Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
J Formos Med Assoc ; 118(1 Pt 3): 494-503, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30414800

ABSTRACT

BACKGROUND/PURPOSE: Substantial progress was made in acute kidney injury (AKI) over the past 10 years, but no therapeutic interventions have been shown to prevent AKI or accelerate functional recovery after injury. A large number of preclinical studies supports the use of recombinant human erythropoietin (rHuEPO) to prevent AKI, but the clinical trial data are inconclusive. To address concerns about preclinical study design and reporting in AKI, we here presented our rigorous experiments on the use of rHuEPO in a mouse model simulating the most common post-ischemic AKI in patients. METHODS: Use of saline vehicle or rHuEPO (100 or 1000 U/KgBW) in mice subjected to AKI induced by ischemia-reperfusion injury of left kidney 2 weeks after right nephrectomy (NX + IRI). RESULTS: NX + IRI resulted in a reproducible AKI model. Use of rHuEPO as a pretreatment or posttreatment did not affect AKI severity, functional recovery, and mouse survival regardless of gender, injury severity, or doses of rHuEPO. Administering rHuEPO with 1000 U/KgBW did increase hematocrit and modulate AKI kidney macrophages by Nos2 downregulation and Ccl17 upregulation. Active expression of erythropoietin receptor (EPOR) was not identified in renal cells by lineage tracing study, whereas expression of colony-stimulating factor 2 receptor ß (CSF2Rß) was identified in kidney macrophages and upregulated after AKI. Both EPOR and CSF2Rß were identified in cultured bone marrow derived macrophages, possibly mediated the robust inhibition of cytokine-induced phenotype switching by rHuEPO. CONCLUSION: Use of rHuEPO can modulate macrophage function but not the post-ischemic AKI severity, functional recovery and survival in mice.


Subject(s)
Acute Kidney Injury/drug therapy , Erythropoietin/pharmacology , Macrophages/drug effects , Reperfusion Injury/physiopathology , Signal Transduction/drug effects , Acute Kidney Injury/etiology , Animals , Apoptosis/drug effects , Disease Models, Animal , Female , Kidney/drug effects , Kidney/surgery , Macrophages/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Nephrectomy , Recombinant Proteins/pharmacology
4.
Sci Rep ; 6: 34265, 2016 Sep 28.
Article in English | MEDLINE | ID: mdl-27677327

ABSTRACT

Acute kidney injury (AKI) is an important risk factor for incident chronic kidney disease (CKD). Clinical studies disclose that ensuing CKD progresses after functional recovery from AKI, but the underlying mechanisms remain illusive. Using a murine model representing AKI-CKD continuum, we show angiotensin II type 1a (AT1a) receptor signaling as one of the underlying mechanisms. Male adult CD-1 mice presented severe AKI with 20% mortality within 2 weeks after right nephrectomy and left renal ischemia-reperfusion injury. Despite functional recovery, focal tubular atrophy, interstitial cell infiltration and fibrosis, upregulation of genes encoding angiotensinogen and AT1a receptor were shown in kidneys 4 weeks after AKI. Thereafter mice manifested increase of blood pressure, albuminuria and azotemia progressively. Drinking water with or without losartan or hydralazine was administered to mice from 4 weeks after AKI. Increase of mortality, blood pressure, albuminuria, azotemia and kidney fibrosis was noted in mice with vehicle administration during the 5-month experimental period. On the contrary, these parameters in mice with losartan administration were reduced to the levels shown in control group. Hydralazine did not provide similar beneficial effect though blood pressure was controlled. These findings demonstrate that losartan can reduce ensuing CKD and mortality after functional recovery from AKI.

SELECTION OF CITATIONS
SEARCH DETAIL