health globally. High-affinity antibodies are need for diagnosis and treatment of CHIKV infections. As a potential diagnostic and therapeutic agent, the multivalent VHH antibodies is a promising tookit in nanomedicine. Here, we developed potent multivalent VHH antibodies from an alpaca naïve phage display library targeting the E2 glycoprotein of the CHIKV virus. RESULTS: In the present study, we generated 20 VHH antibodies using a naïve phage display library for binders to the CHIKV E2 glycoprotein. Of these, multivalent VHH antibodies Nb-2E8 and Nb-3C5 had specific high-affinity binding to E2 protein within the nanomolar range. The equilibrium dissociation constant (KD) was between 2.59-20.7 nM, which was 100-fold stronger than the monovalent antibodies' affinity. Moreover, epitope mapping showed that Nb-2E8 and Nb-3C5 recognized different linear epitopes located on the E2 glycoprotein domain C and A, respectively. A facile protocol of sandwich ELISA was established using BiNb-2E8 as a capture antibody and HRP-conjugated BiNb-3C5 as a detection antibody. A good linear correlation was achieved between the OD450 value and the E2 protein concentration in the 5-1000 ng/mL range (r = 0.9864, P < 0.0001), indicating its potential for quantitative detection of the E2 protein. CONCLUSIONS: Compared to monovalent antibodies, multivalent VHH antibodies Nb-2E8 and Nb-3C5 showed high affinity and are potential candidates for diagnostic applications to better detect CHIKV virions in sera.


Subject(s)
Bacteriophages , Camelids, New World , Chikungunya Fever , Chikungunya virus , Single-Domain Antibodies , Animals , Antibodies, Viral , Glycoproteins
2.
Virus Res ; 339: 199292, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38042373

ABSTRACT

Chikungunya virus (CHIKV) and Dengue virus (DENV) are vector-borne diseases transmitted by Aedes aegypti and Aedes albopictus that pose a significant threat to global public health. Cases of acute Chikungunya fever often present similar clinical symptoms to other vector-borne diseases, such as Dengue fever. In regions where multiple vector-borne diseases coexist, CHIKV is often overlooked or misdiagnosed as Dengue virus, West Nile virus, Zika virus or other viral infections, which delays its prevention and control. However, IgM antibodies directed against the E2 protein of CHIKV have not yet been generalized to clinical settings due to the low sensitivity and high cost in commercial kits. Indirect ELISA with peptides provides an effective supplementary tool for detecting CHIKV IgM antibodies. Our study aims at examining the potential of linear epitopes on the E2 glycoprotein that specifically bind to IgM antibodies as serodiagnostic tool for CHIKV. The sensitivity of the established peptide indirect ELISA method for detecting clinical samples is significantly better than that of commercial kits, realizing a beneficial supplement to the existing IgM antibody assay. It also established the groundwork for comprehending the biological mechanisms of the CHIKV E2 protein and the advancement of innovative epitope peptide vaccines.


Subject(s)
Chikungunya Fever , Chikungunya virus , Dengue , Zika Virus Infection , Zika Virus , Humans , Chikungunya Fever/diagnosis , Epitopes , Serologic Tests , Viral Proteins , Zika Virus Infection/diagnosis , Antibodies, Viral , Immunoglobulin M
3.
Adv Healthc Mater ; 13(13): e2303619, 2024 05.
Article in English | MEDLINE | ID: mdl-38340040

ABSTRACT

The convergence strategies of antigenic subunits and synthetic nanoparticle scaffold platform improve the vaccine production efficiency and enhance vaccine-induced immunogenicity. Selecting the appropriate nanoparticle scaffold is crucial to controlling target antigens immunologically. Lumazine synthase (LS) is an attractive candidate for a vaccine display system due to its thermostability, modification tolerance, and morphological plasticity. Here, the first development of a multivalent thermostable scaffold, LS-SUMO (SUMO, small ubiquitin-likemodifier), and a divalent nanovaccine covalently conjugated with Chikungunya virus E2 and Zika virus EDIII antigens, is reported. Compared with antigen monomers, LS-SUMO nanoparticle vaccines elicit a higher humoral response and neutralizing antibodies against both antigen targets in mouse sera. Mice immunized with LS-SUMO conjugates produce CD4+ T cell-mediated Th2-biased responses and promote humoral immunity. Importantly, LS-SUMO conjugates possess equivalent humoral immunogenicity after heat treatment. Taken together, LS-SUMO is a powerful biotargeting nanoplatform with high-yield production, thermal stability and opens a new avenue for multivalent presentation of various antigens.


Subject(s)
Chikungunya virus , Zika Virus , Animals , Mice , Chikungunya virus/immunology , Zika Virus/immunology , Nanoparticles/chemistry , Viral Vaccines/immunology , Viral Vaccines/chemistry , Mice, Inbred BALB C , Female , Chikungunya Fever/immunology , Chikungunya Fever/prevention & control , Immunity, Humoral/drug effects , Antibodies, Neutralizing/immunology , Antigens, Viral/immunology , Antigens, Viral/chemistry , Nanovaccines , Multienzyme Complexes
4.
Heliyon ; 10(10): e31546, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38807894

ABSTRACT

Background: In recent years, research on exosomal miRNAs has provided new insights into exploring the mechanism of viral infection and disease prevention. This study aimed to investigate the serum exosomal miRNA expression profile of dengue-infected individuals through a community survey of dengue virus (DENV) infection. Methods: A seroprevalence study of 1253 healthy persons was first conducted to ascertain the DENV infection status in Baiyun District, Guangzhou. A total of 18 serum samples, including 6 healthy controls (HC), 6 asymptomatic DENV infections (AsymptDI), and 6 confirmed dengue fever patients (AcuteDI), were collected for exosome isolation and then sRNA sequencing. Through bioinformatics analysis, we discovered distinct serum exosomal miRNA profiles among the different groups and identified differentially expressed miRNAs (DEMs). These findings were further validated by qRT-PCR. Results: The community survey of DENV infection indicated that the DENV IgG antibody positivity rate among the population was 11.97 % in the study area, with asymptomatic infected individuals accounting for 93.06 % of the anti-DENV IgG positives. The age and Guangzhou household registration were associated with DENV IgG antibody positivity by logistic regression analysis. Distinct miRNA profiles were observed between healthy individuals and DENV infections. A total of 1854 miRNAs were identified in 18 serum exosome samples from the initial analysis of the sequencing data. Comparative analysis revealed 23 DEMs comprising 5 upregulated and 18 downregulated miRNAs in the DENV-infected group (mergedDI). In comparison to AcuteDI, 18 upregulated miRNAs were identified in AsymptDI. Moreover, functional enrichment of the predicted target genes of DEMs indicated that these miRNAs were involved in biological processes and pathways related to cell adhesion, focal adhesion, endocytosis, and ECM-receptor interaction. Eight DEMs were validated by qRT-PCR. Conclusion: The Baiyun District of Guangzhou exhibits a notable proportion of asymptomatic DENV infections as suggested in other research, highlighting the need for enhanced monitoring and screening of asymptomatic persons and the elderly. Differential miRNA expression among healthy, symptomatic and asymptomatic DENV-infected individuals suggests their potential as biomarkers for distinguishing DENV infection and offers new avenues of investigating the mechanisms underlying DENV asymptomatic infections.

5.
Anal Chim Acta ; 1302: 342514, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38580408

ABSTRACT

Monkeypox (mpox) is spreading around the world, and its rapid diagnosis is of great significance. In the present study, a rapid and sensitive fluorescent chromatography assisted with cloud system was developed for point-of-care diagnosis of mpox. To screen high affinity antibodies, nanoparticle antigen AaLS-A29 was generated by conjugating A29 onto scaffold AaLS. Immunization with AaLS-A29 induced significantly higher antibody titers and monoclonal antibodies were generated with the immunized mice. A pair of monoclonal antibodies, MXV 14 and MXV 15, were selected for fluorescence chromatography development. The Time-Resolved Fluorescence Immunoassay (TRFIA) was used to develop the chromatography assay. After optimization of the label and concentration of antibodies, a sensitive TRFIA assay with detection limit of 20 pg/mL and good repeatability was developed. The detection of the surrogate Vaccinia virus (VACA) strain Tian Tan showed that the TRFIA assay was more sensitive than the SYBR green I based quantitative PCR. In real samples, the detection result of this assay were highly consistent with the judgement of Quantitative Real-Time PCR (Concordance Rate = 90.48%) as well as the clinical diagnosis (Kappa Value = 0.844, P < 0.001). By combining the portable detection and online cloud system, the detection results could be uploaded and shared, making this detection system an ideal system for point-of-care diagnosis of mpox both in field laboratory and outbreak investigation.


Subject(s)
Mpox (monkeypox) , Animals , Mice , Point-of-Care Systems , Fluoroimmunoassay/methods , Antibodies, Monoclonal
6.
Int J Nanomedicine ; 18: 353-367, 2023.
Article in English | MEDLINE | ID: mdl-36700149

ABSTRACT

Background: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variants have risen to dominance, which contains far more mutations in the spike protein in comparison to previously reported variants, compromising the efficacy of most existing vaccines or therapeutic monoclonal antibodies. Nanobody screened from high-throughput naïve libraries is a potential candidate for developing preventive and therapeutic antibodies. Methods: Four nanobodies specific to the SARS-CoV-2 wild-type receptor-binding domain (RBD) were screened from a naïve phage display library. Their affinity and neutralizing activity were evaluated by surface plasmon resonance assays, surrogate virus neutralization tests, and pseudovirus neutralization assays. Preliminary identification of the binding epitopes of nanobodies by peptide-based ELISA and competition assay. Then four multivalent nanobodies were engineered by attaching the monovalent nanobodies to an antibody-binding nanoplatform constructed based on the lumazine synthase protein cage nanoparticles isolated from the Aquifex aeolicus (AaLS). Finally, the differences in potency between the monovalent and multivalent nanobodies were compared using the same methods. Results: Three of the four specific nanobodies could maintain substantial inhibitory activity against the Omicron (B.1.1.529), of them, B-B2 had the best neutralizing activity against the Omicron (B.1.1.529) pseudovirus (IC50 = 1.658 µg/mL). The antiviral ability of multivalent nanobody LS-B-B2 was improved in the Omicron (B.1.1.529) pseudovirus assays (IC50 = 0.653 µg/mL). The results of peptide-based ELISA indicated that LS-B-B2 might react with the linear epitopes in the SARS-CoV-2 RBD conserved regions, which would clarify the mechanisms for the maintenance of potent neutralization of Omicron (B.1.1.529) preliminary. Conclusion: Our study indicated that the AaLS could be used as an antibody-binding nanoplatform to present nanobodies on its surface and improve the potency of nanobodies. The multivalent nanobody LS-B-B2 may serve as a potential agent for the neutralization of SARS-CoV-2 variants.


Subject(s)
COVID-19 , Single-Domain Antibodies , Humans , SARS-CoV-2 , Epitopes , Antibodies, Neutralizing , Antibodies, Viral
7.
Antiviral Res ; 208: 105446, 2022 12.
Article in English | MEDLINE | ID: mdl-36270543

ABSTRACT

Chikungunya fever, caused by Chikungunya virus (CHIKV), is an Aedes mosquito-borne disease present worldwide, and millions of CHIKV infections have been reported. Treatment for CHIKV includes supportive care and anti-inflammatory medications, but there are currently no antiviral treatments or vaccines. Nonstructural protein 2 (nsP2) of CHIKV is the most important functional protein mediating virus replication and amplification, making it an ideal antiviral target for CHIKV. In this study, we determined the CHIKV nsP2 Epitope Rich Region, expressed recombinant nsP2 protein, and isolated 5 nsP2-specific nanobodies (Nb-A2, Nb-A9, Nb-D7, Nb-D12 and Nb-E12) from a phage display library comprising variable domains of Camellidae heavy chain-only antibodies (VHH). We subsequently established a stable Nbs-expressing HEK293T cell line to explore antiviral function. The results showed that Nb-A9 inhibited CHIKV replication at the early stage of CHIKV infection in HEK293T cells, and protected cells against CHIKV-induced cytopathic effect (CPE). This is possibly the first report of an Nbs-based strategy against CHIKV nsP2, Nb-A9 has great potential for developing a novel antiviral drug to treat CHIKV infection. The acquisition of antibodies has laid a foundation for further research on the function of CHIKV nsP2 and the development of therapeutic drugs.


Subject(s)
Chikungunya Fever , Chikungunya virus , Animals , Humans , Chikungunya virus/physiology , Epitopes , HEK293 Cells , Virus Replication , Viral Nonstructural Proteins/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/metabolism
8.
Patient Prefer Adherence ; 15: 691-703, 2021.
Article in English | MEDLINE | ID: mdl-33854303

ABSTRACT

PURPOSE: To identify the factors influencing inpatient satisfaction by fitting the optimal discriminant model. PATIENTS AND METHODS: A cross-sectional survey of inpatient satisfaction was conducted with 3888 patients in 16 large public hospitals in Zhejiang Province. Independent variables were screened by single-factor analysis, and the importance of all variables was comprehensively evaluated. The relationship between patients' overall satisfaction and influencing factors was established, the relative risk was evaluated by marginal benefit, and the optimal model was fitted using the receiver operating characteristic curve. RESULTS: Patients' overall satisfaction was 79.73%. The five most influential factors on inpatient satisfaction, in this order, were: patients' right to know, timely nursing response, satisfaction with medical staff service, integrity of medical staff, and accuracy of diagnosis. The prediction accuracy of the random forest model was higher than that of the multiple logistic regression and naive Bayesian models. CONCLUSION: Inpatient satisfaction is related to healthcare quality, diagnosis, and treatment process. Rapid identification and active improvement of the factors affecting patient satisfaction can reduce public hospital operating costs and improve patient experiences and the efficiency of health resource allocation. Public hospitals should strengthen the exchange of medical information between doctors and patients, shorten waiting time, and improve the level of medical technology, service attitude, and transparency of information disclosure.

9.
Front Immunol ; 12: 772511, 2021.
Article in English | MEDLINE | ID: mdl-34868035

ABSTRACT

Recent exposure to seasonal coronaviruses (sCoVs) may stimulate cross-reactive antibody responses against severe acute respiratory syndrome CoV 2 (SARS-CoV-2). However, previous studies have produced divergent results regarding protective or damaging immunity induced by prior sCoV exposure. It remains unknown whether pre-existing humoral immunity plays a role in vaccine-induced neutralization and antibody responses. In this study, we collected 36 paired sera samples from 36 healthy volunteers before and after immunization with inactivated whole-virion SARS-CoV-2 vaccines for COVID-19, and analyzed the distribution and intensity of pre-existing antibody responses at the epitope level pre-vaccination as well as the relationship between pre-existing sCoV immunity and vaccine-induced neutralization. We observed large amounts of pre-existing cross-reactive antibodies in the conserved regions among sCoVs, especially the S2 subunit. Excep t for a few peptides, the IgG and IgM fluorescence intensities against S, M and N peptides did not differ significantly between pre-vaccination and post-vaccination sera of vaccinees who developed a neutralization inhibition rate (%inhibition) <40 and %inhibition ≥40 after two doses of the COVID-19 vaccine. Participants with strong and weak pre-existing cross-reactive antibodies (strong pre-CRA; weak pre-CRA) had similar %inhibition pre-vaccination (10.9% ± 2.9% vs. 12.0% ± 2.2%, P=0.990) and post-vaccination (43.8% ± 25.1% vs. 44.6% ± 21.5%, P=0.997). Overall, the strong pre-CRA group did not show a significantly greater increase in antibody responses to the S protein linear peptides post-vaccination compared with the weak pre-CRA group. Therefore, we found no evidence for a significant impact of pre-existing antibody responses on inactivated vaccine-induced neutralization and antibody responses. Our research provides an important basis for inactivated SARS-CoV-2 vaccine use in the context of high sCoV seroprevalence.


Subject(s)
Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , Cross Reactions/immunology , SARS-CoV-2/immunology , Adult , COVID-19/prevention & control , Coronavirus/immunology , Coronavirus Infections/immunology , Female , Humans , Immunoglobulin G/immunology , Immunoglobulin M/immunology , Male , Middle Aged , Neutralization Tests , Seasons , Vaccines, Inactivated/immunology
10.
Front Public Health ; 8: 198, 2020.
Article in English | MEDLINE | ID: mdl-32671007

ABSTRACT

This study was performed to describe the epidemiologic characteristics of coronavirus disease 2019 (COVID-19) and explore risk factors for severe infection. Data of all 131 confirmed cases in Tianjin before February 20 were collected. By February 20, a total of 14/16 districts reported COVID-19 cases, with Baodi district reporting the most cases (n = 56). A total of 22 (16.8%) cases had a Wuhan-related exposure. Fever was the most common symptom (82.4%). The median duration of symptom onset to treatment was [1.0 (0.0-4.0) days], the duration of symptom onset to isolation [2.0 (0.0-6.0) days], and the duration of symptom onset to diagnosis [5.0 (2.0-8.0) days]. The analysis of the transmission chain showed two cluster infections with 62 cases infected. Transmission from a family member constituted 42%, usually at the end of transmission chain. Compared with patients with non-severe infections, patients with severe infections were more likely to be male (46.2 vs. 77.3%, P = 0.009) and had a Wuhan-related exposure (14.0 vs. 40.9%, P = 0.004). Multivariate logistic regression showed that male (OR 3.913, 95% CI 1.206, 12.696; P = 0.023) was an independent risk factor for severe infection. This study provides evidence on the epidemic of COVID-19 by analyzing the epidemiological characteristics of confirmed cases in Tianjin. Self-quarantine at an outbreak's early stage, especially for those with high-risk exposures, is conducive to prevent the transmission of infection. Further investigation is needed to confirm the risk factors for severe COVID-19 infection and investigate the mechanisms involved.


Subject(s)
COVID-19 , Communicable Diseases/epidemiology , Fever/etiology , Severity of Illness Index , Adult , COVID-19/epidemiology , COVID-19/transmission , China/epidemiology , Female , Humans , Male , Middle Aged , Risk Factors , SARS-CoV-2 , Sex Factors
11.
Chin Med J (Engl) ; 133(9): 1044-1050, 2020 May 05.
Article in English | MEDLINE | ID: mdl-32118644

ABSTRACT

BACKGROUND: The ongoing new coronavirus pneumonia (Corona Virus Disease 2019, COVID-19) outbreak is spreading in China, but it has not yet reached its peak. Five million people emigrated from Wuhan before lockdown, potentially representing a source of virus infection. Determining case distribution and its correlation with population emigration from Wuhan in the early stage of the epidemic is of great importance for early warning and for the prevention of future outbreaks. METHODS: The official case report on the COVID-19 epidemic was collected as of January 30, 2020. Time and location information on COVID-19 cases was extracted and analyzed using ArcGIS and WinBUGS software. Data on population migration from Wuhan city and Hubei province were extracted from Baidu Qianxi, and their correlation with the number of cases was analyzed. RESULTS: The COVID-19 confirmed and death cases in Hubei province accounted for 59.91% (5806/9692) and 95.77% (204/213) of the total cases in China, respectively. Hot spot provinces included Sichuan and Yunnan, which are adjacent to Hubei. The time risk of Hubei province on the following day was 1.960 times that on the previous day. The number of cases in some cities was relatively low, but the time risk appeared to be continuously rising. The correlation coefficient between the provincial number of cases and emigration from Wuhan was up to 0.943. The lockdown of 17 cities in Hubei province and the implementation of nationwide control measures efficiently prevented an exponential growth in the number of cases. CONCLUSIONS: The population that emigrated from Wuhan was the main infection source in other cities and provinces. Some cities with a low number of cases showed a rapid increase in case load. Owing to the upcoming Spring Festival return wave, understanding the risk trends in different regions is crucial to ensure preparedness at both the individual and organization levels and to prevent new outbreaks.


Subject(s)
Betacoronavirus , Coronavirus Infections/epidemiology , Pneumonia, Viral/epidemiology , COVID-19 , China/epidemiology , Emigration and Immigration , Epidemics , Humans , Pandemics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL